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Abstract 

We estimate daily Vasicek, CIR, and spline models on Belgian data and compare the 
trading profits that can be made on the basis of their residuals. Abnormal returns, measured 
using three different benchmarks, are negatively related to once- and twice-lagged mispric- 
ing. Buying underpriced bonds and (especially) selling overpriced bonds yields significant 
abnormal returns even when the trade is delayed by up to five days after observing the 
mispricing. The traditional spline model overfits the data and is least able to detect 
mispricing. Large model residuals are more likely to be the result of model misspecification 
or -estimation than are small or medium-sized residuals. © 1997 Elsevier Science B.V. All 
rights reserved. 
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I. Introduction 

In this paper, we compare the abili ty of  the Vasicek (1977), C o x - I n g e r s o l l - R o s s  
(CIR) (Cox et al., 1985b), and curve-fi t t ing models  to identify mispriced bonds 
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and generate trading profits. We chose the (one-factor) models by Vasicek (1977) 
and Cox-Ingersol l -Ross  (CIR) (Cox et al., 1985b) because they combine a sound 
economic basis with tractable closed-form solutions. While the CIR model is 
already more difficult to estimate than the Vasicek model, this is even more the 
case for the two-factor models of, for example, Longstaff and Schwartz (1992) and 

Platten (1994); and empirical work by Gr6goire and Platten (1995) on similar data 

as ours gives no indication that these two-factor models actually do a better job 
than their one-factor counterparts. 

Our work differs from earlier empirical work on the Vasicek, CIR, and spline 

models in three respects. First, we select the "bes t "  model on the basis of an 
information content criterion (as in Fama, 1990), rather than on purely statistical 
grounds. That is, unlike other authors we do not want to find out whether or not 

the Vasicek and CIR models are cross-sectionally as well as longitudinally 
compatible with the actual data 2; rather, we want to know whether term structure 

models, estimated from a single-day cross-section, contain information about 

future bond returns, and which model seems to be best at identifying mispriced 
bonds. We also want to find out whether the Vasicek and CIR do any better, in 
this respect, than the simple five- or four-parameter splines that are still used in the 

financial community 3. Our work further differs from earlier work on bond pricing 
models in that we work with BEF data. Lastly, we have tried to improve the 
robustness and validity of our findings by introducing some methodological 

refinements relative to standard market-efficiency tests. This methodology can be 
summarized as follows. 

For every day in the sample, from 1991 through 1992, we first estimate the four 

competing models from the prices - -  not the yields - -  of a particular class of 
government coupon bonds, and from short-term bond prices constructed from 

money market interest rates. We estimate the Vasicek and CIR models without any 

pooling over time or without any inter-temporal constraints on the parameters that 
were assumed to be constant over time in the derivation of the equilibrium pricing 
model. In this sense, our approach is similar to standard practice among option 

traders, who re-estimate volatilities every day or use implicit standard deviations 
as a basis for trading although their pricing model assumes constant volatilities. 

2 For example, Brown and Dybvig (1986) estimate the CIR model on monthly price quotes for U.S. 
Treasury issues from 1952 through 1983, and De Munnik and Schotman (1994) test both the Vasicek 
model and the CIR model with daily data of Dutch Treasury bonds from 1990 through 1991. Related 
tests on real return data are provided by Brown and Schaefer (1994) and Pearson and Sun (1994). 
Grrgoire and Platten (1995) have tested the CIR, and Longstaff (1992), Longstaff and Schwartz (1992) 
and Platten (1994) have tested models in the Belgian market. 

3 In view of this, our tests tend to be more like efficiency tests than proper tests of the models. 
However, the distinction is never very clear-cut: one cannot measure efficiency without a model, nor 
can one verify/falisfy a model without assuming efficiency. As we use different models to select 
bonds, our tests also tell us what model works best as a basis for bond trading - -  an issue that goes 
beyond the pure efficiency question. 



P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720 687 

Our day-to-day approach also has the merit that it does not load the dice in favor 
of the pure curve-fitting techniques, where intertemporal constraints are never 
imposed. 

Having estimated the competing models, we then test whether one can realize 
abnormal returns by buying (shortselling) bonds that, on that day, were classified 
as undervalued (overvalued) relative to a particular estimated term structure 
model. In each of the tests described below, abnormal returns from bond trading 
are measured relative to three alternative benchmarks. One benchmark is the return 
on the bond that would have been observed if prices would, at all times, perfectly 
fit the term structure model that was used to identify the mispricing. Our second 
benchmark is the contemporaneous realized return on a well-diversified portfolio 
with the same value and duration as the bond(s) selected by the trading rule, while 
the third benchmark also matches the traded bonds in terms of convexity. Each of 
these first-pass estimated abnormal returns is then corrected for the average 
first-pass abnormal return on a portfolio of all bonds; this correction ensures that, 
in any given daily cross-section of bonds, the average corrected abnornal return is 
again exactly zero even after the money market instruments have been left out. 

To verify the information content of deviations between observed and fitted 
prices, we follow two approaches. First, we regress abnormal holding period 
returns from an individual bond on past term structure model residuals (that is, 
actual price minus model price). Second, we compute abnormal returns from 
various trading rules based on differences between observed and model prices - -  
first using a contrarian weighting scheme (with larger positions in bonds that are 
more mispriced), and then by forming separate portfolios for bonds with different 
degrees of mispricing. In both the regression tests and the trading rule tests we 
also introduce various lags between the moment of detecting the mispricing and 
the implementation of the trade, so as to eliminate biases stemming from bid-ask 
noise. 

Both the regression tests and the results from the trading rule reveal that model 
residuals are economically useful. In addition, we find that the trading results 
based on the two economic models, and especially the Vasicek model, are superior 
to the results obtained when the decisions to buy or sell are based on the standard 
cubic spline. Lastly, the performance of the cubic spline model improves substan- 
tially when one cuts down the number of free parameters from five (as commonly 
used) to four; we interpret these findings as implying that the standard five-param- 
eter spline model over-fits the data and, therefore, tends to overlook part of the 
mispricing. 

