The Project Management and Information Technology Context

Objectives

After reading this chapter, you will be able to:

1. Understand the systems view of project management and how it applies to information technology projects
2. Analyze a formal organization using the structural, human resources, political, and symbolic organizational frames
3. Describe the differences among functional, matrix, and project organizational structures
4. Explain why stakeholder management and top management commitment are critical for a project’s success
5. Understand the concept, development, implementation, and close-out phases of the project life cycle
6. Distinguish between project development and product development
7. Discuss the unique attributes and diverse nature of information technology projects
8. List the skills and attributes of a good project manager in general and in the information technology field

OPENING CASE

Tom Walters recently accepted a new position at his college as the Director of Information Technology. Tom had been a respected faculty member at the college for the past fifteen years. The college—a small, private college in the Southwest—offered a variety of programs in the liberal arts and professional areas. Enrollment included 1,500 full-time traditional students and about 1,000 working-adult students attending an evening program. Many instructors supplemented their
courses with information on the Internet and course Web sites, but they did not offer any distance-learning programs. The college’s niche was serving students in that region who liked the setting of a small liberal arts college. Like most colleges, its use of information technology had grown tremendously in the past five years. There were a few classrooms on campus with computers for the instructors and students, and a few more with just instructor stations and projection systems. Tom knew that several colleges throughout the country had begun to require that all students lease laptops and that these colleges incorporated technology components into most courses. This idea fascinated him. He and two other members of the Information Technology Department visited a local college that had required all students to lease laptops for the past three years, and they were very impressed with what they saw and heard. Tom and his staff developed plans to start requiring students to lease laptops at their college the next year.

Tom sent an e-mail to all faculty and staff in September, which briefly described this and other plans. He did not get much response, however, until the February faculty meeting when, as he described some of the details of his plan, the chairs of the History, English, Philosophy, and Economics departments all voiced their opposition to the idea. They eloquently stated that the college was not a technical training school, and that they thought the idea was ludicrous. Members of the Computer Science Department voiced their concern that all of their students already had state-of-the-art computers and would not want to pay a mandatory fee to lease less-powerful laptops. The director of the adult education program expressed her concern that many adult-education students would balk at an increase in fees. Tom was in shock to hear his colleagues’ responses, especially after he and his staff had spent a lot of time planning details of how to implement the use of laptops at their campus. Now what should he do?

Many of the theories and concepts of project management are not difficult to understand. What is difficult is implementing them in various environments. Project managers must consider many different issues when managing projects. Just as each project is unique, so is its environment. This chapter discusses some of the components involved in understanding the project environment,
such as using a systems approach, understanding organizations, managing stakeholders, matching product life cycles to the project environment, the context of information technology projects, and developing important skills for successful project management.

A SYSTEMS VIEW OF PROJECT MANAGEMENT

Even though projects are temporary and intended to provide a unique product or service, organizations cannot run projects in isolation. If project managers lead projects in isolation, it is unlikely that those projects will ever truly serve the needs of the organization. Therefore, projects must operate in a broad organizational environment, and project managers need to consider projects within the greater organizational context. To handle complex situations effectively, project managers need to take a holistic view of a project and understand how it relates to the larger organization. Systems thinking describes this holistic view of carrying out projects within the context of the organization.

The term systems approach emerged in the 1950s to describe a holistic and analytical approach to solving complex problems that includes using a systems philosophy, systems analysis, and systems management. A systems philosophy is an overall model for thinking about things as systems. Systems are sets of interacting components working within an environment to fulfill some purpose. For example, the human body is a system composed of many subsystems—the brain, the skeletal system, the circulatory system, the digestive system, and so on. Systems analysis is a problem-solving approach that requires defining the scope of the system, dividing it into its components, and then identifying and evaluating its problems, opportunities, constraints, and needs. The analyst then examines alternative solutions for improving the current situation, identifies an optimum, or at least satisfactory, solution or action plan, and examines that plan against the entire system. Systems management addresses the business, technological, and organizational issues associated with making a change to a system.

Using a systems approach is critical to successful project management. Top managers and project managers must follow a systems philosophy to understand how projects relate to the whole organization. They must use systems analysis to address needs with a problem-solving approach. They must use systems management to identify key business, technological, and organizational issues related to each project in order to identify and satisfy key stakeholders and do what is best for the entire organization.

In the opening case, when Tom Walters planned the laptop project, he did not use a systems approach. Members of the Information Technology Department did all of the planning. Even though Tom sent an e-mail describing the laptop project to all faculty and staff, he did not address many of the organizational issues involved in such a complex project. Most faculty and staff are very busy at the
beginning of fall term and many may not have read the entire message. Others may have been too busy to communicate their concerns to the Information Technology Department. Tom was unaware of the effects the laptop project would have on other parts of the college. He did not clearly define the business, technological, and organizational issues associated with the project. Tom and the Information Technology Department began work on the laptop project in isolation. If they had taken a systems approach, considering other dimensions of the project, and involving key stakeholders, they could have identified and addressed many of the issues raised at the February faculty meeting before the meeting.

Figure 2-1 provides a sample of some of the business, organizational, and technological issues that could be factors in the laptop project. In this case, technological issues, though not simple by any means, are probably the least difficult to identify and resolve. However, projects must address issues in all three spheres of the systems management model—business, organizational, and technological. Although it is easier to focus on the immediate and sometimes narrow concerns of a particular project, project managers and other staff must keep in mind the effects of any project on the interests and needs of the entire system or organization.

Figure 2-1. Three-Sphere Model for Systems Management
Many information technology professionals become captivated with the technology and day-to-day problem solving involved in working with information systems. They tend to become frustrated with many of the “people problems” or politics involved in most organizations. In addition, many information technology professionals ignore important business issues. Does it make financial sense to pursue this new technology? Should the company develop this software in-house or purchase it off-the-shelf? Using a more holistic approach helps project managers integrate business and organizational issues into their planning. It also helps them look at projects as a series of interrelated phases. When you integrate business and organizational issues into project planning and look at projects as a series of interrelated phases, you do a better job of ensuring project success.

UNDERSTANDING ORGANIZATIONS

The systems approach requires that project managers always view their projects in the context of the larger organization. Organizational issues are often the most difficult part of working on and managing projects. For example, many people believe that most projects fail because of politics. Project managers often do not spend enough time identifying all the stakeholders involved in projects, especially the people opposed to the projects. Similarly, they often do not consider the political context of a project or the culture of the organization. In order to improve the success rate of information technology projects, it is important for project managers to develop a better understanding of people as well as organizations.

Organizations can be viewed as having four different frames: structural, human resources, political, and symbolic.¹

■ The **structural frame** deals with how the organization is structured (usually depicted in an organizational chart) and focuses on different groups’ roles and responsibilities in order to meet the goals and policies set by top management. This frame is very rational and focuses on coordination and control. For example, within the structural frame, a key information technology issue is whether a company should centralize the information technology personnel in one department or decentralize across several departments. You will learn more about organizational structures in the next section.

