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Abstract

We estimate daily Vasicek, CIR, and spline models on Belgian data and compare the
trading profits that can be made on the basis of their residuals. Abnormal returns, measured
using three different benchmarks, are negatively related to once- and twice-lagged mispric-
ing. Buying underpriced bonds and (especially) selling overpriced bonds yields significant
abnormal returns even when the trade is delayed by up to five days after observing the
mispricing. The traditional spline model overfits the data and is least able to detect
mispricing. Large model residuals are more likely to be the result of model misspecification
or -estimation than are small or medium-sized residuals. © 1997 Elsevier Science B.V. All
rights reserved.

JEL classification: G12; G14
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1. Introduction

In this paper, we compare the ability of the Vasicek (1977), Cox—Ingersoll-Ross
(CIR) (Cox et al., 1985b), and curve-fitting models to identify mispriced bonds
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and generate trading profits. We chose the (one-factor) models by Vasicek (1977)
and Cox-Ingersoll-Ross (CIR) (Cox et al., 1985b) because they combine a sound
economic basis with tractable closed-form solutions. While the CIR model is
already more difficult to estimate than the Vasicek model, this is even more the
case for the two-factor models of, for example, Longstaff and Schwartz (1992) and
Platten (1994); and empirical work by Grégoire and Platten (1995) on similar data
as ours gives no indication that these two-factor models actually do a better job
than their one-factor counterparts.

Our work differs from earlier empirical work on the Vasicek, CIR, and spline
models in three respects. First, we select the ‘‘best’”” model on the basis of an
information content criterion (as in Fama, 1990), rather than on purely statistical
grounds. That is, unlike other authors we do not want to find out whether or not
the Vasicek and CIR models are cross-sectionally as well as longitudinally
compatible with the actual data 2. rather, we want to know whether term structure
models, estimated from a single-day cross-section, contain information about
future bond returns, and which model seems to be best at identifying mispriced
bonds. We also want to find out whether the Vasicek and CIR do any better, in
this respect, than the simple five- or four-parameter splines that are still used in the
financial community *. Our work further differs from earlier work on bond pricing
models in that we work with BEF data. Lastly, we have tried to improve the
robustness and validity of our findings by introducing some methodological
refinements relative to standard market-efficiency tests. This methodology can be
summarized as follows.

For every day in the sample, from 1991 through 1992, we first estimate the four
competing models from the prices — not the yields — of a particular class of
government coupon bonds, and from short-term bond prices constructed from
money market interest rates. We estimate the Vasicek and CIR models without any
pooling over time or without any inter-temporal constraints on the parameters that
were assumed to be constant over time in the derivation of the equilibrium pricing
model. In this sense, our approach is similar to standard practice among option
traders, who re-estimate volatilities every day or use implicit standard deviations
as a basis for trading although their pricing model assumes constant volatilities.

* For example, Brown and Dybvig (1986) estimate the CIR model on monthly price quotes for U.S.
Treasury issues from 1952 through 1983, and De Munnik and Schotman (1994) test both the Vasicek
model and the CIR model with daily data of Dutch Treasury bonds from 1990 through 1991. Related
tests on real return data are provided by Brown and Schaefer (1994) and Pearson and Sun (1994).
Grégoire and Platten (1995) have tested the CIR, and Longstaff (1992), Longstaff and Schwartz (1992)
and Platten (1994) have tested models in the Belgian market.

*In view of this, our tests tend to be more like efficiency tests than proper tests of the models.
However, the distinction is never very clear-cut: one cannot measure efficiency without a model, nor
can one verify /falisfy a model without assuming efficiency. As we use different models to select
bonds, our tests also tell us what model works best as a basis for bond trading — an issue that goes
beyond the pure efficiency question.



P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720 687

Our day-to-day approach also has the merit that it does not load the dice in favor
of the pure curve-fitting techniques, where intertemporal constraints are never
imposed.

Having estimated the competing models, we then test whether one can realize
abnormal returns by buying (shortselling) bonds that, on that day, were classified
as undervalued (overvalued) relative to a particular estimated term structure
model. In each of the tests described below, abnormal returns from bond trading
are measured relative to three alternative benchmarks. One benchmark is the return
on the bond that would have been observed if prices would, at all times, perfectly
fit the term structure model that was used to identify the mispricing. Our second
benchmark is the contemporaneous realized return on a well-diversified portfolio
with the same value and duration as the bond(s) selected by the trading rule, while
the third benchmark also matches the traded bonds in terms of convexity. Each of
these first-pass estimated abnormal returns is then corrected for the average
first-pass abnormal return on a portfolio of all bonds; this correction ensures that,
in any given daily cross-section of bonds, the average corrected abnornal return is
again exactly zero even after the money market instruments have been left out.

To verify the information content of deviations between observed and fitted
prices, we follow two approaches. First, we regress abnormal holding period
returns from an individual bond on past term structure model residuals (that is,
actual price minus model price). Second, we compute abnormal returns from
various trading rules based on differences between observed and model prices —
first using a contrarian weighting scheme (with larger positions in bonds that are
more mispriced), and then by forming separate portfolios for bonds with different
degrees of mispricing. In both the regression tests and the trading rule tests we
also introduce various lags between the moment of detecting the mispricing and
the implementation of the trade, so as to eliminate biases stemming from bid-ask
noise.

Both the regression tests and the results from the trading rule reveal that model
residuals are economically useful. In addition, we find that the trading results
based on the two economic models, and especially the Vasicek model, are superior
to the results obtained when the decisions to buy or sell are based on the standard
cubic spline. Lastly, the performance of the cubic spline model improves substan-
tially when one cuts down the number of free parameters from five (as commonly
used) to four; we interpret these findings as implying that the standard five-param-
eter spline model over-fits the data and, therefore, tends to overlook part of the
mispricing.

The structure of the paper is as follows. Section 2 deals with the estimation of
term structure models. We start with a brief review of the basics of term structure
models in general and the Vasicek and CIR models in particular, and then present
and discuss the estimates obtained from our sample. Section 3 tests whether the
residuals from the estimated term structure model contain any information that
would be useful for a trader. Section 4 concludes.
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2. Estimation of the bond pricing models

Section 2.1 briefly presents the Vasicek, CIR and spline models. Section 2.2
describes the data and presents the estimation method for our cross-sectional
estimation on coupon bond prices. The empirical results are discussed in Section
2.3.

2.1. Three bond pricing models

Let P(r,t) denote the price of a zero-coupon bond or pure discount bond at ¢
and assume that the underlying variable, the short-term interest rate r(z), follows a
diffusion process which is continuous over time and exhibits no jumps:

dr=y(r,t)dt+o(r,t)dz, (1)

where dr is the change in the short-term interest rate r(¢); y(r,t) is the drift rate
of r(¢) [y may depend both on r(z) and t]; o(r,t) is the standard deviation of
changes in r(¢) [0 may depend both on r(z) and t]; and dz is the standard
Wiener process with zero mean and unit per annum variance.

The familiar Black—Scholes (Black and Scholes, 1973), Merton (1973) no-arbi-
trage pricing equation for any asset that has the short-term interest rate (Eq. (1)) as
the underlying factor is:

2

oP 1 o°P
6_[ y(r,t) = Mr,t)a(r.t)] + ——5a(r,t) —r(t)P=0. (2)

B 2 or?

In this expression, A(r,t) is the price of interest risk at time ¢, and the factor
[v(r,0) = A(r,)o(r,t)] is the risk-adjusted drift rate of the underlying state
variable, in casu the short-term interest rate in Eq. (2). As is well known, the
Vasicek and CIR models differ in the way they specify the terms y(r,t), o(r,t)
and A(r,t) in Egs. (1) and (2). We briefly review each model in turn.