The structure of the paper is as follows. Section 2 deals with the estimation of 
term structure models. We start with a brief review of the basics of term structure 
models in general and the Vasicek and CIR models in particular, and then present 
and discuss the estimates obtained from our sample. Section 3 tests whether the 
residuals from the estimated term structure model contain any information that 
would be useful for a trader. Section 4 concludes. 
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2. Estimation of the bond pricing models 

Section 2.1 briefly presents the Vasicek, CIR and spline models. Section 2.2 
describes the data and presents the estimation method for our cross-sectional 
estimation on coupon bond prices. The empirical results are discussed in Section 
2.3. 

2.1. Three bond pricing models 

Let P(r,t)  denote the price of a zero-coupon bond or pure discount bond at t 
and assume that the underlying variable, the short-term interest rate r(t), follows a 
diffusion process which is continuous over time and exhibits no jumps: 

d r =  y(  r , t )dt  + o'( r , t )dz ,  (1) 

where dr  is the change in the short-term interest rate r(t); y(r , t )  is the drift rate 
of r(t) [y may depend both on r(t) and t]; o'(r,t) is the standard deviation of 
changes in r(t) [~r may depend both on r(t) and t]; and dz is the standard 
Wiener process with zero mean and unit per annum variance. 

The familiar Black-Scholes (Black and Scholes, 1973), Merton (1973) no-arbi- 
trage pricing equation for any asset that has the short-term interest rate (Eq. (1)) as 
the underlying factor is: 

aP aP 1 a2P 
- -  2 ( r , t ) - r ( t ) P = O .  (2) - -  + ~-r [ y ( r , t  ) - A( r,t)cr( r,t)] + ~ Or 2 o" 

at 

In this expression, A(r,t) is the price of interest risk at time t, and the factor 
[ y ( r , t ) -  A(r,t)o'(r,t)] is the risk-adjusted drift rate of the underlying state 
variable, in casu the short-term interest rate in Eq. (2). As is well known, the 
Vasicek and CIR models differ in the way they specify the terms y(r,t),  ~r(r,t) 
and A(r,t) in Eqs. (1) and (2). We briefly review each model in turn. 

In Vasicek (1977), the instant interest rate follows a mean-reverting normal 
(Ornstein-Uhlenbeck) process, 

dr = K ( m -  r)dt  + ordz, (3) 

where K, m and ¢r are constants; and dz is a Wiener process. With Eq. (3), the 
fundamental differential equation in Eq. (2) becomes: 

aP aP 1 a2P 
_ _  2 _ r ( t ) P = 0 .  (4)  - - + - - [ K ( m - r ) -  A(r , t ) t r ]  +~" ar2~r 

~t 0r 

Recall that Pr(r,t) is the price, at t, of a zero-coupon bond or discount bond 
maturing at T and contingent on the short-term interest rate r(t). By assuming a 
constant market price of risk A over time and using the boundary condition that, at 



maturity, 
obtained: 

PT(r , t )=exp[- -4)o( t ) {1- -e -K(r - ' ) }  + 4 ) ] { l _ K ( T _ t ) _ e  K(r ,)} 

- - 4 ) 2 { 1  --  e--K(T-- ' )}  , 

r( t )  
4)0(0 - -  

K 

Km - A0- 
)1  K 2 

l 0-2 

where 
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Pv(r,T) equals unity, the following closed-form pricing model is 

1 0 -2  

2 K 3 '  

(5) 

(6) 

(7)  

4)2 = ( 8 )  

If the short-term rate r(t) is taken to be unobservable, there are four coefficients to 
be estimated: K, 4)0, 4)i and 4)2. From these estimated coefficients we can derive 
the implied parameters, 

implied s h o r t -  term rate: r( t )  = K~b0(t ),  (9)  

yield on a bond with T ~ ~: R L = K4) l, (10) 

implied variance of dr: 0- 2 = 4 K  34)2, ( 11 ) 

risk - adjusted drift rate of r(t)" t-~ =- K(m - r )  - ao" 

= (4)1 + 24)2) K2 -- Kr. (12) 

In contrast, Cox et al. (1985b) adopt a specific general-equilibrium approach 
that allows them to derive both the interest rate dynamics and the corresponding 
price of risk: 

d r =  K ( m -  r ) d t +  o-~/-r-r d z, (13) 

A( r , t )  = --q ~ - ~  , (14) 
O" 

where q is a constant. As a result, the general differential Eq. (2) can be specified 
as 

OP aP 1 a2P 
- - 0 - 2  - r( t ) P = O .  (15) --at + -~-r [ K ( m - r )  - -qr( t )]  + ~ ar 2 
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With the boundary condition Pr(r,T)= 1 for a maturing discount bond, the 
solution to Eq. (15) takes the following specific form: 

( O l e O 2 ( T - t )  03 ( -r[e° ' (r- t ) -  l] (16) 

Pr(r , t )= 02[eO,(r_r)_l]+O I exp 02[eO,(r_t)_-O]+l , 

where 

01 = ~/(K + q)2 + 2o-2 ,  (17) 

02 = ( K +  q + 0 1 ) / 2 ,  (18) 

0 3 = 2 K i n / o -  2. (19) 

Also in this model there are four coefficients to be estimated: r(t), 01, 02 and 
03 . From these estimated coefficients we can derive the implied parameters, 

yield on a bond with T ~ :  R L = 0 3 ( 0 1  - -  0 2 )  , (20) 

implied variance of  d r :  tr2r(t) = 202(01 - 02)r(t ), (21) 

risk - adjusted drift rate of  r ( t ) :  tx =- K( m - r) - qr( t ) 

= 0 3 o - 2 / 2 - ( 2 0 2 - 0 1 ) r ( t  ). (22) 

The cubic spline model 4, finally, is a purely descriptive model without 
economic foundations. The term structure function consists of  a concatenation of  a 
number of third-degree polynomials, spliced together at n "knot  points",  s i, 
i = 1, . . . ,  n, in a way that ensures continuity in the levels as well as the first and 
second derivatives: 