■ The **human resources frame** focuses on producing harmony between the needs of the organization and the needs of the people. It recognizes that there are often mismatches between the needs of the organization and the needs of individuals and groups and works to resolve any potential

problems. For example, many projects might be more efficient for the organization if personnel worked 80 or more hours a week for several months. This work schedule would probably conflict with the personal lives of those people. Important issues in information technology related to the human resources frame are the shortage of skilled information technology workers within the organization and unrealistic schedules imposed on many projects.

■ The political frame addresses organizational and personal politics. Politics in organizations take the form of competition among groups or individuals for power and leadership. The political frame assumes that organizations are coalitions composed of varied individuals and interest groups. Often, important decisions need to be made based on the allocation of scarce resources. Competition for scarce resources makes conflict a central issue in organizations, and power improves the ability to obtain scarce resources. Project managers must pay attention to politics and power if they are to be effective. It is important to know who opposes your projects as well as who supports them. Important issues in information technology related to the political frame are the power shifts from central functions to operating units or from functional managers to project managers.

■ The symbolic frame focuses on symbols and meanings. What is most important about any event in an organization is not what actually happened, but what it means. Was it a good sign that the CEO came to a kick-off meeting for a project, or was it a threat? The symbolic frame also relates to the company’s culture. How do people dress? How many hours do they work? How do they run meetings? Many information technology projects are international and include stakeholders from various cultures. Understanding those cultures is also a crucial part of the symbolic frame.

What Went Wrong?

Several large organizations have installed or tried to install enterprise resource planning (ERP) systems to integrate business functions such as ordering, inventory, delivery, accounting, and human resource management. They understand the potential benefits of an ERP system and can analyze its various technical issues, but many companies do not realize how important the organizational issues are to ERP implementations.

For example, in early 2001, Sobey’s, Canada’s second largest grocery store chain with 1400 stores, abandoned its two-year, $90-million investment in an ERP system. The system was developed by SAP, the largest enterprise software company and the third-largest software supplier. Unfortunately, the system did not work properly due to several organizational challenges. Every department has to work together to implement an ERP system, and it is often difficult to get departments to communicate their needs. As Dalhousie University Associate Professor Sunny Marche states, “The problem of building an integrated system that can accommodate different people is a very serious challenge. You can’t divorce tech-
Project managers must learn to work within all four of these frames in order to function well in organizations. Chapter 9, Project Human Resource Management, and Chapter 10, Communications Management, further develop some of the organizational issues. The following sections on organizational structures, stakeholder management, and the need for top management commitment provide additional information related to the structural and political frames.

Organizational Structures

Many discussions of organizations focus on organizational structure. Three general classifications of organizational structures are functional, project, and matrix. Figure 2-2 portrays these three organizational structures. A functional organizational structure is the hierarchy most people think of when picturing an organizational chart. Functional managers or vice presidents in specialties such as engineering, manufacturing, information technology (IT), and human resources (HR) report to the chief executive officer (CEO). Their staffs have specialized skills in their respective disciplines. For example, most colleges and universities have very strong functional organizations. Only faculty in the Business Department teach business courses; faculty in the History Department teach history; faculty in the Art Department teach art, and so on.

A project organizational structure also has a hierarchical structure, but instead of functional managers or vice presidents reporting to the CEO, program managers report to the CEO. Their staffs have a variety of skills needed to complete the projects within their programs. Many large defense organizations use project structures. For example, major aircraft corporations usually have vice presidents in charge of each aircraft program. Many consulting firms also follow a project organization and hire people specifically to work on particular projects.

A matrix organizational structure represents the middle ground between functional and project structures. Personnel often report to both a functional manager and one or more project managers. For example, information technology personnel at many companies often split their time between two or more projects, but they report to their manager in the Information Technology Department. Project managers in matrix organizations have staff from various functional areas working on their projects, as shown in Figure 2-2. Matrix

structures can be strong, weak, or balanced, based on the amount of control exerted by the project managers.

Table 2-1 summarizes how organizational structure influences projects and project managers. Project managers have the most authority in a pure project organization and the least amount of authority in a pure functional organization. It is important that project managers understand the current structure under which they are working. For example, if someone in a functional organization is asked to lead a project that requires strong support from several different functional areas, he or she should ask for senior management sponsorship. This sponsor should solicit support from all relevant functional managers to ensure that they cooperate on the project and that qualified people are available to work as needed. The project manager might also ask for a separate budget to

Figure 2-2. Functional, Project, and Matrix Organizational Structures
pay for project-related trips, meetings, and training or to provide financial incentives to the people supporting the project.

Table 2-1: Organizational Structure Influences on Projects

<table>
<thead>
<tr>
<th>FUNCTIONAL</th>
<th>WEAK MATRIX</th>
<th>BALANCED MATRIX</th>
<th>STRONG MATRIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project manager’s authority</td>
<td>Little or none</td>
<td>Limited</td>
<td>Low to Moderate</td>
</tr>
<tr>
<td>Percent of performing organization’s personnel assigned full-time to project work</td>
<td>Virtually none</td>
<td>0–25%</td>
<td>15–60%</td>
</tr>
<tr>
<td>Project manager’s role</td>
<td>Part-time</td>
<td>Part-time</td>
<td>Full-time</td>
</tr>
<tr>
<td>Common title for project manager’s role</td>
<td>Project Coordinator/Project Leader</td>
<td>Project Coordinator/Project Leader</td>
<td>Project Manager/Project Officer</td>
</tr>
<tr>
<td>Project management administrative staff</td>
<td>Part-time</td>
<td>Part-time</td>
<td>Part-time</td>
</tr>
</tbody>
</table>

Even though project managers have the most authority in the project organizational structure, this type of organization is often inefficient for the company as a whole. Assigning staff full-time to the project often creates underutilization and/or misallocation of staff resources. For example, if a technical writer is assigned full-time to a project but there is no work for him or her on a particular day, the organization is wasting money by paying that person a full-time wage. Project organizations may also miss economies of scale available through the pooling of requests for materials with other projects. Disadvantages such as these illustrate the benefit of using a systems approach to managing projects. For example, the project manager might suggest hiring an independent contractor to do the technical writing work instead of using a full-time employee. This approach would save the organization money while still meeting the needs of the project. When project managers use a systems approach, they are better able to make decisions that address the needs of the entire organization.
STAKEHOLDER MANAGEMENT

Recall from Chapter 1 that project stakeholders are the people involved in or affected by project activities. Stakeholders can be internal to the organization, external to the organization, directly involved in the project, or simply affected by the project. Internal project stakeholders generally include the project sponsor, project team, support staff, and internal customers for the project. Other internal stakeholders include top management, other functional managers, and other project managers. Since organizations do not have unlimited resources, projects affect top management, other functional managers, and other project managers by using some of the organization’s limited resources. Thus, while additional internal stakeholders may not be directly involved in the project, they are still stakeholders because the project affects them in some way. External project stakeholders include the project’s customers (if they are external to the organization), competitors, suppliers, and other external groups potentially involved in or affected by the project, such as government officials or concerned citizens. Since the purpose of project management is to meet project requirements and satisfy stakeholders, it is critical that project managers take adequate time to identify, understand, and manage relationships with all project stakeholders. The expectations of all project stakeholders is most accurately met using the four frames (structural, human resources, political, and symbolic) of organizations.