In Vasicek (1977), the instant interest rate follows a mean-reverting normal
(Omstein—-Uhlenbeck) process,

dr=x(m-r)dr+odz, (3)
where k, m and o are constants; and dz is a Wiener process. With Eq. (3), the
fundamental differential equation in Eq. (2) becomes:

P  aP [ | 18P o A

Frltew —r)=AMrt)ol+=—a =r(t)P=0.

at K(m r) (r )(T 2 arZO- r( ) ( )
Recall that PT(r,t) is the price, at ¢, of a zero-coupon bond or discount bond
maturing at T and contingent on the short-term interest rate 7(#). By assuming a
constant market price of risk A over time and using the boundary condition that, at
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maturity, P,(r,T) equals unity, the following closed-form pricing model is
obtained:

Pr(r.1) =exp[—¢0(t){l —e T + b {1 —k(T—1) —e T}

~y{1 =), %)
where
r(t)
bo(1) = ——, (6)
km—io 1 ¢o?
T T ™
| o2
=77 (8)

If the short-term rate r(z) is taken to be unobservable, there are four coefficients to
be estimated: «, ¢,, ¢, and ¢,. From these estimated coefficients we can derive
the implied parameters,

implied short — term rate:  r(t) = ky(1). 9)
yield on a bond with T —>: R = k¢, (10)
implied variance of dr: o?=4k%,, (11)

risk — adjusted drift rate of r(r): pu=«(m—r)— Ao
=(¢, +2¢,) k> —«r. (12)

In contrast, Cox et al. (1985b) adopt a specific general-equilibrium approach
that allows them to derive both the interest rate dynamics and the corresponding
price of risk:

dr=«(m—r)dt+oVrdz, (13)
A(nt):(—"rm, (14)

where g is a constant. As a result, the general differential Eq. (2) can be specified
as

2

oP aP 1 9°P 5
—at—+—57[x(m—r)—qr(t)]+5—a—r—20' —-r(t)P=0. (15)
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With the boundary condition PT(r,T) =1 for a maturing discount bond, the
solution to Eq. (15) takes the following specific form:

N I R KTy
Py(r.t) = Oz[eel(r_”— 11+, } xp{ 0,[e" 70— 1]+ 1 }’ (16)
where
0,=(k+q+6)/2, (18)
0, =2km/co?. (19)

Also in this model there are four coefficients to be estimated: r(z), 8,, 6, and
6,. From these estimated coefficients we can derive the implied parameters,

yield on a bond with T —: R = 6,(6, — 6,), (20)
implied variance of dr: o r(t) =26,(6, — 0,)r(1), (21)
risk — adjusted drift rate of r(¢): u=«k(m—r)—qr(s)

= 0,02/2—(20,— 0,)r(1). (22)

The cubic spline model ¢, finally, is a purely descriptive model without
economic foundations. The term structure function consists of a concatenation of a
number of third-degree polynomials, spliced together at n ‘‘knot points’, s,
i=1, ..., n, in a way that ensures continuity in the levels as well as the first and
second derivatives:

Pr(rt)=1+a(T—1) +b(T—1) +c(T—1)’

h
+ 3. d, [Max{T - (t+s,-),0}]3. (23)

i=1
Usually one selects two knot points — in this study, s, = 2 years and s, = 4 years
— which implies there are five free parameters in the spline model. As will be
illustrated below, in the daily cross-sectional estimations the five-parameter spline
tends to produce a better fit than the Vasicek or CIR models. This better fit may
stem from two sources: first, this spline has one more free parameter, and second,
it imposes less restrictions on the shape of the discount function than the other two
models. To be able to sort out the relative importance of each explanation, we
have repeated all tests using a four-parameter spline, that is, a spline with just one
knot point (set at s, = 2 years). For the sake of brevity, we will report the results

* An alternative to the polynomial spline is the exponential spline (Vasicek and Fong, 1982).
However, Shea (1985) finds that the exponential spline is not superior to the latter.
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from the four-parameter spline only when they differ markedly from the results
obtained with five parameters.

2.2. Data and estimation procedure

The competing models in Egs. (5), (16) and (23) were estimated from data on
BEF interbank deposits and BEF *‘linear’” bonds (Obligations Linéaires / Lineaire
Obligaties, or OLOs). In this section we describe the data and the estimation
procedure.

Like France’s Obligations Assimilables, OLO bonds are floated in consecutive
tranches rather than in one single issue. Each new tranche of a given ‘‘line’’ has
identical terms and conditions and is fully fungible (assimilable) with earlier
tranche issues of the same line. The number of outstanding OLOs is much smaller
than the number of ordinary government bonds traded during the same period.
However, for the purpose of testing bond pricing models, OLOs have many
advantages relative to ordinary bonds. First, OLOs are registered bonds. In
contrast, the ordinary government bonds are bearer securities, which are more
expensive to trade. Second, because OLOs are registered, they are mainly held by
corporations. Because of this, tax clientele effects are less likely to be a problem
for OLOs than for ordinary bonds, which can be held by individuals as well °.
Third, the coupons from OLOs are not subject to any withholding tax. This makes
OLOs more convenient to corporations than ordinary bonds. Fourth, OLOs are
more actively traded than ordinary bonds, partly because the primary dealers make
a market. In contrast, ordinary bonds are traded either during a (low-volume) daily
call auction on the Brussels Exchange, or off the exchange. Finally, OLOs are
straight bonds with maturities of up to twenty years, while ordinary bonds are
more short-lived and tend to have put or call option features.

Daily OLO price data and BEF Brussels interbank offer rates (BIBOR), from
March 27, 1991 through December 30, 1992, were obtained from the Financieel
Economische Tijd (FET) data service. After deleting non-trading days and some
thin-trading days, 421 daily cross-section samples are available. At the beginning
of our sample period we have six outstanding OLOs, with times to maturity
ranging from about three to twelve years, while at the end we have twelve OLOs
with times to maturity ranging from about one to twenty years (Table 1). We
report results for the first 351 days only because, as of September 26, 1992 — a
few days after the start of heavy tensions in, and a near-collapse of, the European
Exchange Rate Mechanism — the term structure became characterized by a

* Under personal taxation, interest income on ordinary bonds is subject to a withholding tax of 10%
plus, possibly, a (widely evaded) progressive additional tax if worldwide interest income exceeds
certain thresholds. Capital gains go untaxed. Corporations, in contrast, all pay the same tax on interest
income and capital gains.
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Table 1
Belgian government linear bonds (OLOs) *
Code March 27, 1991-December 30, 1992.
linear Issued Expires Coupon rate Coupon due
bonds (year) year) (%) date
239.45 OLO01 1989 1999 8.25 Jun. 1
245.51 OLO02 1990 1996 10.00 Apr. 5
247.53 OLO03 1990 2000 10.00 Aug. 1
248.54 OLO04 1991 1998 9.25 Jan. 1
249.55 OLO05 1991 1994 9.50 Feb. 28
251.57 OLO06 1991 2003 9.00 Mar. 1
252.58 OLO07 1991 2001 9.00 Jun. 27
254.60 OLO08 1991 1997 9.25 Aug. 29
257.63 OLO09 1992 2007 8.50 Oct. 1
259.65 OLO10 1992 2002 8.75 Jun. 25
260.66 OLOl11 1992 1998 9.00 Jul. 30
262.68 OLO12 1992 2012 8.00 Dec. 24

* OLOs are the Belgian government non-callable straight bonds. At the beginning, there are only 6
OLOs available and the number increases to 12 near the end.

trough. As a result, the CIR model estimations no longer converged while the
Vasicek model could only be fitted at the cost of implying a negative value for
o?. Results for the last period do not lead to different conclusions, and are
available on request.

The OLO price data reported by the FET are last-trade transaction prices, which
implies that they contain bid-ask noise. The maximum allowed bid-ask spread is
25 basis points. Bond price quotes have to be grossed up with accrued interest to
obtain the effective invoice price. In addition, bond prices have to be corrected for
the one-week settlement effect. That is, the invoice price is actually a one-week
forward price. Thus, the bond prices we use for estimation are obtained from the
invoice price as follows:

» quote + accrued interest
"™ 1+ (7/365) BIBOR 1 month '

(24)

We use the 1-month BIBOR because the one-week interest rate is not available to
us. Note that while accrued interest on bonds is based on a 360-day year, the
Brussels interbank market uses a 365-day year to calculate interest on deposits and
loans; this explains the factor (7 /365) in the denominator.

To represent the short end of the maturity spectrum we have preferred interbank
deposits over treasury bills. It is true that there has been an organized secondary
market for treasury bills as of the spring of 1991, which is also the beginning of
our sample; however, the T-bill data for the first trading year are rather suspect
because, in that period, T-bill yields often exceed the BIBOR rate, by up to 10
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Table 2
Brussels interbank offer rates on Belgian Franc (BIBORs)

Interbank (BIBOR) rates, 27 /03 /1991D16 /09 /1992 (351 days)

high low mean st. dev.
1-Month 10.250 8.875 9.421 0.299
2-Month 10.125 9.837 9.474 0.259
3-Month 10.063 9.000 9.506 0.228
6-Month 10.030 9.063 9.534 0.189
12-Month 10.000 9.125 9.527 0.173

basis points. This counter-intuitive premium relative to BIBOR reflected the
extreme thinness of the T-bill market in the first year of trading. In contrast, the
interbank money market is very deep, and has bid-ask spreads of 12.5 basis points
per annum except during periods of EMS tensions.

Interbank interest rate data from the Financieel Economische Tijd bear on
maturities of 1, 2, 3, 6, or 12 months (Table 2). To obtain midpoint prices for
short-term discount bond from the BIBOR data, we converted offer rates into
mean interbank rates by subtracting half the bid-ask spread and then discounting:

100
P = , 25
" 14 (T—T)/365 X% [BIBOR(t,T) ~ 6.25 points] (25)

where, following the convention in the BEF interbank market, T — ¢ is computed
using the actual number of days and a 365-day year. With six to twelve OLOs and
five interbank deposits, each cross-section contains eleven to seventeen assets °.