Pr( r,t) = 1 + a t ( T - t )  + b t (T-  t)2 + c , (T -  ,) 3 
71 

+ E d t , i [ M a x { T -  ( t  + s i ) , 0 } ]  3. ( 2 3 )  
i = 1  

Usually one selects two knot points - -  in this study, s 1 = 2 years and s 2 = 4 years 
- -  which implies there are five free parameters in the spline model. As will be 
illustrated below, in the daily cross-sectional estimations the five-parameter spline 
tends to produce a better fit than the Vasicek or CIR models. This better fit may 
stem from two sources: first, this spline has one more free parameter, and second, 
it imposes less restrictions on the shape of the discount function than the other two 
models. To be able to sort out the relative importance of each explanation, we 
have repeated all tests using a four-parameter spline, that is, a spline with just one 
knot point (set at s 1 = 2 years). For the sake of brevity, we will report the results 

4 An alternative to the polynomial spline is the exponential spline (Vasicek and Fong, 1982). 
However, Shea (1985) finds that the exponential spline is not superior to the latter. 
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from the four-parameter spline only when they differ markedly from the results 
obtained with five parameters. 

2.2. Data and estimation procedure 

The competing models in Eqs. (5), (16) and (23) were estimated from data on 
BEF interbank deposits and BEF "l inear"  bonds (Obligations Lin£aires/Lineaire 
Obligaties, or OLOs). In this section we describe the data and the estimation 
procedure. 

Like France's Obligations Assimilables, OLO bonds are floated in consecutive 
tranches rather than in one single issue. Each new tranche of a given " l ine"  has 
identical terms and conditions and is fully fungible (assimilable) with earlier 
tranche issues of  the same line. The number of outstanding OLOs is much smaller 
than the number of  ordinary government bonds traded during the same period. 
However, for the purpose of  testing bond pricing models, OLOs have many 
advantages relative to ordinary bonds. First, OLOs are registered bonds. In 
contrast, the ordinary government bonds are bearer securities, which are more 
expensive to trade. Second, because OLOs are registered, they are mainly held by 
corporations. Because of  this, tax clientele effects are less likely to be a problem 
for OLOs than for ordinary bonds, which can be held by individuals as well 5. 
Third, the coupons from OLOs are not subject to any withholding tax. This makes 
OLOs more convenient to corporations than ordinary bonds. Fourth, OLOs are 
more actively traded than ordinary bonds, partly because the primary dealers make 
a market. In contrast, ordinary bonds are traded either during a (low-volume) daily 
call auction on the Brussels Exchange, or off the exchange. Finally, OLOs are 
straight bonds with maturities of  up to twenty years, while ordinary bonds are 
more short-lived and tend to have put or call option features. 

Daily OLO price data and BEF Brussels interbank offer rates (BIBOR), from 
March 27, 1991 through December 30, 1992, were obtained from the Financieel 
Economische Tijd (FET) data service. After deleting non-trading days and some 
thin-trading days, 421 daily cross-section samples are available. At the beginning 
of our sample period we have six outstanding OLOs, with times to maturity 
ranging from about three to twelve years, while at the end we have twelve OLOs 
with times to maturity ranging from about one to twenty years (Table 1). We 
report results for the first 351 days only because, as of  September 26, 1992 - -  a 
few days after the start of heavy tensions in, and a near-collapse of, the European 
Exchange Rate Mechanism - -  the term structure became characterized by a 

5 Under personal taxation, interest income on ordinary bonds is subject to a withholding tax of 10% 
plus, possibly, a (widely evaded) progressive additional tax if worldwide interest income exceeds 
certain thresholds. Capital gains go untaxed. Corporations, in contrast, all pay the same tax on interest 
income and capital gains. 
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Table 1 
Belgian government linear bonds (OLOs) a 

Code March 27, 1991-December 30, 1992. 

linear Issued Expires Coupon rate Coupon due 
bonds (year) year) (%) date 

239.45 OLO01 1989 1999 8.25 Jun. 1 
245.51 OLO02 1990 1996 10.00 Apr. 5 
247.53 OLO03 1990 2000 10.00 Aug. 1 
248.54 OLO04 1991 1998 9.25 Jan. 1 
249.55 OLO05 1991 1994 9.50 Feb. 28 
251.57 OLO06 1991 2003 9.00 Mar. 1 
252.58 OLO07 1991 2001 9.00 Jun. 27 
254.60 OLO08 1991 1997 9.25 Aug. 29 
257.63 OLO09 1992 2007 8.50 Oct. 1 
259.65 OLOI0 1992 2002 8.75 Jun. 25 
260.66 OLOI 1 1992 1998 9.00 Jul. 30 
262.68 OLO12 1992 2012 8.00 Dec. 24 

a OLOs are the Belgian government non-callable straight bonds. At the beginning, there are only 6 
OLOs available and the number increases to 12 near the end. 

trough. As a result, the CIR model  estimations no longer converged while the 
Vasicek model  could only be fitted at the cost of  implying a negative value for 
~r 2. Results for the last period do not lead to different conclusions, and are 
available on request. 

The OLO price data reported by the FET are last-trade transaction prices, which 
implies that they contain bid-ask noise. The maximum allowed bid-ask spread is 
25 basis points. Bond price quotes have to be grossed up with accrued interest to 
obtain the effective invoice price. In addition, bond prices have to be corrected for 
the one-week settlement effect. That is, the invoice price is actually a one-week 
forward price. Thus, the bond prices we use for estimation are obtained from the 
invoice price as follows: 

quote + accrued interest 

P r  = 1 + ( 7 / 3 6 5 )  BIBOR 1 month" (24) 

We use the 1-month BIBOR because the one-week interest rate is not available to 
us. Note that while accrued interest on bonds is based on a 360-day year, the 
Brussels interbank market uses a 365-day year to calculate interest on deposits and 
loans; this explains the factor ( 7 /365 )  in the denominator. 

To represent the short end of  the maturity spectrum we have preferred interbank 
deposits over treasury bills. It is true that there has been an organized secondary 
market for treasury bills as of  the spring of  1991, which is also the beginning of  
our sample; however, the T-bill  data for the first trading year are rather suspect 
because, in that period, T-bill  yields often exceed the BIBOR rate, by up to 10 
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Table 2 
Brussels interbank offer rates on Belgian Franc (BIBORs) 

693 

Interbank (BIBOR) rates, 27/03/1991D16/09/1992 (351 days) 

high low mean st. dev. 