Consider again the laptop project from the opening case. Tom Walters seemed to focus on just a few internal project stakeholders. He viewed only part of the structural frame of the college. Since his department would do most of the work in administering the laptop project, he focused on those stakeholders. Tom did not even involve the main customers for this project—the students at the college. Even though Tom sent an e-mail to faculty and staff, he did not hold meetings with senior administration or faculty at the college. Tom’s view of who the stakeholders were for the laptop project was very limited.

During the faculty meeting, it became evident that the laptop project had many stakeholders in addition to the Information Technology Department and students. If Tom had expanded his view of the structural frame of his organization by reviewing an organizational chart for the entire college, he could have identified other key stakeholders. He would have been able to see that the laptop project would affect academic department heads and members of different administrative areas. If Tom had focused on the human resources frame, he would have been able to tap his knowledge of the college and identify individuals who would most support or oppose requiring laptops. By using the political frame, Tom could have considered the main interest groups that would be most affected by this project’s outcome. Had he used the symbolic frame, Tom could have tried to address what moving to a laptop environment would really
mean for the college. He then could have anticipated some of the opposition from people who were not in favor of increasing the use of technology on campus. He also could have solicited a strong endorsement from the college president or dean before talking at the faculty meeting.

Tom Walters, like many new project managers, learned the hard way that his technical and analytical skills were not enough to guarantee success in project management. To be more effective, he had to identify and address the needs of different stakeholders and understand how his project related to the entire organization.

The Importance of Top Management Commitment

People in top management positions, of course, are key stakeholders in projects. A very important factor in helping project managers successfully lead projects is the level of commitment and support they receive from top management. In fact, without top management commitment, many projects will fail. As described earlier, projects are part of the larger organizational environment, and many factors that might affect a project are out of the project manager’s control. Several studies cite executive support as one of the key factors associated with the success of virtually all projects.

Table 2-2 summarizes the results of the 2001 Standish Group study describing, in order of importance, what factors contribute most to the success of information technology projects. Note that the study lists executive support as the most important factor, overtaking user involvement, which was most important in the 1995 CHAOS study. Executive support can also help projects succeed when top managers encourage users to actively participate in projects, assign experienced project managers, provide clear business objectives, and so on.

Table 2-2: What Helps Projects Succeed?

1. Executive support
2. User involvement
3. Experienced project manager
4. Clear business objectives
5. Minimized scope
6. Standard software infrastructure
7. Firm basic requirements
8. Formal methodology
9. Reliable estimates

Top management commitment is crucial to project managers for the following reasons:

■ Project managers need adequate resources. The best way to kill a project is to withhold the required money, people, resources, and visibility for the project. If project managers have top management commitment, they will also have adequate resources and not be distracted by events that do not affect their specific projects.

■ Project managers often require approval for unique project needs in a timely manner. For example, on large information technology projects, top management must understand that unexpected problems may result from the nature of the products being produced and the specific skills of the people on the project team. For example, the team might need additional hardware and software halfway through the project for proper testing, or the project manager might need to offer special pay and benefits to attract and retain key project personnel. With top management commitment, project managers can meet these specific needs in a timely manner.

■ Project managers must have cooperation from people in other parts of the organization. Since most information technology projects cut across functional areas, top management must help project managers deal with the political issues that often arise in these types of situations. If certain functional managers are not responding to project managers’ requests for necessary information, top management must step in to encourage functional managers to cooperate.

■ Project managers often need someone to mentor and coach them on leadership issues. Many information technology project managers come from technical positions and often are inexperienced as managers. Senior managers should take the time to pass on leadership advice and encourage new project managers to take classes to develop leadership skills and allocate the time and funds for them to do so.

Information technology project managers work best in an environment in which top management values information technology. Working in an organization that values good project management and sets standards for its use also helps project managers succeed.

The Need for Organizational Commitment to Information Technology

Another factor affecting the success of information technology projects is the organization’s commitment to information technology in general. It is very difficult for a large information technology project (or a small one, for that matter) to be successful if the organization itself does not value information technology. Many companies have realized that information technology is integral
to their business and have created a vice president or equivalent-level position for the head of information technology, often called the Chief Information Officer (CIO). Some companies assign people from non-information technology areas to work on large projects full-time to increase involvement from end users of the systems. Some CEOs even take a strong leadership role in promoting the use of information technology in their organizations.

The Gartner Group, Inc., a well-respected information technology consulting firm, awarded Boston’s State Street Bank and Trust Company’s CEO, Marshall Carter, the 1998 Excellence in Technology Award. Carter provided the vision and leadership for his organization to implement new information technology that successfully expanded the bank’s business. They had to gather, coordinate, and analyze vast amounts of data from around the globe to provide new asset management services to their customers. It took six years to transform State Street Bank and Trust into a company providing state-of-the-art tools and services to its customers. The bank’s revenues, profits, and earnings per share more than doubled during Carter’s first five years as CEO. One key to Carter’s success was his vision that technology was an integral part of the business and not just a means of automating old banking services. Carter used a highly personal style to keep his people motivated, and he often showed up at project review meetings to support his managers on information technology projects.3

The Need for Organizational Standards

Another problem in most organizations is not having standards or guidelines to follow that could help in performing project management. These standards or guidelines might be as simple as providing standard forms or templates for common project documents, examples of good project plans, or guidelines on how the project manager should provide status information to top management. The content of a project plan and how to provide status information might seem like common sense to senior managers, but many new information technology project managers have never created plans or given a nontechnical status report. Top management must support the development of these standards and guidelines and encourage, or even enforce, their use. For example, an organization might require all potential project information in a standard format to make project portfolio management decisions. If a project manager does not submit a potential project in the proper format, it could be rejected.

Some organizations invest heavily in project management by creating a project management office or center of excellence, as described in Chapter 1. A project management office or center of excellence is an organizational entity created to assist project managers in achieving project goals. Rachel Hollstadt, founder and CEO of a project management consulting firm, suggests that organizations consider adding a new position, a Chief Project Officer (CPO), the title Anne

Roberts held in the opening case for Chapter 1, to elevate the importance of project management. Some organizations develop career paths for project managers. Some require that all project managers have project management professional (PMP) certification and that all employees have some type of project management training. The implementation of all of these standards demonstrates an organization’s commitment to project management.