The pricing equations (5), (16) and (23) refer to zero-coupon bonds, but OLOs
are coupon bonds, that is, portfolios of different default-free discount bonds. Thus,
the valuation formula for a coupon bond takes the following form:

Pr(r,t;e,N(1)) = %CFI-PTJ(r,t), (26)

where P;(r,t;c,N) is the effective price (quoted price plus accrued interest, and
corrected for 7-day settlement effects) of a coupon bond with N annual coupons ¢
and time to maturity T — ¢; N(¢) is the number of times cash flows are paid out
during the remaining life of the coupon bond; CF; is the cash flow (¢ or 100 + ¢)
received at times 7}, j=11 .... N; PT]( r,t) is the price of a discount bond with
time to maturity 7, — ¢ as given by Eq. (5) (Vasicek), Eq. (16) (CIR), or Eq. (23)
(spline).

® When a bond was not traded on a particular day, we dropped the bond from the sample, so that the
actual number of observations is sometimes smaller than the number of outstanding bonds.
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For the economic models — Vasicek and CIR — we use non-linear least-
squares to estimate Eq. (26), assuming, like Brown and Dybvig (1986) and De
Munnik and Schotman (1994), that empirical bond prices have homoskedastic

Table 3
Cross-sectional estimation of term structure models *

(A) The Vasicek model

D, D, D, K r® R ¢ p a?c SEf

%) (%) (%) %) (%)
Max. 0.0644  0.0557 0.0159 0.0241 10.23 9.05 0.183 0.498 0.324
Min. 0.0098  0.0101 0.0003 0.0041 6.29 8.10 —-0.016 0.001 0.037
Mean 0.0248 0.0240 0.0048 0.0101 876 8.54 0.035 0.077 0.135
Su.D. 0.0071 0.0056  0.0025 0.0018 0.55 0.26 0.025 0.056 0.047

t>25% 225% 32.2% 42.7% 32.2%
t>2¢8 36.2% 52.1% 61.8% 51.9%
t>158 56.1% 72.4% 77.8% 72.1%

(B) The CIR model
9, 0, 0, r Ry u a’r SE
(%) (%) (%) (%)
Max. 0.0262 0.0220 5.1803 9.76 9.05 0.090 0917 0.299
Min. 0.0015 0.0015 0.0260  7.63 8.07 —0.005 0.001 0.011
Mean 0.0103  0.0079 02061 8.90 8.52 0.019 0.144 0.124
St.D. 0.0052 0.0040 04300 041 0.26 0.016 0.147 0.054
t>2 59.0% 80.6% 3.7% 94.6%
t>15 78.3% 86.3% 12.0% 96.3%
t>1 89.2% 26%  462%  97.4%
(C) Cubic Spline models
Five-parameter Cubic Spline model Four-parameter
(knot points at 2 and 4 years) (knot point at
a a, a5 4 d, SE 2 years)
(x10%) (X107) (Xx10'") (x10%) (x10') d, SE
(x10%)
Max. —-0.2372 12159 0.1017 0.6072 0.1008 0.172 0.3636 0.174
Min. —0.2819 0.1430 —0.5338 —0.1907 —0.0865 0.003 —0.0320 0.019
Mean —-0.2583 0.6472 —0.1954 0.1794 0.0069 0.080 0.1968 0.084
Su.D. 0.0098 02596  0.1441 0.1722  0.0370 0.027 0.0979 0.027

t>2.5 100.0% 98.6% 79.2% 61.5% 25.4% 84.3%
t>2 100.0% 99.7% 84.3% 71.8% 31.9% 89.7%
t>15 100.0% 99.7% 86.9% 78.6% 484% 94.9%
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errors across maturities . Because our daily cross-sectional samples have at most
seventeen data points and we did not want to pool over time (for reasons discussed
in Section 1), GMM was deemed unsuitable. For the two spline models we used
OLS.

2.3. Discussion of the empirical results

As shown in Fig. 1, during most of the sample period the term structure was
characterized by either a steep decline or a positive hump situated around four
months to maturity % Table 3 presents mean values, maxima, and minima of the
estimated and implied parameters for the Vasicek model (Panel A) and the CIR
model (Panel B). As the pricing errors will provide the raw material for the
analysis in Section 3, we here only discuss some unconditional moments of these
errors, grouped either by model or by bond.

During the sample period, the CIR model marginally outperforms the Vasicek
model in terms of goodness-of-fit: the average root mean square error (RMSE) of
the regression is somewhat smaller for the CIR model (12.4 basis points for a bond
with par value 100) than the Vasicek model (13.5 basis points). This RMSE is
roughly equal to the maximum one would expect from a purely random bid-ask
bounce: with a maximum bid-ask spread of 25 basis points and equal marginal
probabilities that the price is a bid or ask price, the bid-ask bounce generates a

RMSE of, at most, {(0.5)> X (0.0025)> = 12.5 basis points. We will provide

7 The alternative is first to estimate zero-coupon yields, and then to fit the yield-versions of the
models, assuming that errors in yields, not errors in prices, are homoskedastic. We prefer to work with
prices because the estimation of yields introduces errors, and because transaction costs and bid-ask
bounce are proportional to prices, not to yields.

! Although it is known that the CIR model can produce a humped term structure, such a shape has
not been observed by Brown and Dybvig (1986) or De Munnik and Schotman (1994).

Notes to Table 3:

* The Vasicek model and the CIR model are estimated using non-linear least squares, and the Cubic
Spline using OLS. Bond invoice prices consist of the daily cross-sectional data of OLOs and
short-lived discount bonds converted from BIBORs (par 100) for the period March 27, 1991-Septem-
ber 16, 1992 (351 trading days). Simple annualization is used: where appropriate, daily results are
multiplied by 365. The results regarding the first three parameters of the four-parameter spline are
qualitatively similar to their five-parameter counterparts, and are not reported.

" r is the annualized implied short-term interest rate (i.e., daily rates X 365).

° R\ is the annualized yield on a very long-term zero coupon bond (7 — ).

d w is the annualized risk adjusted drift rate of the short-term interest rate.

¢ The annualized implied variance of changes in r is @2 in the Vasicek model but o ’r in the CIR
model.

" SE (RMSE) stands for standard error (root mean squared error) of regression [e.g., 0.10 means 10
basis points (for a par value of 100)].

¢ Percentages of parameter estimates (per parameter) with f-ratio (in absolute values) greater than, say,
25.
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evidence, below, that the residual RMSE is not just random bid-ask bounce,
though; that is, the actual spreads must, on average, have been below the legal
maximum of 25 basis points. While the residual RMSE produced by the two
economic models is already low relative to the maximal bid-ask bounce and
relative to the results obtained by De Munnik and Schotman (1994) °, both cubic
spline models easily beat the other two models in this respect: the mean RMSE is
for the five- (four-) parameter spline is a mere 8.0 (8.4) basis points. This lower
RMSE suggests that either the actual bid-ask spread probably was below the legal
maximum 25 basis points — otherwise it would be hard 1o explain RMSEs below
12.5 basis points — , or that the spline model has a tendency to over-fit.

Deviations between actual prices and model prices can also be analyzed
longitudinally, i.e. per asset rather than per cross-section, so as to verify whether
or not the model consistently misprices some individual bonds. Table 4 and Fig. 2
report the mean error and the mean absolute error (MAE) per asset. Mean errors
exhibit no clear pattern across assets, but the mean absolute errors (MAE) are
more revealing. In both economic models (Vasicek and CIR) the MAEs tends to
be smaller for interbank deposits than for bonds, with figures well below ten basis
points and increasing with time to maturity of the deposit. The MAEs of OLO
lines 02, 03, 07, and 09 exceed ten basis points; in addition, for OLOO03 and 09 the
size of the MAE is also close to the size of the mean error, which means that
virtually all of the errors have the same sign-negative for OLOO03, and positive for
OLO09 '°. The pricing errors obtained for OLOs 03 and 09 from the five-parame-
ter spline functions are less consistently of the same sign, and much smaller in
absolute value, than the errors obtained from the two economic models "', Similar
results (not shown) were obtained with a four-parameter spline.

Like the average cross-sectional, the low MAEs for most bonds (with the
exception for OLO03 and 09) seem to suggest that the MAEs may merely reflect

® De Munnik and Schotman (1994) found an average standard error of 18 basis points for the Dutch
market. The difference between their and our results is unlikely to be explained by a higher turbulence
doring the Dutch sample period: while the yield curves obtained by De Munnik and Schotman are
almost flat, we have steeply declining and humped curves. The higher standard deviations in De
Munnik and Schotman are more likely to be the result of pooling data over one week, something we
did not do. During the last 70 days in our sample, however, the residual standard deviations seem to
have been substantially higher in both the spline and Vasicek models.

" None of the traders we talked to has provided any reason why these lines would behave
abnormally. Five primary dealers have created a market in stripped bonds based on OLO09, but this
occurred only after the (351-day) sample period. Thus. the stripping of OLO09 cannot affect the
sample results.