1 -Month 10.250 8.875 9.421 0.299 
2-Month 10.125 9.837 9.474 0.259 
3-Month 10.063 9.000 9.506 0.228 
6-Month 10.030 9.063 9.534 0.189 

12-Month 10.000 9.125 9.527 0.173 

basis points. This counter-intuitive premium relative to BIBOR reflected the 
extreme thinness of the T-bill market in the first year of trading. In contrast, the 
interbank money market is very deep, and has bid-ask spreads of 12.5 basis points 
per annum except during periods of EMS tensions. 

Interbank interest rate data from the Financieel Economische Tijd bear on 
maturities of 1, 2, 3, 6, or 12 months (Table 2). To obtain midpoint prices for 
short-term discount bond from the BIBOR data, we converted offer rates into 
mean interbank rates by subtracting half the bid-ask spread and then discounting: 

100 

PT = 1 + ( T -  T ) / 3 6 5  X [BIBOR(t,T) - 6.25 points] ' (25) 

where, following the convention in the BEF interbank market, T -  t is computed 
using the actual number of days and a 365-day year. With six to twelve OLOs and 
five interbank deposits, each cross-section contains eleven to seventeen assets 6 

The pricing equations (5), (16) and (23) refer to zero-coupon bonds, but OLOs 
are coupon bonds, that is, portfolios of different default-free discount bonds. Thus, 
the valuation formula for a coupon bond takes the following form: 

N 

PT( r,t; c ,N(t))  = Y'~ C ~ P r , ( r , t ) ,  (26) 
j=l 

where Pr(r,t; c,N) is the effective price (quoted price plus accrued interest, and 
corrected for 7-day settlement effects) of a coupon bond with N annual coupons c 
and time to maturity T -  t; N(t) is the number of times cash flows are paid out 
during the remaining life of the coupon bond; CFj is the cash flow (c or 100 + c) 
received at times ~, j = 1 . . . . .  N; Pr(r,t) is the price of a discount bond with 
time to maturity Tj - t as given by Eq. (5) (Vasicek), Eq. (16) (CIR), or Eq. (23) 
(spline). 

6 When a bond was not traded on a particular day, we dropped the bond from the sample, so that the 
actual number of observations is sometimes smaller than the number of outstanding bonds. 
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For the economic models - -  Vasicek and CIR - -  we use non-linear least- 
squares to estimate Eq. (26), assuming, like Brown and Dybvig (1986) and De 
Munnik and Schotman (1994), that empirical bond prices have homoskedastic 

Table 3 
Cross-sectional estimation of term structure models a 

(A) The Vasicek model 

~/bl ~ 2  q~3 K r b RL c /x d o "2~ SE f 
(%) (%) (%) (%) (%) 

Max. 0.0644 0.0557 0.0159 0.0241 
Min. 0.0098 0.0101 0.0003 0.0041 
Mean 0.0248 0.0240 0.0048 0.0101 
St.D. 0.0071 0.0056 0.0025 0.0018 

t > 2.5 g 22.5% 32.2% 42.7% 32.2% 
t > 2 g 36.2% 52.1% 61.8% 51.9% 
t > 1.5 g 56.1% 72.4% 77.8% 72.1% 

10.23 9.05 0.183 0.498 0.324 
6.29 8.10 -0.016 0.001 0.037 
8.76 8.54 0.035 0.077 0.135 
0.55 0.26 0.025 0.056 0.047 

(B) The CIR model 

01 0 2 03 r R L /~ t r 2 r  SE 
(%) (%) (%) (%) 

Max. 0.0262 0.0220 5.1803 9.76 
Min. 0.0015 0.0015 0.0260 7.63 
Mean 0.0103 0.0079 0.2061 8.90 
St.D. 0.0052 0.0040 0.4300 0.41 

t > 2 59.0% 80.6% 3.7% 94.6% 
t > 1.5 78.3% 86.3% 12.0% 96.3% 
t > 1 89.2% 2.6% 46.2% 97.4% 

(C) Cubic Spline models 

9.05 0.090 0.917 0.299 
8.07 -0.005 0.001 0.011 
8.52 0.019 0.144 0.124 
0.26 0.016 0.147 0.054 

Five-parameter Cubic Spline model 
(knot points at 2 and 4 years) 

a I a 2 a 3 d I d 2 SE 
(X103) ()<107) ()<1010) (X1010) ()<1010) 

Four-parameter 
(knot point at 
2 years) 

d I SE 
(X10 3) 

Max. -0.2372 1.2159 0.1017 0.6072 0.1008 0.172 
Min. -0.2819 0.1430 -0.5338 -0.1907 -0.0865 0.003 
Mean -0.2583 0.6472 -0.1954 0.1794 0.0069 0.080 
St.D. 0.0098 0.2596 0 . 1 4 4 1  0.1722 0.0370 0.027 

t > 2.5 100.0% 98.6% 79.2% 61.5% 25.4% 84.3% 
t > 2 100.0% 99.7% 84.3% 71.8% 31.9% 89.7% 
t > 1.5 100.0% 99.7% 86.9% 78.6% 48.4% 94.9% 

0.3636 0.174 
-0.0320 0.019 

0.1968 0.084 
0.0979 0.027 
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errors across maturities 7. Because our daily cross-sectional samples have at most 
seventeen data points and we did not want to pool over time (for reasons discussed 
in Section 1), GMM was deemed unsuitable. For the two spline models we used 
OLS. 

2.3. Discussion of the empirical results 

As shown in Fig. 1, during most of the sample period the term structure was 
characterized by either a steep decline or a positive hump situated around four 
months to maturity 8. Table 3 presents mean values, maxima, and minima of the 
estimated and implied parameters for the Vasicek model (Panel A) and the CIR 
model (Panel B). As the pricing errors will provide the raw material for the 
analysis in Section 3, we here only discuss some unconditional moments of these 
errors, grouped either by model or by bond. 