PROJECT PHASES AND THE PROJECT LIFE CYCLE

Since projects operate as part of a system and involve uncertainty, it is good practice to divide projects into several phases. A project life cycle is a collection of project phases. Project phases vary by project or industry, but some general phases include concept, development, implementation, and close-out. The first two phases (concept and development) focus on planning and are often referred to as project feasibility. The last two phases (implementation and close-out) focus on delivering the actual work and are often referred to as project acquisition. A project must successfully complete each phase before moving on to the next. This project life cycle approach provides better management control and appropriate links to the ongoing operations of the organization.

Figure 2-3 provides a summary framework for the general phases of the project life cycle. In the concept phase of a project, managers usually briefly describe the project—they develop a very high-level or summary plan for the project, which describes the need for the project and basic underlying concepts. A preliminary or rough cost estimate is developed in this first phase, and an overview of the work involved is created. A work breakdown structure (WBS) defines project work and is a deliverable-oriented document that defines the total scope of the project. (You will learn more about the work breakdown structure in Chapter 5, Project Scope Management.) For example, if Tom Walters (from the opening case) had followed the project life cycle instead of moving full-steam ahead with the laptop project, he could have created a committee of faculty and staff to study the concept of increasing the use of technology on campus. This committee might have developed a management plan that included an initial, smaller project to investigate alternative ways of increasing the use of technology. They might have estimated that it would take six months and $20,000 to conduct a detailed technology study. The WBS at this phase of the study might have three levels and partition the work to include a competitive analysis of what five similar campuses were doing; a survey of local students, staff, and faculty; and a rough assessment of how using more technology would affect costs and enrollments. At the end of the concept phase, the committee would be able to deliver a report and presentation on its findings. The report and presentation would be an example of a deliverable—a product produced as part of a project.
Figure 2-3. Phases of the Project Life Cycle

After the concept phase is completed, the next project phase of development begins. In the development phase, the project team creates a more detailed project plan, a more accurate cost estimate, and a more thorough WBS. In the example under discussion, suppose the concept phase report suggested that requiring students to have laptops was one means of increasing the use of technology on campus. The project team could then further expand this idea in the development phase. They would have to decide if students would purchase or lease the laptops, what type of hardware and software the laptops would require, how much to charge students, how to handle training and maintenance, how to integrate the use of the new technology with current courses, and so on. If, however, the concept phase report showed that the laptop idea was not a good idea for the college, then the project team would no longer consider increasing the use of technology by requiring laptops in the development phase. This phased approach minimizes the time and money spent developing inappropriate projects. A project idea must pass the concept phase before evolving into the development phase.

The third phase of the project life cycle is implementation. In this phase, the project team delivers the required work, creates a definitive or very accurate cost estimate, and provides performance reports to stakeholders. Suppose Tom Walter’s college took the idea of requiring students to have laptops through the development phase. During the implementation phase, the project team would need to obtain the required hardware and software, install the necessary network equipment, deliver the laptops to the students, create a process for collecting fees, provide training to students, faculty, and staff, and so on. Other people on campus would also be involved in the implementation phase. Faculty would need to consider how best to take advantage of the new
technology. The recruiting staff would have to update their materials to reflect this new feature of the college. Security would need to address new problems that might result from having students carry around expensive equipment. The project team usually spends the bulk of their efforts and money during the implementation phase of projects.

The last phase of the project life cycle is close-out. In the close-out phase, all of the work is completed, and there should be some sort of consumer acceptance of the entire project. The project team should document their experiences on the project in a lessons-learned report. If the laptop idea made it all the way through the implementation phase and all students received laptops, the project team would then complete the project by closing out any related activities. They might administer a survey to students, faculty, and staff in order to gather opinions on how the project fared. They would ensure that any contracts with suppliers were completed and appropriate payments made. They would transition future work related to the laptop project to other parts of the organization. The project team could also share their lessons learned with other college campuses considering implementing a similar program.

Just as a project has a life cycle, so does a product. Information technology projects help produce products such as new software, hardware, networks, research reports, and training on new systems. Understanding the product life cycle is just as important to good project management as understanding the phases of the project life cycle.

Product Life Cycles

All products follow some type of life cycle—cars, buildings, even amusement parks. The Disney corporation, for example, follows a rigorous process to design, build, and test new products. They assign project managers to oversee the development of all new products, such as rides, parks, and cruise lines. Likewise, major automotive companies follow product life cycles to produce new cars, trucks, and other products. Most information technology professionals are familiar with the concept of a product life cycle, especially for developing software.

Software development projects are one subset of information technology projects. In general, information technology projects involve researching, analyzing, and then purchasing and installing new hardware and software with little or no actual software development required. However, some projects involve minor software modifications to enhance existing software or to integrate one application with another. Other projects involve a major amount of software development. Many argue that developing software requires project managers to modify traditional project management methods, depending on a particular product’s life cycle.
A **systems development life cycle (SDLC)** is a framework for describing the phases involved in developing information systems. Some popular models of a SDLC include the waterfall model, the spiral model, the incremental build model, the prototyping model, and the Rapid Application Development (RAD) model. These life cycle models are examples of a **predictive life cycle**, meaning the scope of the project can be clearly articulated and the schedule and cost can be accurately predicted. The project team spends a large portion of the project effort attempting to clarify the requirements of the entire system and then producing a design. Developers need to take time to understand requirements and create design documents before they can write any code for users to review. Users often are unable to see any tangible results in terms of working software for an extended period. Below are brief descriptions of several predictive systems development life cycle models: 4

■ The **waterfall life cycle model** has well-defined, linear stages of systems development and support. This life cycle model assumes that requirements will remain stable after they are defined.

■ The **spiral life cycle model** was developed based on experience with various refinements of the waterfall model as applied to large government software projects. It recognizes the fact that most software is developed using an iterative or spiral approach rather than a linear approach.

■ The **incremental build life cycle model** provides for progressive development of operational software, with each release providing added capabilities.

■ The **prototyping life cycle model** is used for developing software prototypes to clarify user requirements for operational software. It requires heavy user involvement, and developers use a model to generate functional requirements and physical design specifications simultaneously. Developers can throw away or keep prototypes, depending on the project.

■ The **Rapid Application Development (RAD)** life cycle model uses an approach in which developers work with an evolving prototype. This life cycle model also requires heavy user involvement and helps produce systems quickly without sacrificing quality. Developers use RAD tools such as CASE (Computer Aided Software Engineering), JRP (Joint Requirements Planning), and JAD (Joint Application Design) to facilitate rapid prototyping and code generation.