" Thus, in the trading rule tests reported in Section 3, the economic models will systematically
generate purchase signals for OLOO03, and sale signals for OLO09, that are not followed, on average,
by price corrections. We assume that the trader does not learn from these systematic errors and
continues to buy (sell) OLO03 (OLO09) whenever the regressions suggest mispricing. In light of our
finding that the Vasicek and CIR models still outperform the spline model in terms of trading profits,
this assumption of ‘‘no learning’’ is conservative.
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purely random bid-ask bounce (which would generate a MAE of, at most,
(]12.5/+ | —12.5)/2 = 12.5 basis points). However, such a conclusion would be
unwarranted. First, there is a substantial MAE for many deposits, too; and as
market values for interbank deposits are based on the mean interest rate, bid-ask
noise is absent from these data. Second, the last columns of each panel of Table 4
reveal that, for all assets, the first-order autocorrelations in the model residuals are
significantly positive. Purely random bid-ask bounce cannot be a source of
autocorrelation in pricing errors (as opposed to returns, or residual returns, where
bid-ask bounce causes negative autocorrelation). It follows that the major sources
of apparent mispricing must be either highly autocorrelated errors in the specifica-
tion or estimation of the model, or highly autocorrelated true mispricing, or both,
rather than purely random bid-ask bounce. In Section 3 we will have a closer look
at the model residuals for the OLOs, and verify whether they allow any profitable
trading strategies or successful forecasts about holding period returns.

3. The information content in the model residuals

One conceptual weakness of models that, like the Vasicek or CIR model,
postulate an interest rate or another non-price process as the driving state variable,
is that such a model does not take the current term structure as given and is,
therefore, likely to deem all outstanding bonds to be mispriced. Clearly, at least
some of this apparent mispricing is likely to be due to model misspecification. On
the other hand, in the presence of noise trading by uninformed or time-pressed
investors it is quite likely that bonds are, to some extent, effectively mispriced
relative to the (unidentified) ‘‘true’’ model. In this section, we verify whether the
apparent mispricing in the Vasicek and CIR models is entirely due to model
misspecification and mis-estimation or whether such a model is also able to detect
some genuine mispricing due to noise trades. If there is genuine mispricing,
trading on the basis of model residuals should be profitable. In short, in this part of
the paper we view the CIR and Vasicek estimated term structure models as
(somewhat complicated) curve-fitting techniques, and we do not worry about
non-constancy of those parameter estimates that, in the logic of the model, should
be constant 2. The focus is on how useful the model residuals are to a bond
trader, and whether the economic models outperform simple spline models for the
purpose of identifying mispriced bonds.

This part of the paper is structured as follows. Section 3.1 defines the holding
period returns and the equilibrium expected holding period returns that serve as
benchmarks in our subsequent regression and trading rule tests. We use three
alternative benchmark returns. One is the duration ratio model — a single index

12 Grégoire and Platten (1995) do test for the statistical acceptability of the cross-temporal constraints
in the Belgian market, and find that all models fail in this respect.
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model that, like the market model for stocks, compares the realized return on the
trading portfolio to the return on a diversified portfolio with the same value and
risk (duration). The second benchmark is the return on a portfolio that matches the
bond in terms of both duration and convexity. Both these benchmark are rather ad
hoc, but they have the advantage of being independent of the details of the term
structure model upon which the trading rule is based. The last benchmark is the
conditional expected bond return implied by the change in the fitted model prices.
A first test of the potential usefulness of the term structure residuals is conducted
in Section 3.2, where we regress each of these measures of abnormal bond returns
on the previous trading day’s percentage mispricing. The second test is a trading
rule test, described in Sections 3.3 and 3.4. We compute CARs in calendar time
for three trading strategies: (1) buy underpriced bonds; (2) shortsell overpriced
bonds; and (iii) combine both. In Section 3.3 the weights within each portfolio are
proportional to the degree of initial mispricing relative to the model that is being
used (Vasicek, CIR, or spline), while in Section 3.4 the weights are equal but the
mispricing has to exceed a give filter size.

3.1. Bond holding period returns and expected returns

From each day’s estimated Vasicek term structure, we compute the day’s
Vasicek residual for each bond, i.e. the actual bond price minus the model price or
fitted value. The procedure is repeated for the CIR and spline models. If a given
bond pricing model is correct and reliably estimated, then a positive residual
implies that the corresponding bond is overvalued, while a negative model residual
implies that the bond is undervalued. Subsequent holding period returns can then
be analyzed to verify or falsify that model’s diagnosis.

In this section we describe the three benchmarks that are used to eliminate the
“‘normal’” component in these holding period returns. Event studies or trading rule
tests in the stock market frequently use benchmarks like the market model or the
ex post CAPM, a procedure which filters out price changes due to general market
movements while simultaneously taking into account differences in market sensi-
tivity ( 8). The advantage of doing so is that, when holding period returns are
corrected for market movements, the standard error of the abnormal return
becomes smaller and the tests more powerful. Below, we propose three alternative
benchmark returns that likewise intend to filter out general market movement from
the raw bond returns defined in Eqgs. (27) and (29).

The first way to eliminate the normal return uses the normative prices, at times
t— 1 and ¢, implied by the model that is being considered. Define @, as the set of
model parameter estimates obtained for day ¢. From the estimated model for day
t— 1, we can compute the model’s equilibrium price for any bond i, which we
denote by ﬁ,.v,_ ,- We can also compute the fitted next-day equilibrium price using
the time-f estimated parameters, denoted by 13,.‘,. These two equilibrium prices
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imply an equilibrium holding period return E(HP,|®,_,, ®,) and a corresponding
abnormal return (AR), as follows:

A A

P, ,_, + coupon payment
P,

it—1

it

Et(HPi,t|(pt—1’®t) = 4 (27)

and

AR,,=HP,,— E(HP, |®,_,,P,). (28)

While this expected return captures movements of the market as a whole
between days ¢ and ¢ — 1, and implicitly takes into account the sensitivity of the
bond to shifts in the term structure, the procedure has the drawback that it assumes
the validity of the very model whose forecasting performance is being tested. This
may introduce some degree of circularity into the tests. We therefore employ two
additional benchmarks for expected returns.

The stock market model defines the abnormal return on a share as the estimated
residual €;, from the regression HP,, = a; + B;HP, , + ¢, ,, where HP,, is the
return on the stock between ¢ and t— 1, and HP, , is the contemporaneous
realized return on the market portfolio m. For bonds, estimating 3 from a times
series regression creates conceptual problems, since the B-coefficient of a bond is
changing with its time to maturity. To avoid time series estimation of 8 we adopt
a duration model similar to the one in Reilly and Sidhu (1980) and Elton and
Gruber (1991), who suggest to use the ratio of duration of the individual bond over
duration of the (equally weighted) market portfolio as an approximation for 8. The
one-factor duration model is:

HP, - «a;,_ = Bi,r[HPt - at‘l] » (29)
where «; ,_; = the per annum continuously compounded yield on bond i, times
At (=1/365); and B, ,= D, ,/D,, ,, the relative duration beta.

In the presence of noise, we can append an error term to Eq. (29) which, in an
otherwise efficient market has a zero expectation *. Given the change in the term
structure as summarized by HP,, we can compute the abnormal return (AR) as
follows:

AR, =HP, , — [ai,t~| +:Bi,t[ﬁr—at—l]° (30)

The duration model (29) has the advantage that it does not assume the validity
of the model that is being tested. This advantage comes at a cost: as is well

known, the duration model underlying Eqgs. (29) and (30) assumes that the
consecutive term structures are parallel to each other, and that changes are minute

"% If the market portfolio contains a sufficiently large number of assets, such noise will not materially
affect the market return HP,. In our case the market portfolio contains just the eleven to seventeen
assets. With such a small bond portfolio, an abnormally high (low) return in one of the OLO’s will also
affect the market return upwards (downwards), which then implies that the excess return as computed
from Eq. (29) is biased towards zero. Thus, the benchmark is overly conservative. Since we do find
abnormal returns, the existence of a small-sample bias actually reinforces our conclusions.



P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720 703

and non-stochastic. It is true that, when the intervals are very short (one day) and
only medium- to long-term bonds are considered, these assumptions are less likely
to cause major problems. However, at a small cost we can also use a second-de-
gree approximation that better accommodates changes over finite intervals and
linear twists of the term structure.

Thus, we compute as our third benchmark the return on a portfolio that matches
the trading portfolio as far as present value, duration (—9P,/dR-P~'), and
convexity (0.5 - 9*P,/dR* - P~ ") are concerned. This value-, duration- and convex-
ity-matched (DCM) portfolio uses three equally-weighted portfolios. Qur first
portfolio contains the one-, two-, and three-month interbank deposits, the second
portfolio the six- and twelve-month deposits, and the last portfolio all OLOs
except the OLO that is being matched.