During the sample period, the CIR model marginally outperforms the Vasicek 
model in terms of goodness-of-fit: the average root mean square error (RMSE) of 
the regression is somewhat smaller for the CIR model (12.4 basis points for a bond 
with par value 100) than the Vasicek model (13.5 basis points). This RMSE is 
roughly equal to the maximum one would expect from a purely random bid-ask 
bounce: with a maximum bid-ask spread of 25 basis points and equal marginal 
probabilities that the price is a bid or ask price, the bid-ask bounce generates a 

RMSE of, at most, ~f(0.5)2 X (0.0025) 2 = 12.5 basis points. We will provide 

7 The alternative is first to estimate zero-coupon yields, and then to fit the yield-versions of the 
models, assuming that errors in yields, not errors in prices, are homoskedastic. We prefer to work with 
prices because the estimation of yields introduces errors, and because transaction costs and bid-ask 
bounce are proportional to prices, not to yields. 

s Although it is known that the CIR model can produce a humped term structure, such a shape has 
not been observed by Brown and Dybvig (1986) or De Munnik and Schotman (1994). 

Notes to Table 3: 
The Vasicek model and the CIR model are estimated using non-linear least squares, and the Cubic 

Spline using OLS. Bond invoice prices consist of the daily cross-sectional data of OLOs and 
short-lived discount bonds converted from B1BORs (par 100) for the period March 27, 1991-Septem- 
ber 16, 1992 (351 trading days). Simple annualization is used: where appropriate, daily results are 
multiplied by 365. The results regarding the first three parameters of the four-parameter spline are 
qualitatively similar to their five-parameter counterparts, and are not reported. 
b r is the annualized implied short-term interest rate (i.e., daily rates X 365). 

R L is the annualized yield on a very long-term zero coupon bond (T ~ 2). 
d /z is the annualized risk adjusted drift rate of the short-term interest rate. 
e The annualized implied variance of changes in r is 0 -2 in the Vasicek model but 0-2r in the CIR 
model. 
f SE (RMSE) stands for standard error (root mean squared error) of regression [e.g., 0.10 means 10 
basis points (for a par value of 100)]. 
g Percentages of parameter estimates (per parameter) with t-ratio (in absolute values) greater than, say, 
2.5. 
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evidence, below, that the residual RMSE is not just random bid-ask bounce, 
though; that is, the actual spreads must, on average, have been below the legal 
maximum of 25 basis points. While the residual RMSE produced by the two 
economic models is already low relative to the maximal bid-ask bounce and 

relative to the results obtained by De Munnik and Schotman (1994) 9, both cubic 
spline models easily beat the other two models in this respect: the mean RMSE is 

for the five- (four-) parameter spline is a mere 8.0 (8.4) basis points. This lower 
RMSE suggests that either the actual bid-ask spread probably was below the legal 
maximum 25 basis points - -  otherwise it would be hard to explain RMSEs below 

12.5 basis points - - ,  or that the spline model has a tendency to over-fit. 

Deviations between actual prices and model prices can also be analyzed 
longitudinally, i.e. per asset rather than per cross-section, so as to verify whether 
or not the model consistently misprices some individual bonds. Table 4 and Fig. 2 

report the mean error and the mean absolute error (MAE) per asset. Mean errors 

exhibit no clear pattern across assets, but the mean absolute errors (MAE) are 
more revealing. In both economic models (Vasicek and CIR) the MAEs tends to 

be smaller for interbank deposits than for bonds, with figures well below ten basis 

points and increasing with time to maturity of the deposit. The MAEs of OLO 
lines 02, 03, 07, and 09 exceed ten basis points; in addition, for OLO03 and 09 the 

size of the MAE is also close to the size of the mean error, which means that 
virtually all of the errors have the same sign-negative for OLO03, and positive for 
OLO09 10. The pricing errors obtained for OLOs 03 and 09 from the five-parame- 

ter spline functions are less consistently of the same sign, and much smaller in 
absolute value, than the errors obtained from the two economic models J J. Similar 

results (not shown) were obtained with a four-parameter spline. 
Like the average cross-sectional, the low MAEs for most bonds (with the 

exception for OLO03 and 09) seem to suggest that the MAEs may merely reflect 

9 De Munnik and Schotman (1994) found an average standard error of 18 basis points for the Dutch 
market. The difference between their and our results is unlikely to be explained by a higher turbulence 
during the Dutch sample period: while the yield curves obtained by De Munnik and Schotman are 
almost fiat, we have steeply declining and humped curves. The higher standard deviations in De 
Munnik and Schotman are more likely to be the result of pooling data over one week, something we 
did not do. During the last 70 days in our sample, however, the residual standard deviations seem to 
have been substantially higher in both the spline and Vasicek models. 

t0 None of the traders we talked to has provided any reason why these lines would behave 
abnormally. Five primary dealers have created a market in stripped bonds based on OLO09, but this 
occurred only after the (351-day) sample period. Thus. the stripping of OLO09 cannot affect the 
sample results. 

1] Thus, in the trading rule tests reported in Section 3, the economic models will systematically 
generate purchase signals for OLO03, and sale signals for OLO09, that are not followed, on average, 
by price corrections. We assume that the trader does not learn from these systematic errors and 
continues to buy (sell) OLO03 (OLO09) whenever the regressions suggest mispricing. In light of our 
finding that the Vasicek and CIR models still outperform the spline model in terms of trading profits, 
this assumption of "no learning" is conservative. 
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purely random bid-ask bounce (which would generate a MAE of, at most, 
(112.5[ + [ -  12.51)/2 = 12.5 basis points). However, such a conclusion would be 
unwarranted. First, there is a substantial MAE for many deposits, too; and as 
market values for interbank deposits are based on the mean interest rate, bid-ask 
noise is absent from these data. Second, the last columns of each panel of Table 4 
reveal that, for all assets, the first-order autocorrelations in the model residuals are 
significantly positive. Purely random bid-ask bounce cannot be a source of 
autocorrelation in pricing errors (as opposed to returns, or residual returns, where 
bid-ask bounce causes negative autocorrelation). It follows that the major sources 
of apparent mispricing must be either highly autocorrelated errors in the specifica- 
tion or estimation of the model, or highly autocorrelated true mispricing, or both, 
rather than purely random bid-ask bounce. In Section 3 we will have a closer look 
at the model residuals for the OLOs, and verify whether they allow any profitable 
trading strategies or successful forecasts about holding period returns. 