In contrast to the predictive life cycle, the **Adaptive Software Development (ASD)** life cycle model assumes that software development follows an adaptive approach. Important attributes of this approach are that the projects are mission driven and component based, using time-based cycles to meet target

dates. Requirements are developed using an iterative approach, and development is risk-driven and change tolerant to address and incorporate rather than mitigate risks. More recently, the term agile software development has become popular to describe new approaches for managing software development projects. Two popular ASD life cycle models are extreme programming and Scrum.

- **Extreme Programming (XP)** has become a popular buzzword. This life cycle model meets the needs of people developing software in rapidly changing environments. An XP development team includes software developers, managers, and user representatives. One unique feature of the XP life cycle model is that developers program in pairs to promote synergy and increase productivity. Another unique feature of XP is that software developers must write the tests for their own code. XP development teams emphasize user satisfaction by producing tangible results in a short time while promoting teamwork and collective code ownership. Some disadvantages of the XP life cycle model are that it does not work for large projects (more than twenty people), it requires full-time user representatives, it assumes developers are highly disciplined, and it will not work if the team must predict the cost and schedule at the project’s onset and then try to meet those commitments. The term extreme project management loosely describes how to manage these types of projects.

- **Scrum** is similar to other life cycle models that use iterative development to address changing requirements, but in the Scrum life cycle model, the repetitions are referred to as sprints, which normally last thirty days. Each day the entire team meets for a short meeting, called a scrum, where they decide what to accomplish that day. Team members identify any obstacles they might have in accomplishing their goals, and the project manager must resolve and remove those obstacles. Project managers can use Scrum on large development projects because each team focuses on a discrete piece of work or object, with clear interfaces and behaviors. Scrum works best for projects using object-oriented technology and requires strong leadership to coordinate the work of each smaller team.

These life cycle models are all examples of software development product life cycles. Many Web sites and introductory management information systems texts describe each of them in detail. The type of software and complexity of the information system in development determines which life cycle model to use. It is important to understand the product life cycle to meet the needs of the project environment.

Do not confuse the project life cycle with the product life cycle. The project life cycle applies to all projects, regardless of the products being produced. On the other hand, product life cycle models vary considerably based on the nature of the product.
Most large information technology products are developed as a series of projects. For example, the systems planning phase for a new information system can include a project to hire an outside consulting firm to help identify and evaluate potential strategies for developing a particular business application, such as a new order processing system or general ledger system. It can also include a project to develop, administer, and evaluate a survey of users to get their opinions on the current information systems used for performing that business function in the organization. The systems analysis phase might include a project to create process models for certain business functions in the organization. It can also include a project to create data models of existing databases in the company related to the business function and application. The implementation phase might include a project to hire contract programmers to code a part of the system. The close-out phase might include a project to develop and run several training sessions for users of the new application. All of these examples show that developing large information technology products are usually composed of several smaller projects.

Because some aspects of project management need to occur during each phase of the product life cycle, it is critical for information technology professionals to understand and practice good project management.

The Importance of Project Phases and Management Reviews

Due to the complexity and importance of many information technology projects and their resulting products, it is important to take time to review the status of a project at each phase. A project should successfully pass through each of the main project phases before continuing to the next. Since the organization usually commits more money as a project continues, a management review should occur after each phase to evaluate progress, potential success, and continued compatibility with organizational goals. These management reviews, called phase exits or kill points, are very important for keeping projects on track and determining if they should be continued, redirected, or terminated. Recall that projects are just one part of the entire system of an organization. Changes in other parts of the organization might affect a project’s status, and a project’s status might likewise affect what is happening in other parts of the organization. By breaking projects into phases, top management can make sure that the projects are still compatible with the needs of the rest of the company.

Let’s take another look at the opening case. Suppose Tom Walters’ college did a study on increasing the use of technology that was sponsored by the college president. At the end of the concept phase, the project team could have presented information to the faculty, president, and other staff members that
described different options for increasing the use of technology, an analysis of what competing colleges were doing, and results of a survey of local stakeholders’ opinions on the subject. This presentation at the end of the concept phase represents one form of a management review. Suppose the study reported that 90 percent of students, faculty, and staff surveyed strongly opposed the idea of requiring all students to have laptops and that many adult students said they would attend other colleges if they were required to pay for the additional technology. The college would probably decide not to pursue this idea any further. Had Tom taken a phased approach, he and his staff would not have wasted the time and money it took to develop detailed plans.

In addition to formal management reviews, it is important to have top management involvement throughout the life cycle of most projects. It is unwise to wait for the end of project phases to have management inputs. Many projects are reviewed by management on a regular basis, such as weekly or even daily, to make sure they are progressing well. Everyone wants to be successful in accomplishing goals at work, and having management involvement ensures that they are on track in accomplishing both project and organizational goals.

What Went Right?

Having specific deliverables and kill points at the end of project phases helps managers make better decisions about whether to proceed, redefine, or kill a project. Improvement in information technology project success rates reported by the Standish Group has been due, in part, to an increased ability to know when to cancel failing projects. Standish Group Chairman Jim Johnson made the following observation:

“The real improvement that I saw was in our ability to—in the words of Thomas Edison—know when to stop beating a dead horse . . . Edison’s key to success was that he failed fairly often; but as he said, he could recognize a dead horse before it started to smell . . . as a result he had 14,000 patents and was very successful. . . . In information technology we ride dead horses—failing projects—a long time before we give up. But what we are seeing now is that we are able to get off them; able to reduce cost overrun and time overrun. That’s where the major impact came on the success rate.”

Another example of the power of management oversight comes from Huntington Bancshares, Inc. This company, like many others, had an executive steering committee, a group of senior executives from various parts of the organization, who regularly reviewed important corporate projects and issues.

This Ohio-based, $26 billion bank holding company completed a year-long Web site redesign effort using XML technology to give its online customers access to real-time account information as well as other banking services. The CIO, Joe Gottron, said there were “four or five very intense moments” when the whole project was almost stopped due to its complexity. An executive steering committee met weekly to review the project’s progress and discuss work planned for the following week. Gottron said the meetings ensured that “if we were missing a beat on the project, no matter which company [was responsible], we were on top of it and adding additional resources to make up for it.”

THE CONTEXT OF INFORMATION TECHNOLOGY PROJECTS

As described earlier, software development projects can follow several different product life cycles based on the project context. There are several other issues related to information technology projects. In fact, several groups have recognized the additional knowledge that information technology project managers must possess by creating separate certification programs specifically for them. PMI launched a new Certificate of Added Qualification (CAQ) exam in 2002 that PMPs can take to demonstrate their knowledge of managing projects in information technology. CompTIA’s IT Project+ exam includes project scenarios and information specific to working in the information technology industry. Appendix B includes more information on these exams. This section highlights some of the issues unique to the information technology industry that affect project management, including the nature of projects, the characteristics of project team members, and the diverse nature of technologies involved.