3.2. Regression test

The question to be answered in the remainder of this paper is whether the
amount of mispricing, as identified from the cross-sectional term structure esti-
mates, carries any information for the subsequent holding period. The logic is as
follows. The deviation between the observed price and the model price consists
potentially of: (1) a purely apparent (spurious) mispricing that is due to model
misspecification or mis-estimation; and (2) genuine mispricing relative to the
(unidentified) ‘true’’ valuation model. If all of the observed deviations between
model prices and actual quotes stem from model mis-specification or -estimation
[component (1)], then there is no reason why this deviation should be informative
about subsequent returns. If, on the other hand, a non-trivial part of the deviation
corresponds to genuine mispricing, then this mispricing should, on average,
disappear over time. That is, truly undervalued (overvalued) bonds should provide
above-normal (below-normal) holding period returns later on. To sort out this
issue, the holding period returns in excess of the benchmark returns, as defined in
Section 2, are analyzed in two ways. In this section we discuss the results from
regression tests where the initial mispricing is related to subsequent abnormal
returns. In later sections we test a trading rule.

To test whether there is a genuine mispricing component in the term structure
model residuals, we first focus on the very short run: we regress abnormal rates of
returns of a bond between days 7— 1 and ¢ on the bond’s percentage residual
observed at r — 1. Thus, the first regression is:

RESz r—1
AR, =a+b—— +e¢, (31)
=1

where AR, ,, the abnormal return on bond i, defined as the return in excess of
either the model-implied normal return, the DM portfolio return, or the DCM
portfolio return; and RES; ,_ | =P, , |, — PAL,‘1 where P, is the actual bond
price at r — | and 13,.’ ,_, is the fitted value of the price at 7 — 1 computed from the
time ¢ — | Vasicek, CIR, or spline model.The competing hypotheses are:
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H;: b=0 and a=0: In setting the next day’s price, the market ignores the
estimated mispricing, either because the deemed mispricing is irrelevant or
because the market does not react within one day;

H,: b= —1: All of the estimated mispricing is corrected within one day;

H,;: —1 < b <0: Some of the estimated mispricing is only apparent, and /or the

market needs more than one day to fully correct the error.

Bid-ask noise may bias these tests in favor of the information-content hypothe-
ses, H, and H,. Specifically, assume that midpoint prices fully correspond to the
predictions of the model that is being tested. As our data are transaction prices
rather than midpoints, bid-ask noise would nevertheless induce spurious under- or
overpricing; and this measured initial mispricing would, on average, disappear the
next day because the next price is equally likely to be a bid price or an ask. This
apparent error correction in the prices would then result in a spuriously negative
estimate of b. To avoid this bid-ask induced bias in the slope coefficient of Eq.
(31), we therefore add a new regression test, which differs from Eq. (31) in that
that the regressor is taken from the last trading but one:

RES;

AR, =a+bh—"2 4. (32)
' Pi.zfl

The disadvantage of introducing the lag is that, if at time ¢ — 2 there is genuine
mispricing (rather than just bid-ask noise), this genuine mispricing may be partly
or entirely gone by time f— 1, when the holding period starts. Thus, for the
purpose of detecting genuine mispricing, the regression coefficients in Eq. (32) are
biased against H, and H, rather than in favor of H, and H, (as is the case with
Eq. 31)).

The empirical results for Eq. (31) (‘‘lag = 0"") and Eq. (32) (‘‘lag = 1"") are
presented in Table 5; in Panel A, the Vasicek percentage residual is used as the
regressor, while in Panels B and C the regressor is the percentage residual from
the CIR and five-parameter spline model, respectively. Each of these panels has
three subparts depending on the benchmark used in computing the abnormal part

Notes to Table 5:

“AR,=a+b(RES,_ | _1,.)/(P_i_ 1)+ (Lag=0or 1; tratios in parentheses)

OLO data are from March 27, 1991 (or from the first trade) through December 30, 1992 (September
16, 1992, for the CIR model). The regressand is the percentage deviation between the observed price
and the fitted price obtained from either the Vasicek (Panel A). CIR (Panel B), or five-parameter spline
model (Panel C). The regressor is the deviation between the observed return on a benchmark portfolio
which is either duration-matched (DM-Panels Al, B1, C1) or duration-and-convexity-matched (DCM-
Panels A2, B2, C2), or the deviation between the observed return and the return on the fitted prices
implied by the time structure model (Panels A3, B3, C3). The regressor is either the one observed at
the beginning of the one-day holding period (*‘lag = 0°"), or one trading day before (‘‘lag =1""); the
former probably is likely to bias the slope coefficients towards more negative values, while the latter
biases against detection of genuine pricing errors. In all regressions, r-statistics use standard errors
which adjust for heteroscedasticity. One asterisk denotes significance at the 0.10 level and two asterisks
denote significance at the 0.05 level for a two-tailed test. Adjusted R*'s (not reported) are 7% or less.
Results for OLO12 (6 observations) are omitted.
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of the retun — the duration-matched (DM) portfolio, the duration-and-
convexity-matched (DCM) portfolio, or the own-model implied return. All but
three b-estimates at lag zero are negative, and the three exceptions are insignifi-
cant. For lag zero, most of these are also significantly below zero. As expected,
the number of significantly negative coefficients drops after introducing a one-day
lag, but about half of the t-statistics remain below —2 '*. All this clearly rejects
H,: b=0. Also the hypothesis H,: b= —1 is rejected resoundingly (s-statistics
not shown). This leaves us with H;: there is some information content in the
estimated pricing errors, but either part of the so-called error is spurious or the
market reacts slowly to such errors.

3.3. Trading rule tests

To obtain an impression of the economic relevance of the predictability of
returns on the basis of deviations between observed and model prices, we test a
contrarian trading rule: we buy (sell) assets that are deemed to be undervalued
(overvalued) '°, and the positions we take become larger the more important the
degree of mispricing. The trading rule is tested in calendar time rather than in
event time, to detect possible subperiods where the rule worked better than
average and to avoid problems with event-time tests when there are long runs of
under- or overpricing. (See Bjerring et al. (1983) for a discussion of calendar-time
versus event-time tests.)

3.3.1. Design of the test

We only consider OLOs. On any day, we form a portfolio of underpriced bonds
(subscript p, short for purchase), a portfolio of overpriced bonds (subscript s,
short for sale), weighted by the size of the mispricing (RES,, _, ,, where L is the
implementation delay). For example, if the number of underpriced bonds on day ¢

is N,,, then the mean abnormal return for day ¢ on the purchase portfolio is:
. RES,
AR,,= Y v— AR, (33)

Pt

i=1
ZRESi,tfl—L

i=1

' The results obtained when the own-model implied return is taken as the benchmark are related to
the autocorrelation tests in Table 4. This is because, with the own-model benchmark, the regressand is
approximately equal to the change in the regressor. That is, the regression is, approximately,
[RES, —RES,_,1/P,_,=a+ bRES,_, /P,_,+ ¢, so that b is, approximately, unity minus the
autocorrelation coefficient of the cross-sectional model residual. Thus, these regression tests confirm
the mean reversion (or gradual correction) that was already indicated by the autocorrelations in Table 4.

> Thus, trading is based purely on the residuals. We have also implemented a test that incorporates
the information in the intercepts of regressions (31) and (32). These intercepts estimate expected
abnormal returns assuming perfect pricing the next day. The conclusions of this test are similar to the
conclusions reported here.
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where AR::, x={p,s}is the abnormal return on the purchase (sale) portfolio;
N.,, x={p,s}, is the number of bonds in the purchase (sale) portfolio on day t;
RES, ,_,_, =P, _, —ﬁ,-‘,_l_L, the residual for bond i in the day 71— 1~ L
cross-sectional term structure model; and AR, =the abnormal return realized
between ¢ — 1 and ¢, defined relative to the DM portfolio, the DCM portfolio, or
the own-model implied return.

The parameter L is varied from O to 5 — that is, the delay in trading is varied
from zero to five trading days. For L > 1, there is a delay of at least one day
between the decision to trade and the actual implementation, which should
eliminate the bid-ask bounce bias that arises for L = (. Similarly, the abnormal
return from shortselling the portfolio of overpriced bonds is:

Mo RES,,_ ..