3. The information content in the model residuals 

One conceptual weakness of models that, like the Vasicek or CIR model, 
postulate an interest rate or another non-price process as the driving state variable, 
is that such a model does not take the current term structure as given and is, 
therefore, likely to deem all outstanding bonds to be mispriced. Clearly, at least 
some of this apparent mispricing is likely to be due to model misspecification. On 
the other hand, in the presence of noise trading by uninformed or time-pressed 
investors it is quite likely that bonds are, to some extent, effectively mispriced 
relative to the (unidentified) " t rue"  model. In this section, we verify whether the 
apparent mispricing in the Vasicek and CIR models is entirely due to model 
misspecification and mis-estimation or whether such a model is also able to detect 
some genuine mispricing due to noise trades. If there is genuine mispricing, 
trading on the basis of model residuals should be profitable. In short, in this part of 
the paper we view the CIR and Vasicek estimated term structure models as 
(somewhat complicated) curve-fitting techniques, and we do not worry about 
non-constancy of those parameter estimates that, in the logic of the model, should 
be constant ~2. The focus is on how useful the model residuals are to a bond 
trader, and whether the economic models outperform simple spline models for the 
purpose of identifying rnispriced bonds. 

This part of the paper is structured as follows. Section 3.1 defines the holding 
period returns and the equilibrium expected holding period returns that serve as 
benchmarks in our subsequent regression and trading rule tests. We use three 
alternative benchmark returns. One is the duration ratio model - -  a single index 

12 GrEgoire and Platten (1995) do test for the statistical acceptability of the cross-temporal constraints 
in the Belgian market, and find that all models fail in this respect. 
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model that, like the market model for stocks, compares the realized return on the 
trading portfolio to the return on a diversified portfolio with the same value and 
risk (duration). The second benchmark is the return on a portfolio that matches the 
bond in terms of both duration and convexity. Both these benchmark are rather ad 
hoc, but they have the advantage of being independent of the details of the term 
structure model upon which the trading rule is based. The last benchmark is the 
conditional expected bond return implied by the change in the fitted model prices. 
A first test of the potential usefulness of the term structure residuals is conducted 
in Section 3.2, where we regress each of these measures of abnormal bond returns 
on the previous trading day's percentage mispricing. The second test is a trading 
rule test, described in Sections 3.3 and 3.4. We compute CARs in calendar time 
for three trading strategies: (1) buy underpriced bonds; (2) shortsell overpriced 
bonds; and (iii) combine both. In Section 3.3 the weights within each portfolio are 
proportional to the degree of initial mispricing relative to the model that is being 
used (Vasicek, CIR, or spline), while in Section 3.4 the weights are equal but the 
mispricing has to exceed a give filter size. 

3.1. Bond holding period returns and expected returns 

From each day's estimated Vasicek term structure, we compute the day's 
Vasicek residual for each bond, i.e. the actual bond price minus the model price or 
fitted value. The procedure is repeated for the CIR and spline models. If a given 
bond pricing model is correct and reliably estimated, then a positive residual 
implies that the corresponding bond is overvalued, while a negative model residual 
implies that the bond is undervalued. Subsequent holding period returns can then 
be analyzed to verify or falsify that model's diagnosis. 

In this section we describe the three benchmarks that are used to eliminate the 
"normal"  component in these holding period returns. Event studies or trading rule 
tests in the stock market frequently use benchmarks like the market model or the 
ex post CAPM, a procedure which filters out price changes due to general market 
movements while simultaneously taking into account differences in market sensi- 
tivity (/3). The advantage of doing so is that, when holding period returns are 
corrected for market movements, the standard error of the abnormal return 
becomes smaller and the tests more powerful. Below, we propose three alternative 
benchmark returns that likewise intend to filter out general market movement from 
the raw bond returns defined in Eqs. (27) and (29). 

The first way to eliminate the normal return uses the normative prices, at times 
t - 1 and t, implied by the model that is being considered. Define @t as the set of 
model parameter estimates obtained for day t. From the estimated model for day 
t -  1, we can compute the model's equilibrium price for any bond i, which we 
denote by /~,t_ 1- We can also compute the fitted next-day equilibrium price using 
the time-t estimated parameters, denoted by /;i.t- These two equilibrium prices 
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imply an equilibrium holding period return E,(HPit I@ t_ 1, (1)t) and a corresponding 
abnormal return (AR), as follows: 

*Oi,t -- Pi,t- 1 q'- coupon payment  
E t (HP ' " Iq ) ' - '  'q ) ' )  = _ ~ ,  t - 1  ' (27) 

and 

A R i ,  t = HP~, , -  E,(HP~,tlqD,_ 1 ,qb) .  (28)  

While  this expected return captures movements of the market as a whole 
between days t and t - 1, and implicit ly takes into account the sensitivity of  the 
bond to shifts in the term structure, the procedure has the drawback that it assumes 
the validity of  the very model  whose forecasting performance is being tested. This 
may introduce some degree of  circularity into the tests. We therefore employ two 
additional benchmarks for expected returns. 

The stock market  model  defines the abnormal return on a share as the estimated 

residual ei, t from the regression HPi, , = ol i -Jr-fliHPm,t-I-ei,t, where H P / ,  t is the 
return on the stock between t and t -  1, and HPm, t is the contemporaneous 
realized return on the market portfolio m. For bonds, estimating /3 from a times 
series regression creates conceptual problems, since the /3-coefficient of  a bond is 
changing with its time to maturity. To avoid time series estimation o f / 3  we adopt 
a duration model similar to the one in Reilly and Sidhu (1980) and Elton and 
Gruber (1991), who suggest to use the ratio of duration of  the individual bond over 
duration of  the (equally weighted) market portfolio as an approximation for/3.  The 
one-factor duration model is: 

H P ~ , , -  a i , , _  ~ =/3i,,[H--P t - ~ t - l ] ,  (29)  

where c~i, t -  l = the per annum continuously compounded yield on bond i, times 
At  ( =  1/365);  and [3i, t = Oi,t/Dm,t, the relative duration beta. 