The Nature of Information Technology Projects

Unlike projects in many other industries, projects labeled as information technology projects can be very diverse. Some involve a small number of people installing off-the-shelf hardware and associated software. Others involve hundreds of people analyzing several organizations’ business processes and then developing new software in a collaborative effort with users to meet business needs. Even for small hardware-oriented projects, there is a wide range of types of hardware that could be involved, such as personal computers, mainframe computers, network equipment, kiosks, or small mobile devices, to name a few. The network equipment might be wireless, phone-based, cable-based, or require satellite connection. The nature of software development projects is even more

diverse than hardware-oriented projects. A software development project might include developing a simple, stand-alone Excel or Access application or a sophisticated, global e-commerce system using state-of-the-art programming languages.

Information technology projects also support every possible industry and business function. Managing an information technology project for a film company’s animation department would require different knowledge and skills of the project manager and team members than a project to improve a federal tax collection system or install a communication infrastructure in a third-world country. Because of the diversity of information technology projects and the newness of the field, people are still struggling to find and develop the best processes (or sometimes any processes) to follow in managing them. Many information technology project managers feel as though they are often striking new ground with every project.

Characteristics of Information Technology Team Members

Due to the nature of information technology projects, the people involved come from very diverse backgrounds and possess different skill sets. Most trade schools, colleges, and universities did not start offering degrees in computer technology, computer science, management information systems, or other information technology areas until the 1980s. Therefore, many people in the field do not have a common educational background. Many companies purposely hire graduates with degrees in other fields such as business, mathematics, or the liberal arts to provide different perspectives on information technology projects. Even with these different educational backgrounds, there are some common job titles for people working on most information technology projects, such as business analyst, programmer, network specialist, database analyst, quality assurance expert, technical writer, security specialist, hardware engineer, software engineer, and system architect. Within the category of programmer, there are several other job titles used to describe the specific technologies the programmer uses, such as Java programmer, XML programmer, C/C++ programmer, and so on.

Some information technology projects require the skills of people in just a few of these job functions, but many require inputs from many or all of them. Occasionally, information technology professionals move around between these job functions, but more often people become technical experts in one area or they decide to move into a management position. It is also rare for technical specialists or project managers to remain with the same company for a long time, and in fact, many information technology projects include a large number of contract workers. Working with this “army of free agents,” as Rob Thomsett, author and consultant for the Cutter Consortium, calls them, creates special challenges. (See the Suggested Readings for an article by Thomsett on this topic.)
Diverse Technologies

Many of the job titles for information technology professionals reflect the different technologies required to hold that position. Unfortunately, hardware specialists often do not understand the language of database analysts, and vice versa. Security specialists have a hard time communicating with business analysts. It is also unfortunate that people within the same information technology job function often do not understand each other because each uses different technology. For example, someone with the title of programmer can often use several different programming languages. However, a COBOL programmer cannot be of much help on a Java project, and vice versa. These highly specialized positions also make it difficult for project managers to form and lead project teams.

Another problem with diverse technologies is that many of them change rapidly. A project team might be close to finishing a project when they discover a new technology that can greatly enhance the project and better meet long-term business needs. New technologies have also shortened the timeframe many businesses have to develop, produce, and distribute new products and services. This fast-paced environment requires equally fast-paced processes to manage and produce information technology projects and products.

SUGGESTED SKILLS FOR A PROJECT MANAGER

As you can imagine, good project managers should possess many skills. They must be comfortable with change, since most projects introduce changes in organizations, as well as involving changes within the projects themselves. Project managers need to understand the organizations they work in and how products are developed and services are provided. Achieving high performance on projects requires soft skills or people skills, such as strong management, communication, leadership, and political skills. These soft skills are often instrumental in achieving customer satisfaction for project results. Project managers also need skills in organization, teamwork, coping, and making effective use of technology.

Why do project managers need good soft skills? One reason is that to understand, navigate, and meet stakeholders’ needs and expectations, project managers need to lead, communicate, negotiate, problem solve, and influence the organization at large. They must be able to actively listen to what others are saying, help develop new approaches for solving problems, and persuade others to work toward achieving project goals. Project managers must lead their project teams by providing vision, delegating work, creating an energetic and positive environment, and setting an example of appropriate and effective behavior.
Project managers must also have strong organizational skills to be able to plan, analyze, set, and achieve project goals. Project managers must focus on teamwork skills in order to use their people effectively. They need to be able to motivate different types of people and develop *esprit de corps* within the project team and with other project stakeholders. Since most projects involve changes and trade-offs between competing goals, it is important for project managers to have strong coping skills as well. Project managers are better able to maintain their sanity and reduce their stress levels if they are able to cope with criticism and constant change. Project managers must be flexible, creative, and sometimes patient in working toward project goals; they must also be persistent in illustrating project needs. Lastly, project managers must be able to make effective use of technology as it relates to the specific project, often including having special product knowledge or experience with a particular industry. Project managers must make many decisions and deal with people in a wide variety of disciplines, so it helps tremendously to have a project manager who is confident in using the special tools or technologies that are the most effective in particular settings.

The above skills are important for all project managers. What additional skills do information technology project managers need? People in industry and academia often debate the answer to this question. Some people believe that it is important for information technology project managers to understand the technologies they use on the projects they are managing. They do not have to be expert users of any specific technology, but they have to know enough to build a strong team and ask the right questions to keep things on track. Others believe it is more important for information technology project managers to have strong business and behavioral skills so they can lead a project team and deliver a solution that will meet business needs.

In an interview with two CIOs, John Oliver of True North Communications, Inc. and George Nassef of Hotjobs.com, both men provided very different responses when asked what skills good information technology project managers need. They could not agree on which skills were more important, such as can-do optimism versus assume-the-worst realism, or detail-oriented versus visionary. However, both agreed that the most important skills depend on the uniqueness of the project and the people involved. Project managers must possess a wide variety of skills and be able to decide which particular skills are more important in different situations.

Unfortunately, many people in information technology do not want to develop anything but their technical skills. They do not regard soft skills or business skills as essential to improving their product delivery. Top managers disagree with that mindset because they recognize the need to improve communications between information technology professionals and their consumers. Business people are now more savvy with information technology, but few information technology professionals have spent the time developing their

business savvy. Organizations train information technology project managers by starting them off as members of a project team. However, they must be willing to develop more than just their technical skills to be more productive team members and potential project managers.

Several studies compare project management job responsibilities with the characteristics associated with success. The National Science Foundation’s 1999 study, “Building a Foundation for Tomorrow: Skills Standards for Information Technology, Millennium Edition” documents the results of a collaborative effort between industry and academia to improve the education of the information technology workforce. This study found that project management is a skill needed in every major information technology field, from database administrator to network specialist to technical writer. Table 2-3 lists fifteen project management job functions that are essential for good project management.