4

ﬁs.r == Z N, ARI te (34)
i=1 W ‘
Z RESz =1~ L
i=1

Before implementing the rule, we first verified the validity of the three
benchmarks. The duration benchmark is designed so as to yield a zero cross-sec-
tional average abnormal return across all assets — OLOs as well as bank deposits.
In this respect, when applied for the duration benchmark, Eq. (34) is similar to the
(equally weighted) market model, where by construction the cross-sectional sum
of all residuals ¢, from HP,, = o, + B;HP, , + €, is zero every period. How-
ever, there is no reason why stock market residuals, when averaged over a

non-random subset of assets — say, low-f stocks —, should be zero. In fact, the
Table 6
Abnormal returns on a buy-and-hold portfolio *
Benchmarks 351 Trading days 421 Trading days
CAR (%) ¢ CAR (%) t
(I) Duration-matched portfolio return 0.50 276" 0.46 1.97 *
(I1) DCM portfolio return —0.45 ~227" 0.17 0.26
(11 Vasicek model’s expected return —0.08 —0.21 -0.16 —0.37
(IV) CIR model’s expected return —0.14 -0.35
(V) Cubic Spline model’s expected return 0.07 0.39 0.14 0.71

" CARs of the buy-and-hold portfolio of all OLOs are reported for the first period: March 27,
1991-September 16, 1992 (351 trading days) and the whole period: March 27, 1991-December 30,
1992 (421 trading days). Abnormal returns of individual bonds are measured using five alternative
benchmarks: (I) the return on a portfolio of OLOs and deposits with the same value and duration; (IT)
the return on a portfolio of OLOs and deposits with the same value, duration, and convexity; and the
return implied by the fitted prices from (II) the Vasicek model, (IV) the CIR model, and (V) the
five-parameter Cubic Spline model. The table shows the CARs for an equally weighted portfolio of all
OLOs, that is, without the deposits. For the r-ratios, standard errors use the Newey—West correction
with 4 lags. One asterisk denotes significance at 0.05 level and two asterisks at 0.01 level for a
one-tailed test.
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size effect familiar from CAPM tests suggests that an average return computed
over a subset of low-8 stocks would systematically deviate from zero. Likewise,
the cross-sectional average abnormal return computed over OLOs only — the
high-duration assets — may deviate systematically from zero. Analogously, for
the own-model return benchmark the average pricing error, across deposits and
OLOs, is zero at each date, but this does not guarantee that the average return
across all bonds is zero. To check for a possible non-zero average ‘‘abnormal’’
return in the benchmark, we computed abnormal returns averaged over all OLOs
for each day 7, and cumulated them over all days. The results are shown in Table
6, and depicted in Fig. 2. For the three own-model implied return benchmarks, the
cumulative abnormal return on the buy-and-hold-all-OLOs portfolio is consistently
small, both statistically and algebraically. For the duration benchmark, however,
the cumulative abnormal return on a portfolio of all OLOs gradually increases to
reach a grand total of 0.50% over 351 days — not enormous in the economic
sense, but nevertheless significant from a statistical point of view. For the DCM
benchmark, finally, the cumulative abnormal return on the buy-and-hold portfolio
of all OLOs after 351 days is significantly negative (at —0.45%). To remove
possible bias, we work with a corrected average abnormal return, AAR, defined as
follows '¢:
Mo RES,
AAR, =Y W:_””;L_
= LRES, .,

i=1

% AR
AR,,— ¥ —

k=1 t

Hi,t—lAL , X=P,S.

(35)

where O, = the number of outstanding OLOs at time #;and H, , ,_, = +1(—~1)
of bond i is underpriced (overpriced) on day ¢ — 1 — L. That is, from the abnormal
returns on individual bonds we subtract the corresponding abnormal return from
holding an equally weighted portfolio containing all OLOs. This ensures that the
modified abnormal returns, when averaged across all OLOs, are now exactly equal
to zero on any given day t. Lastly, the average return from the combined trading
portfolio (subscript ¢) is

AAR,,+ AAR,,
5 .

If a trading strategy can outperform the naive buy-and-hold portfolio, AAR,
should be positive, on average. To test this, we compute the cumulative average
abnormal return, starting from day 1 until day 7:

AAR, = (36)

CAR, = ) AAR,,, x=p,s,c. (37)

t=1

'® AAR, is set equal to zero if the day-f trading portfolio contains no assets.
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where 7 is the calendar time, measured in trading days. The #-test is based on the
Newey—West standard deviation of AAR corrected for 4th degree autocorrelation.

3.3.2. Validity issues

Conrad and Kaul (1993) discuss three potential pitfalls in tests of contrarian
trading rules: compounding of upward bias in asset returns over long holding
periods, transaction costs, and bias stemming from bid-ask bounce in the data. In
this section, we describe how these three issues are dealt with in our tests.

(1) Upward drift. As we have seen, the returns we use are corrected for the
return on a benchmark portfolio — the model’s implied normal return, the
duration-matched (DM) return, or the Duration and Convexity Matched (DCM)
return. Each such benchmark controls for market-wide movements while taking
into account also the bond’s own characteristics. In addition, we eliminate the
remaining average bias that shows up in the subsample of OLOs. This procedure
should eliminate most of the potential bias stemming from the compounding of
upward drift in asset returns over long holding periods: on any given day, the
average cross-sectional abnormal return is exactly equal to zero.

(2) Transaction costs. In this paper we only present gross returns from trading,
that is, abnormal returns before transaction costs, for the following reasons. First,
although transaction costs are relevant for arbitrage-motivated trades, the level of
these costs very much depends on the size of the trade and the capacity of the
trader. Accordingly, we follow Fama (1991)’s suggestion and let the arbitrageur
decide whether or not the gross returns from arbitrage are larger than the
transaction costs. Second, transaction costs are irrelevant if the trade is inspired by
exogenous in- or outflows of cash into a bond portfolio; thus, the gross returns will
tell us whether it is worthwhile to select bonds on the basis of fitted bond prices
(rather than just picking an issue at random) before such a liquidity-inspired trade
is made.

(2) Bid-ask bounce. If a last-trade price is a bid (ask) price, the bond is more
likely to be classified as being underpriced (overpriced). But the trader has to buy
an ‘‘underpriced’’ bond at the ask rather than the bid, and the seller likewise
trades at the bid rather than the ask. Thus, if it is assumed that the contrarian trader
can immediately deal at the last observed price, the computed return will tend to
overstate the true return before transaction costs. To deal with this, we introduce
lags of one to five days between the decision to trade and the actual implementa-
tion of the trade. For example, in the case of a one-day lag, the trader buys at the
close of the trading day following the identification of an underpriced bond. The
introduction of such a lag will, on average, eliminate the bias stemming from
bid-ask bounce under the assumption that the probability that today’s last trade is a
purchase is independent of whether the previous day’s last trade was a purchase or
not. There is no a priori reason to doubt this assumption; and direct tests in the US
stock market have not rejected this hypothesis (Lehmann, 1990; Ball et al., 1995).

The introduction of lags between the decision to trade and the actual implemen-
tation of the transaction is conservative for three reasons. First, although bid-ask



P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720

712

. @Y . (96'1) . (88D . (S00) . (80°D) (son .-« (927 «+ (EE€D) 6T1)

SO'L £l 88°0 LET 90'Y 690 9Tl 96’1 960 S
. (L67) . (LSTD) . (LO7) » (PEE) « - (£0°€) L 9L +« (89°0) . (60°7) . (60°0)

174! §S°1 60 10 8L'9 YTl wl (2! 101 14
. (86'T) . (98°T) (Lr'l Ls'n 6¥'1 (63°0) + s (FO'E) «x (5279) (T0'D)

€0l 6C'1 9L0 £0C vT'e 180 LLt 96°C 86°0 £
. (167) .« (S6'T) .. (0T°€) . (067) . x (LST) «« (T8T) . (L6'E) e (I7E) « (IT€)

[ 6v'1 61 8¥'e s6v 0T % 4 L9T 651 C
. (88%) . (OV'P) .. (L8E) . (O .. (81°9) . (077 « . (BYY) <« (19) s @0

we $8°C 96’1 ev'e 1es 961 Lre 61°¢ ST'L 1
L (LL'9) .. (E7'9) «x (6Y°S) . (LT'S) « OLY) «x (86°€) +« (SE9) . (L8D) < (I8P

(394 £€5°S c9'e Lc9 198 €6t 19°¢ £0Y 61t (4]

[Sjonpisad [ppow Y17 Jo sispq ayr uo Surpva) wof syv) (g)

. (FSE) «x (LTE) . s (V6D L (€5D) «« (E77) Lsn . (LED) « (ETD) » (107)

LS'1 6L°1 SE'T IT'e 90's 971 (40 96'1 60'1 S
. (65T) . (81D . 1Y . (667 ++ (097 . (C€D .. (@87 . (IFD) 6T

611 se'l £0'1 oL'e LS 91 wi 977 LT'T 4
« (69°¢) + x (660) <« (01°9) . (61D . (SLD) . @Y «+ (TSF) (185 . (9T°0)

£8°1 96'1 691 L8C 8L'E $6°1 917 867 el £
L(ITY) .. (E8°8) «« (80'%) . (6L7) .. (8€0) «» (080) . (£29) .. (890 .+ (009)

£0°C L6'T 60 we Ly vLt 80C LeT 6L'1 [4
- @y . (P6'E) < (S°E) . (99°9) «x (€6°9) « 6V -+ (T6'E) « s (OL'E) - x (08°0)