In the presence of noise, we can append an error term to Eq. (29) which, in an 
otherwise efficient market has a zero expectation 13. Given the change in the term 
structure as summarized by H---O, we can compute the abnormal return (AR) as 
follows: 

ARi,  t = H P i , , -  [o¢i,,_ I q- ~i, ,[H-Pt- ~ , - 1 ] .  ( 3 0 )  

The duration model (29) has the advantage that it does not assume the validity 
of the model  that is being tested. This advantage comes at a cost: as is well 
known, the duration model  underlying Eqs. (29) and (30) assumes that the 
consecutive term structures are parallel to each other, and that changes are minute 

t3 If the market portfolio contains a sufficiently large number of assets, such noise will not materially 
affect the market return iqP r In our case the market portfolio contains just the eleven to seventeen 
assets. With such a small bond portfolio, an abnormally high (low) return in one of the OLO's will also 
affect the market return upwards (downwards), which then implies that the excess return as computed 
from Eq. (29) is biased towards zero. Thus, the benchmark is overly conservative. Since we do find 
abnormal returns, the existence of a small-sample bias actually reinforces our conclusions. 



P. Sercu, X. Wu /Journal of Banking & Finance 21 (1997) 685-720 703 

and non-stochastic. It is true that, when the intervals are very short (one day) and 
only medium- to long-term bonds are considered, these assumptions are less likely 
to cause major problems. However, at a small cost we can also use a second-de- 
gree approximation that better accommodates changes over finite intervals and 
linear twists of  the term structure. 

Thus, we compute as our third benchmark the return on a portfolio that matches 
the trading portfolio as far as present value, duration ( - O P i / O R .  P 1), and 
convexity (0.5 • O2Pi/OR2 • p - i )  are concerned. This value-, duration- and convex- 
ity-matched (DCM) portfolio uses three equally-weighted portfolios. Our first 
portfolio contains the one-, two-, and three-month interbank deposits, the second 
portfolio the six- and twelve-month deposits, and the last portfolio all OLOs 
except the OLO that is being matched. 

3.2. Regression test 

The question to be answered in the remainder of  this paper is whether the 
amount of mispricing, as identified from the cross-sectional term structure esti- 
mates, carries any information for the subsequent holding period. The logic is as 
follows. The deviation between the observed price and the model price consists 
potentially of: (1) a purely apparent (spurious) mispricing that is due to model 
misspecification or mis-estimation; and (2) genuine mispricing relative to the 
(unidentified) " t rue"  valuation model. If all of  the observed deviations between 
model prices and actual quotes stem from model mis-specification or -estimation 
[component (1)], then there is no reason why this deviation should be informative 
about subsequent returns. If, on the other hand, a non-trivial part of  the deviation 
corresponds to genuine mispricing, then this mispricing should, on average, 
disappear over time. That is, truly undervalued (overvalued) bonds should provide 
above-normal (below-normal) holding period returns later on. To sort out this 
issue, the holding period returns in excess of  the benchmark returns, as defined in 
Section 2, are analyzed in two ways. In this section we discuss the results from 
regression tests where the initial mispricing is related to subsequent abnormal 
returns. In later sections we test a trading rule. 

To test whether there is a genuine mispricing component in the term structure 
model residuals, we first focus on the very short run: we regress abnormal rates of  
returns of  a bond between days t -  1 and t on the bond's percentage residual 
observed at t -  1. Thus, the first regression is: 

RESij_  i 
A R i . , = a + b - -  + e , ,  (31) 

Pi,t-1 
where ARi. ,, the abnormal return on bond i, defined as the return in excess of 
either the model-implied normal return, the DM portfolio return, or the DCM 
portfolio return; and RESLt_  1 = Pi.t I - - ~ . t - 1  where Pi.,-~ is the actual bond 
price at t - 1 and /3  t-  ~ is the fitted value of  the price at t - 1 computed from the 
time t - 1 Vasicek, CIR, or spline model.The competing hypotheses are: 
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Hi: b = 0 and a = 0: In setting the next day's price, the market ignores the 
estimated mispricing, either because the deemed mispricing is irrelevant or 
because the market does not react within one day; 
H2: b = - 1: All of the estimated mispricing is corrected within one day; 
H3: - 1 < b < 0: Some of the estimated mispricing is only apparent, and/or  the 
market needs more than one day to fully correct the error. 
Bid-ask noise may bias these tests in favor of the information-content hypothe- 

ses, H 2 and H 3. Specifically, assume that midpoint prices fully correspond to the 
predictions of the model that is being tested. As our data are transaction prices 
rather than midpoints, bid-ask noise would nevertheless induce spurious under- or 
overpricing; and this measured initial mispricing would, on average, disappear the 
next day because the next price is equally likely to be a bid price or an ask. This 
apparent error correction in the prices would then result in a spuriously negative 
estimate of b. To avoid this bid-ask induced bias in the slope coefficient of Eq. 
(31), we therefore add a new regression test, which differs from Eq. (31) in that 
that the regressor is taken from the last trading but one: 

R E  Si, t -  2 
ARi~ t = a  + b -  + e' t. (32) 

Pi.t 2 

The disadvantage of introducing the lag is that, if at time t - 2 there is genuine 
mispricing (rather than just bid-ask noise), this genuine mispricing may be partly 
or entirely gone by time t -  1, when the holding period starts. Thus, for the 
purpose of detecting genuine mispricing, the regression coefficients in Eq. (32) are 
biased against H 2 and H 3 rather than in favor of H 2 and H 3 (as is the case with 
Eq. (31)). 