Table 2-3: Fifteen Project Management Job Functions

<table>
<thead>
<tr>
<th>1. Define scope of project</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Identify stakeholders, decision-makers, and escalation procedures</td>
</tr>
<tr>
<td>3. Develop detailed task list (work breakdown structures)</td>
</tr>
<tr>
<td>4. Estimate time requirements</td>
</tr>
<tr>
<td>5. Develop initial project management flow chart</td>
</tr>
<tr>
<td>6. Identify required resources and budget</td>
</tr>
<tr>
<td>7. Evaluate project requirements</td>
</tr>
<tr>
<td>8. Identify and evaluate risks</td>
</tr>
<tr>
<td>9. Prepare contingency plan</td>
</tr>
<tr>
<td>10. Identify interdependencies</td>
</tr>
<tr>
<td>11. Identify and track critical milestones</td>
</tr>
<tr>
<td>12. Participate in project phase review</td>
</tr>
<tr>
<td>13. Secure needed resources</td>
</tr>
<tr>
<td>14. Manage the change control process</td>
</tr>
<tr>
<td>15. Report project status</td>
</tr>
</tbody>
</table>

Each of the job functions listed in Table 2-3 requires different performance criteria, technical knowledge, foundation skills, and personal qualities. In a recent study, 100 project managers listed the characteristics they believed were critical for effective project management and the characteristics that made

8 Thomsen-Moore, Lauren, “No ‘soft skills’ for us, we’re techies,” Computerworld Today (December 16, 2002).
project managers ineffective. Table 2-4 lists the results. The study found that effective project managers provide leadership by example, are visionary, technically competent, decisive, good communicators, good motivators, stand up to top management when necessary, support team members, and encourage new ideas. The study also found that respondents believed positive leadership is the strongest contributing factor to project success. The most important characteristics and behaviors of positive leaders include being a team builder and communicator, having high self-esteem, focusing on results, demonstrating trust and respect, and setting goals.

Table 2-4: Most Significant Characteristics of Effective and Ineffective Project Managers

<table>
<thead>
<tr>
<th>Effective Project Managers</th>
<th>Ineffective Project Managers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead by example</td>
<td>Set bad examples</td>
</tr>
<tr>
<td>Are visionaries</td>
<td>Are not self-assured</td>
</tr>
<tr>
<td>Are technically competent</td>
<td>Lack technical expertise</td>
</tr>
<tr>
<td>Are decisive</td>
<td>Are poor communicators</td>
</tr>
<tr>
<td>Are good communicators</td>
<td>Are poor motivators</td>
</tr>
<tr>
<td>Are good motivators</td>
<td></td>
</tr>
<tr>
<td>Stand up to top management when necessary</td>
<td></td>
</tr>
<tr>
<td>Support team members</td>
<td></td>
</tr>
<tr>
<td>Encourage new ideas</td>
<td></td>
</tr>
</tbody>
</table>

Several organizations, including PMI, have developed project management competency models to help people identify what skills they need to develop to improve their performance as project managers. Project success is more likely when project managers develop these skills and organizations promote the use of good project management.

CASE WRAP-UP

After several people voiced concerns about the laptop idea at the faculty meeting, the president of the college directed that a committee be formed to formally review the concept of requiring students to have laptops in the near future. Because the college was dealing with several other important enrollment-related issues, the president
named the vice president of enrollment to head the committee. Other people soon volunteered or were assigned to the committee, including Tom Walters as head of Information Technology, the director of the adult education program, the chair of the Computer Science Department, and the chair of the History Department. The president also insisted that the committee include at least two members of the student body. The president knew everyone was busy, and he questioned whether the laptop idea was a high-priority issue for the college. He directed the committee to present a proposal at the next month’s faculty meeting, either to recommend the creation of a formal project team (of which these committee members would commit to be a part) to fully investigate requiring laptops, or to recommend terminating the concept. At the next faculty meeting, few people were surprised to hear the recommendation to terminate the concept. Tom Walters learned that he had to pay much more attention to the needs of the entire college before proceeding with detailed information technology plans.

CHAPTER SUMMARY

Projects operate in an environment broader than the project itself. Project managers need to take a systems approach when working on projects; they need to consider projects within the greater organizational context.

Organizations have four different frames: structural, human resources, political, and symbolic. Project managers need to understand all of these aspects of organizations to be successful. The structural frame focuses on different groups’ roles and responsibilities to meet the goals and policies set by top management. The human resources frame focuses on producing harmony between the needs of the organization and the needs of people. The political frame addresses organizational and personal politics. The symbolic frame focuses on symbols and meanings.

The structure of an organization has strong implications for project managers, especially in terms of the amount of authority the project manager has. The three basic organizational structures include functional, matrix, and project. Project managers have the most authority in a pure project organization, an intermediate amount of authority in the matrix organization, and the least amount of authority in a pure functional organization.
Project stakeholders are individuals and organizations actively involved in the project or whose interests may be positively or negatively affected because of project execution or successful project completion. Project managers must identify and understand the different needs of all stakeholders on their projects.

Top management commitment is crucial for project success. Since projects often affect many areas in an organization, top management must assist project managers if the project is to be successfully integrated. Organizational commitment to information technology is also important to the success of information technology projects. Development of standards and guidelines assist most organizations in managing projects.

A project life cycle is a collection of project phases. Most projects include concept, development, implementation, and close-out phases. Projects often produce products, which follow product life cycles. Examples of product life cycles for software development include the waterfall, spiral, incremental build, prototyping, RAD, extreme programming, and Scrum models. Project managers must understand the specific life cycle of the products they are producing as well as the general project life cycle model.

A project must successfully pass through each of the project phases in order to continue to the next phase. A management review should occur at the end of each project phase, and more frequent management inputs are often needed. These management reviews and inputs are important for keeping projects on track and determining if projects should be continued, redirected, or terminated.

Project managers need to consider several factors due to the unique context of information technology projects. The diverse nature of information technology projects and wide range of business areas and technologies involved make information technology projects especially challenging to manage. Project team members with a wide variety of specialized skills and the rapidly changing technologies are also important considerations.

Project managers perform a variety of job functions, and therefore must have many skills and personal characteristics to do their jobs well. Project managers need strong management skills, as well as particularly strong communication, leadership, and political skills. Project managers also need skills in organization, teamwork, coping, and making effective use of technology.

Discussion Questions

1. What does it mean to take a systems view of a project? How does taking a systems view of a project apply to project management?
2. Explain the four frames of organizations. How can they help project managers understand the organizational context for their projects?
3. Briefly explain the differences between functional, matrix, and project organizations. Describe how each structure affects the management of the project.
4. Discuss the importance of top management commitment and the development of standards for successful project management. Provide examples to illustrate the importance of these items based on your experience on any type of project.