60T veET £8°1 LEY w9 £€°C 9T 1re 191 [
. (01'9) . (IL°S) <+ (L9S) . (29°9) .+ (61°S) . » (89F) < (OL'Y) «x (STP) -« (TSP

8LV 38V s 697 Wi €96 6T°S $6'€ IT'Yy L€ 0

SJONPISI4 [2pOott YIINSDA Jo S15Dq 2yi uo Suippil wolf Yy (V)
poq Tes Anq yoq 1ies Anq poq fles Anq

sao1d [9pON yrewyouag

WO yeujouag

NG Sjrewgousg Je

satdojens Suipeln ULLIRNUOD WO SYVD

L 219eL



713

P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720

*

*

x

*

*

*

*

*

*

*

(50°1T)
140
(15°9)
97’1
9¥'€)
1€l
(9%°€)
99'1
(05°9)

(re'L)
a4

(86°0)
8¢°0
@)
68°0
(89°0)
901
(1£°€)
W
(2R
2!
QL)
LEY

*

*

*

*

*

*

*

*

(80°7)
0S°0
aLe)
vl
(34%)
Syl
(£v°€)
$6'1
Te)
Lyl
(€T°L)
8Lt

(89°0)
€0
L6'1)
$6°0
(T80
0€'1
(§9°¢)
yL1
L)
[CA
oL L)
LY

*

*

*

*

*

*

*

*

*

*

*

*

(1L'0)
1€°0
6+0)
60’1
(59°7)
LTt
(59'7)
9¢'1
(92°¢)
St'l
(L8'9)
LOY

arn
S0
(86'1)
¥8°0
(€6°1)
STl
(9€'0)
o1t
)
L1
(+6'9)
ov'e

*

x

*

*

*

*

*

*

(sen)
Tl
(8S'1)
48
(€1°)
S0'T
(29°¢)
S1¢
(99°¢)
81T
00'S)
€Le

@ o
8€°0
s
98°0
080
9t'1
087)
8S'1
(LT0)
LLT
(90°S)
a3

(€6'0)
LE'T
(€S
LET
. FED)
07T
(rn
81'1
. (OFD)
96'1
(0D
€9°¢

SponpISad japow aujds 131awand-anof Jo sisoq ayp uo Juipvay woif sV (d)

L (16°0)
$9°0

., (60D
8¢l

.. (ESD)
¥9'1

. (€6'1)
1

e (190
60T

.. (P8O
£€°¢

iSjpnpisad (apow sunds ad1awaand-amf fo s1soq Y1 uo Juipvag WoLf SYV) (D)

(66°0)
6L0
(£8°0)
L8O

L (161
0T

.. (19°%)
€1’

«« (097D
o'z

.. (90p)
£8°¢

@Lo)
8€°0
(§v'0)
vE0
aen
8T'1
. (50D
YL
. (68°1)
Sl
s (STY)
943

*

*

*

*

*

(€1°%)
6L0
(89°¢)
LET
(001)
LS'T
(S0't)
oLt
651)
98’1
r09)
1349

@
990
(St'€)
911
oL¢)
051
(LL'®)
051
(18°¢)
SS'l
(68°S)
PI°€

*

*

*

*

*

*

*

*

*

81
01
990)
og'l
99°¢)
oLl
06'7)
651
(S6°€)
0T
(05°S)
8F'€

95°1)
80
(590
61'1
(€v'e)
Lyl
(L6'0)
€G]
(95°¢)
781
(5¥°S)
LEE

«

*

*

%

*

*

#Tn
S50
(SL2)
i
(98°0)
1
(69°€)
€6'L
((349)
99°1
(249
8¢€

aon
150
((¥44)
€11
627)
128!
067)
91
#97)
671
(50°S)
16T

0

0



714 P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720

06 CAR(%) of Buy-and-Hold, OLOs only
o
i+ Duration Ratio

06 — e

6 P
26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 421
Trading Day

Fig. 3. CARs from contrarian strategies when trading takes place with a one-day lag.

bounce should no longer bias the estimated mean excess return once a delay is
introduced, the bounce still boosts the variance of the returns and, therefore,
makes it harder to obtain statistically significant results. Second, the longer the
delay, the more likely it becomes that the initial mispricing will have partly or
wholly disappeared. Thus, our computed results are likely to be inferior to the
ones that can be obtained in practice because, in reality, the trader is able to buy or
sell at the next opening rather than at the close of the nth next trading day. A last
point, related to the second one, is that in our tests the trader is assumed to act
upon the initial under- or overpricing signal without considering the current price
of the bond that was mispriced n days ago. Thus, with a lag between decision and
implementation, our tests will include some trades that would have been deemed
unprofitable by a real-world trader because the initial mispricing has already
disappeared or has even been reversed.

3.3.3. Results
The results for the Vasicek, CIR, and spline models are reported in Table 7 and
shown in Fig. 3. The key findings are as follows:

Notes to Table 7:

* In the period March 27, 1991-September 16, 1992 (351 trading days) we trade, in calender time, on
the basis of residuals from the daily cross-sectional estimations of four models: Vasicek, CIR, and a
cubic spline with five or four parameters. If, in a cross-sectional regression on day ¢ — 1, the residual is
negative (positive) the bond is bought (sold), and at each date the portfolio weights are set
proportionally to the size of the mispricing (contrarian weighting scheme). The trade is implemented
with a lag that is varied from 0 to S trading days. The normal return is either the return on the portfolio
matched in terms of value and duration (DM) or duration and convexity (DCM), or the return implied
by the model’s fitted prices. In addition, the return is corrected for the average bias, across all OLOs,
that remains after subtracting each normal return (as described in Table 6). Figures in parentheses are
t-ratios, in which standard errors use the Newey-West correction with 4 lags. One (two) asterisk(s)
denotes significance at the one-tailed 0.05 (0.01) level. Bold numbers indicate the highest return, across
models (that is, for a given strategy (buys, sell, or both, as indicated in the column heading) and
benchmark (DM, DCM, model-implied return))
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First, across all four models (Vasicek, CIR, five-parameter spline, and four-
parameter spline) and benchmarks (DM, DCM, and own-model implied return),
the cumulative abnormal returns in excess of buy-and-hold are positive and
significant when there is no delay in trading. The abnormal returns that would
be obtained if trading were immediate (at the price that provides the signal)
range from 3% to almost 6% over a period of about 351 trading days for the
DM and own-model benchmarks, and occasionally up to 10% if convexity is
taken into account in the matching portfolios '’.

+ Second, about half of this profit disappears if the trade is delayed one working
day. It is impossible for us to say to what extent this drop in profits is due to
the elimination of the bid-ask bounce bias rather than genuine corrections in the
mid-point prices. However, the results for lag = 1 (that is, when trading takes
place with a one-day delay) remain significantly positive everywhere. As, in
practice, a trader can deal within a shorter delay and with more recent
information, we conclude that before-cost profits from bond-picking on the
basis of term structure residuals was surely profitable.

Third, the adjustment in market prices takes time: trading profits remain
positive and significant even if the trade is delayed by four or five days after
the signal (see lines ‘‘lag 2-5"" in Table 7). Note also that the trading profits
become smaller the longer the delay — that is, market prices and model prices
do converge over time. This suggests that all models are to some extent able to
detect genuine mispricing.

Fourth, the abnormal returns that use the own-mode! implied return as a
benchmark are not systematically higher than the abnormal returns computed
from the two duration-based models. This suggests that the abnormal returns
are not likely to be the result of a circular application of the model.

- Fifth, for any given trading delay and benchmark, the results from trading on
the basis of the five-parameter spline model residuals are inferior to the results
based on the economic-oriented models: the Vasicek model outperforms its
competitors more often than any other model, CIR comes in second, and the
five-parameter spline is a distant last. Combined with our earlier finding of a
better fit in the cross-sectional estimation, this suggests that the traditional
spline model, with its five free parameters and its flexible form, is actually
over-fitting the data. '*

"7 We have no clear explanation why the results for the DCM benchmark seem uniformly better. One
element may be that, unlike the other benchmarks, the DCM-matched portfolio contains short-term
deposits. Also, with three portfolios needed to match a given bond, the matching portfolios contain few
assets and are, therefore, more noisy. Lastly, the DCM-matching portfolio does not contain the bond
that is being matched; in contrast, duration matching uses the equally weighted market portfolio of all
assets (including the mispriced bond), and the own-model benchmark likewise uses all bond prices.