5. How does a project life cycle differ from a product life cycle? Why does a project manager need to understand both?

6. Which skills do you think are most important for an information technology project manager? Can a project manager learn all of these skills, or are some innate?

7. Do you think project managers of large information technology projects need strong technical skills? Why or why not? What about project managers for small information technology projects?

EXERCISES

1. Apply the information on the four frames of organizations to an information technology project with which you are familiar. If you cannot think of a good information technology project, use your personal experience in deciding where to attend college to apply this framework. Write a one- to two-page paper describing key issues related to the structural, human resources, political, and symbolic frames. Which frame seemed to be the most important and why? For example, did you decide where to attend college primarily because of the curriculum and structure of the program? Did you follow your friends? Did your parents have a lot of influence in your decision? Did you like the culture of the campus?

2. Read one of the suggested readings by Desaulniers and Anderson, McConnell, and/or Thomsett or search the Internet for an interesting article about software development life cycles, including agile software development. Also, find two informative Web sites related to this subject. What do these sources say about project management? Write a one- to two-page summary of your findings.

3. Read one of the suggested readings by Crawford, NWCET, or Posner about project management skills or find another reference about the skills required for a good project manager. Write a one- to two-page paper describing the article and your opinion of the skills it suggests are important.

4. Search the Internet and scan information technology industry magazines or Web sites to find an example of an information technology project that had problems. Write a one- to two-page paper summarizing who the key stakeholders were for the project and how they influenced the outcome.

5. Write a one- to two-page summary of an article about the importance of top management support for project success.
MINICASE

You have been part of your company’s Information Technology Department for three years. You have learned a lot about the company and about many new technologies in your latest assignment—developing applications for your corporate intranet. Since you are an avid recreational athlete, you have spent a fair amount of time thinking about how you would write a sophisticated application to help people learn about the many corporate athletic teams, register on the intranet, determine team schedules, post team statistics, and so on. You have heard some rumors about profits not being as high as expected in the past year, and you know that mostly the junior employees participate on the athletic teams.

Part 1. Using Figure 2-1 as a guide, use the three-sphere model of systems management to identify potential issues that could be factors in deciding whether you should proceed with your idea to develop an application for recreational athletics at your company. Include at least three questions for each sphere.

Part 2: Your immediate supervisor likes your idea of developing a recreational sports application on the intranet, but he has to convince his supervisor that this project is valuable to the company. Prepare a short presentation with five to ten slides and speaker notes to convince top management to approve the recreational athletics application project. Be sure to list benefits of the project and suggest a phased approach. For example, the first phase might involve just posting information about various sports teams on the intranet. The second phase might include on-line registration, and so on.

RUNNING CASES

Appendix C provides several running cases that use a particular project scenario, such as the recreational athletics intranet described in the minicase above. Questions are provided to apply several project management concepts and tools to each of these scenarios. These questions progress from initiating the projects to planning, executing, controlling, and closing them. Appendix D provides several templates to use for answering some of these questions.

Review these cases to supplement your understanding and practice of project management.

SUGGESTED READINGS

 This book describes the four frames of organizations: structural, human resources, political, and symbolic. It explains how to look at situations from more than one vantage point to help bring order out of confusion.
 The competence of the project manager is a key factor in project success. In this article, Crawford presents a review and analysis of research-based literature concerning the knowledge, skills, and personal attributes of project managers.

 Software development projects require special attention to the product life cycle. This article provides an excellent summary of several software development life cycles and the importance of using the correct one for your project environment.

 Steve McConnell has written several books and articles on rapid software development. McConnell developed this presentation to highlight common myths about the subject. Visit Construx’s Web site (www.construx.com) for further information and access to free resources to advance the field of software engineering.

 The National Science Foundation provided the vision and major funding for this collaborative study done by industry and academia. The report documents suggested skill standards for information technology career clusters. It provides detailed information on the performance criteria, technical knowledge, foundation skills, and personal qualities for each of fifteen major job functions of project management.

 This article summarizes key attributes of successful project managers and lists common causes for problems in managing projects based on a survey of 287 project managers. Posner also co-authored a book called The Leadership Challenge in 2002 to share more of his insight into what makes successful leaders.
Rob Thomsett, an author and senior consultant for the Cutter Consortium, suggests the need for a new paradigm on project management called extreme project management. In this article, he discusses how three major forces—a power shift, the free-agent army, and the global e-economy—have changed the way projects should be managed. Thomsett also wrote a book in 2002 called Radical Project Management.

Key Terms

Adaptive Software Development (ASD) — a SDLC model that assumes that systems development follows an adaptive or non-prescriptive approach because the scope of the project cannot be clearly articulated and the schedule and cost cannot be accurately predicted.

deliverable — a product, such as a report or segment of software code, produced as part of a project.

executive steering committee — a group of senior executives from various parts of the organization who regularly review important corporate projects and issues.

Extreme Programming (XP) — an approach to programming for developing software in rapidly changing environments.

functional organizational structure — an organizational structure that groups people by functional areas such as information technology, manufacturing, engineering, and accounting.

human resources frame — focuses on producing harmony between the needs of the organization and the needs of people.

matrix organizational structure — an organizational structure in which employees are assigned to both functional and project managers.

phase exit or kill point — management review that should occur after each project phase to determine if projects should be continued, redirected, or terminated.

political frame — addresses organizational and personal politics.

politics — competition between groups or individuals for power and leadership.

predictive life cycle — a SDLC model in which the scope of the project can be clearly articulated and the schedule and cost can be accurately predicted.

project acquisition — the last two phases of a project life cycle, implementation and close-out.

project feasibility — the first two phases of a project life cycle, concept and development.

project life cycle — the collection of project phases—concept, development, implementation, and close-out.
project organizational structure — an organizational structure that groups people by major projects, such as specific aircraft programs

Scrum — an iterative development process for software where the iterations are referred to as sprints, which normally last thirty days

structural frame — deals with how the organization is structured (usually depicted in an organizational chart) and focuses on different groups' roles and responsibilities to meet the goals and policies set by top management

symbolic frame — focuses on the symbols, meanings, and culture of an organization

systems — sets of interacting components working within an environment to fulfill some purpose

systems analysis — a problem-solving approach that requires defining the scope of the system to be studied, and then dividing it into its component parts for identifying and evaluating its problems, opportunities, constraints, and needs

systems approach — a holistic and analytical approach to solving complex problems that includes using a systems philosophy, systems analysis, and systems management

systems development life cycle (SDLC) — a framework for describing the phases involved in developing and maintaining information systems

systems management — addressing the business, technological, and organizational issues associated with making a change to a system

systems philosophy — an overall model for thinking about things as systems

systems thinking — taking a holistic view of an organization to effectively handle complex situations