"8 Recall that the two economic models consistently misprice OLOs 03 and 09, and that we assume
that the trader never learns from past mistakes. Thus, the results from Vasicek and CIR probably
understate the results a real-life trader would have made. This reinforces the conclusion that these
models do best.
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+ Sixth, a substantial part of the overfitting by the five-parameter spline can be

avoided by eliminating one free parameter: when the number of knot points is
cut down from two to one, the resulting four-parameter spline does a consis-
tently better job than the five-parameter spline, and occasionally even beats the
Vasicek and especially the CIR model.
Lastly, we note that for virtually all models, benchmarks, and lags, the
abnormal returns from selling overpriced bonds tend to be higher than the
abnormal returns from buying underpriced issues. This suggests that, at least
during the test period, short-selling restrictions may have been important in
practice. This is not a foregone conclusion: overpricing should quickly disap-
pear if arbitrageurs have sufficient long positions in the bonds that are
overpriced, or if there is a sufficiently large flow of liquidity-motivated sales.
An alternative explanation of the persistence of overpricing could be taxes on
capital gains; but for Belgian corporations such taxes are waived if the
transaction is an ‘‘arbitrage’’ transaction, that is, if the realized capital gains are
reinvested within a short period.

3.4. Filter rule tests

The contrarian weighting scheme assumes that it is optimal to buy (or shortsell)
more of a bond the larger the estimated initial mispricing. In this section we verify
this assumption empirically, by having the trade decision depend on the size of the
initial mispricing. The results will also shed some light on our conjecture that the
spline model’s better cross-sectional fit is, actually, the result of overfitting.

The test works as follows. We start on day 25 '°. If, on a given day, an OLO is
deemed to be sufficiently overvalued in the sense that its time ¢ — 1 estimated
pricing error is positive and larger than a certain number of basis points (the filter),
we short-sell the overvalued bonds. Similarly, if the residual for an OLO is
negative and below (minus) the filter size, we say that the bond is sufficiently
undervalued, and we buy and add it to the portfolio. For every given filter size, we
again report the results for the purchase-rule and shortselling-rule separately as
well as pooled. In the pooled results, the filter is symmetric; that is, the percentage
overpricing that triggers the sale is the same as the percentage underpricing that
triggers a purchase. The amounts invested in each mispriced bond are assumed to
be equal, with day-to-day portfolio rebalancing, such that the abnormal return
from the portfolio is given by the equally-weighted average abnormal return
adjusted for bias on day ¢, AAR,, over the N, bonds in the portfolio:

i AAR! IHi t—1

Aﬁt= E

i=1 t

" We lose 24 days at the beginning of the period to compute standard deviations for the average
abnormal returns.



P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720 717

where

AR, = the average abnormal return on day ¢;
N,
N,= Y |H, ,_,lis the number of bonds in the portfolio on day ;

i=1
AR, , = the abnormal return realized between 7 — 1 and ¢,
defined as in either Eq. 28 or Eq. 32;
H, i

-1

+ 1 if the bond is underpriced and if the trading rule allows buying;

= ¢ — 1 if the bond is overpriced and if the trading rule allows shortselling;
0, otherwise

As before, the abnormal returns for all benchmarks were corrected for the
corresponding abnormal return on the buy-and-hold portfolio of all OLOs. Abnor-
mal returns are then cumulated over time, and #-tests are computed as in Bjerring
et al. (1983) .

To avoid repetition, Table 8 reports only the results for the best- and worst-per-
forming models (Vasicek and the five-parameter spline), using as benchmarks the
DM and own-model implied return. These results can be summarized as follows.
First, the underporfermance of trading on the basis of spline model residuals,
relative to trading on the basis of the Vasicek model, seems to hold for any given
filter size. Thus, the spline model again appears too flexible and, therefore, less
able to distinguish mispricing or bid-ask noise from true equilibrium values. A
second conclusion from Table 8 is that, when increasing the size of the filter,

™ If at least one bond is included in the day-s trading portfolio, we trace back the history of the
portfolio’s average abnormal return (adjusted for bias, as in Eq. (35)) over days ¢ —-24, +—23, ...,
=5, and calculate the Newey—West 4th-order autocorrelation adjusted standard deviation, o,. AAR,
is then standardized into a Student’s variable Z, = AAR, /o, with, under the null hypothesis that the
trading rule yields no systematically positive returns, mean zero and standard deviation
v20/(20—2) =1.0541. Still under the same null, the statistic 1/V7T —26 SUMT_,.Z7, /1.0541)
converges to a unit normal if T is sufficiently large. In this test, T < 420 because in some days the
trading portfolio is empty.

Notes to Table 8:

* If, in a cross-sectional regression on day f— 1, the residual exceeds the size of the pre-set filter
(varied between 0 and 30 basis points), the bond is added to an equally weighted portfolio. The return
is corrected by either (1) the return on the duration-matched portfolio of OLOs and deposits or (2) the
return implied by the model’s fitted prices. In addition, the return is corrected for the average bias,
across all OLOs, that remains after subtracting each normal return (as in Table 6). CARs are then
cumulated in calendar time. r-statistics are as in Bjerring et al. (1983). * (” *) denotes significance at
0.05 (0.01) level, one-tailed. The best result across filters, per column and benchmark, is printed in
bold.
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Profits of filter rules *

Fltr.  Buy strategies Sell strategies Combined strategies
(bp) obs. CAR t obs. CAR ¢ obs. CAR t
(A.1) Vasicek residuals — Benchmark: return on DM portfolio:
0 396 3.23 3.04 77 396 322 289" 396 290 301"
5 396 3.61 336 77 396 4.64 298 ** 396 376 319"
10 396 4.03 289" 396 570 309" 396 491 315"
15 396 4.70 2477 393 591 496 " 396  6.02 313
20 379 2.96 247" 323 388 290 " 382 443 358
25 271 2.35 228 * 205 210 1.42 313 3.04 27907
30 183 1.22 0.55 108 1.38 -0.70 226 192 0.23
(A.2) Vasicek residuals — Benchmark: return from fitted prices:
0 396 4.12 3.8 " 396  3.65 316 " 396 3.54 329"
5 396 4.63 407" 396 492 305" 396 4.51 400 " "
10 396 5.60 467" 396 573 275 396 599 330 "
15 396 6.26 3.19 " 393 6.48 497 39 7.30 428 "
20 379 3.96 506 ** 323 484 7707 382 6.17 6.65""
25 271 248 278 ** 205 238 581" 313 351 326"
30 183 1.36 1.07 108  1.60 217 " 226 2.27 1.32
(B.1) Spline residuals — Benchmark: return on DM portfolio:
0 396 2.36 2357 396 250 2757 396 229 273"
5 396 3.38 24477 396 334 185" 396 3.13 282
10 396 310 —699 " 396 4.98 276" 396 443 233 *°
15 312 1.34 1.97 * 334 321 314" 352 3.6 1.30
20 121 1.14 0.50 191 158 1.18 221 1.65 -~0.37
25 42 0.63 207 " 36 091 1.85 " 45 099 1.35
30 26 —0.09 0.22 23 045 0.00 26 0.05 0.29
(B.2) Spline residuals — Benchmark: return from fitted prices:
0 396 3.34 448" 396 326 3457 396  3.10 329 "
5 396 4.71 530" 396 495 2667 396 454 3.08 "
10 396 3.92 402" 396 536 3.06 "7 396 512 2.96 **
15 312 1.80 320" 312 303 239" 352 321 1.96 *
20 121 1.40 1.18 121 1.62 1.43 221 212 1.98 *
25 42 0.88 321" 36 074 0.87 45 115 1.60
30 26 0.05 0.21 23 0.28 0.00 26 0.05 0.26
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profits tend to go up first but then tend to go down. Thus, the contrarian weighting
scheme — which places greater emphasis on bonds that are deemed to be highly
mispriced — is not optimal. The finding that very large residuals lead to lower
average profits suggests that, for all models, large residuals are more likely to be
the result of model mis-specification or -estimation rather than mispricing. Third,
we find that the optimal filters tend to be smaller for the spline model than for the
Vasicek model. Conversely, large residuals from the spline model (which, one
may recall, are also relatively rare) are even more suspect, on average, than large
residuals from the Vasicek models.

4. Conclusions

We estimate daily Vasicek /CIR bond models on BEF government bonds and
interbank deposits, 1991/1992. The Vasicek model produces slightly larger
MSE’s than the CIR model, but the results are otherwise very similar. The five-
and four-parameter cubic spline models, on the other hand, easily beat the two
economic models in terms of average fit. Regression tests reveal that part of the
deviation between observed price and model price are reversed the next day, and
also the second day after the observation of the initial mispricing. This suggests
that the estimated residuals do reflect genuine pricing errors, not just model
mis-specification or mis-estimation and bid-ask bounce bias. After correction for
market-wide changes, a strategy of buying underpriced bonds or (especially)
selling overpriced bonds turns out to be profitable, yielding a significant 3-9%
more, over eighteen months, than a buy-and-hold bond portfolto. The best results
are obtained if trading is based on the Vasicek and CIR models. The traditional
five-parameter spline model, being more flexible, seems to overfit the data and is,
therefore, less able to detect mispricing; but the spline’s performance can be
improved by cutting the number of knot points down to one. Lastly, large model
residuals are more likely to be the result of model misspecification or -estimation
than are small or medium-sized residuals. Thus, it is better not to adopt a
contrarian strategy of increasing one’s stake in a bond the greater its degree of
mispricing.
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