The empirical results for Eq. (31) (" lag = 0" )  and Eq. (32) (" lag = 1") are 
presented in Table 5; in Panel A, the Vasicek percentage residual is used as the 
regressor, while in Panels B and C the regressor is the percentage residual from 
the CIR and five-parameter spline model, respectively. Each of these panels has 
three subparts depending on the benchmark used in computing the abnormal part 

Notes to Table 5: 

" AR, = a + b(RES,_ l _ , , g ) / (  Pz , ,a~) + et (Lag = 0 or 1; t-ratios in parentheses) 

OLO data are from March 27, 1991 (or from the first trade) through December 30, 1992 (September 
16, 1992, for the CIR model). The regressand is the percentage deviation between the observed price 
and the fitted price obtained from either the Vasicek (Panel A). CIR (Panel B), or five-parameter spline 
model (Panel C). The regressor is the deviation between the observed return on a benchmark portfolio 
which is either duration-matched (DM-Panels A 1, B 1, C 1) or duration-and-convexity-matched (DCM- 
Panels A2, B2, C2), or the deviation between the observed return and the return on the fitted prices 
implied by the time structure model (Panels A3, B3, C3). The regressor is either the one observed at 
the beginning of the one-day holding period ("lag = 0"),  or one trading day before (" lag = 1"); the 
former probably is likely to bias the slope coefficients towards more negative values, while the latter 
biases against detection of genuine pricing errors. In all regressions, t-statistics use standard errors 
which adjust for heteroscedasticity. One asterisk denotes significance at the 0.10 level and two asterisks 
denote significance at the 0.05 level for a two-tailed test. Adjusted R e 's  (not reported) are 7% or less. 
Results for OLO12 (6 observations) are omitted. 
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of the retum - -  the duration-matched (DM) portfolio, the duration-and- 
convexity-matched (DCM) portfolio, or the own-model implied return. All but 
three b-estimates at lag zero are negative, and the three exceptions are insignifi- 
cant. For lag zero, most of these are also significantly below zero. As expected, 
the number of significantly negative coefficients drops after introducing a one-day 
lag, but about half of the t-statistics remain below - 2  14. All this clearly rejects 
Hi: b = 0. Also the hypothesis He: b = - 1  is rejected resoundingly (t-statistics 
not shown). This leaves us with H3: there is some information content in the 
estimated pricing errors, but either part of the so-called error is spurious or the 
market reacts slowly to such errors. 

3.3. Trading rule tests 

To obtain an impression of the economic relevance of the predictability of 
returns on the basis of deviations between observed and model prices, we test a 
contrarian trading rule: we buy (sell) assets that are deemed to be undervalued 
(overvalued) is, and the positions we take become larger the more important the 
degree of mispricing. The trading rule is tested in calendar time rather than in 
event time, to detect possible subperiods where the rule worked better than 
average and to avoid problems with event-time tests when there are long runs of 
under- or overpricing. (See Bjerring et al. (1983) for a discussion of calendar-time 
versus event-time tests.) 

3.3.1. Design of the test 
We only consider OLOs. On any day, we form a portfolio of underpriced bonds 

(subscript p, short for purchase), a portfolio of overpriced bonds (subscript s, 
short for sale), weighted by the size of the mispricing (RESi:_ l-L, where L is the 
implementation delay). For example, if the number of underpriced bonds on day t 
is Npt, then the mean abnormal return for day t on the purchase portfolio is: 

IV°" R E S i ,  t _ I _ L  
ARp.t = E Np., ARe,t' (33) 

i=1 ERESi ,  t I-L 
i=1 

14 The results obtained when the own-model implied return is taken as the benchmark are related to 
the autocorrelation tests in Table 4. This is because, with the own-model benchmark, the regressand is 
approximately equal to the change in the regressor. That is, the regression is, approximately, 
[RES t - RES t_ l]/Pt_ j = a + bRES t i / P t -  l + et, so that b is, approximately, unity minus the 
autocorrelation coefficient of the cross-sectional model residual. Thus, these regression tests confirm 
the mean reversion (or gradual correction) that was already indicated by the autocorrelations in Table 4. 

15 Thus, trading is based purely on the residuals. We have also implemented a test that incorporates 
the information in the intercepts of regressions (31) and (32). These intercepts estimate expected 
abnormal returns assuming perfect pricing the next day. The conclusions of this test are similar to the 
conclusions reported here. 
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where ARc,t, x = {p,s},is the abnormal return on the purchase (sale) portfolio; 
Nx, t, x = {p , s } ,  is the number of  bonds in the purchase (sale) portfolio on day t; 
RESi ,  t - 1 - L  =Pi ,  t - l - c - P i ,  t - l - L ,  the residual for bond i in the day t -  1 - L  
cross-sectional term structure model; and ARi, t = the abnormal return realized 
between t -  1 and t, defined relative to the DM portfolio, the DCM portfolio, or 
the own-model implied return. 

The parameter L is varied from 0 to 5 - -  that is, the delay in trading is varied 
from zero to five trading days. For L > 1, there is a delay of  at least one day 
between the decision to trade and the actual implementation, which should 
eliminate the bid-ask bounce bias that arises for L = 0. Similarly, the abnormal 
return from shortselling the portfolio of  overpriced bonds is: 

Us., R E S i , ; _ l _ c  
AR,., = - E U,., ARi.," (34) 

i=1 E R E S i ,  t _ I _  L 
i=1 

Before implementing the rule, we first verified the validity of  the three 
benchmarks. The duration benchmark is designed so as to yield a zero cross-sec- 
tional average abnormal return across all assets - -  OLOs as well as bank deposits. 
In this respect, when applied for the duration benchmark, Eq. (34) is similar to the 
(equally weighted) market model, where by construction the cross-sectional sum 
of all residuals E.i, t from HPi, , : ot i + [3iHPm, t + £:i,t is zero every period. How- 
ever, there is no reason why stock market residuals, when averaged over a 
non-random subset of assets - -  say, low-/3 stocks - - ,  should be zero. In fact, the 

Table 6 
Abnormal returns on a buy-and-hold portfolio ~ 

Benchmarks 351 Trading days 421 Trading days 

CAR (%) t CAR (%) t 

(I) Duration-matched portfolio return 0.50 2.76 * " 0.46 1.97 * 
(II) DCM portfolio return - 0.45 - 2.27 * 0.17 0.26 

(III) Vasicek model 's  expected return - 0.08 - 0.21 - 0.16 - 0.37 
(IV) CIR model 's  expected return - 0 . 1 4  - 0.35 

(V) Cubic Spline model 's  expected return 0.07 0.39 0.14 0.71 

a CARs of the buy-and-hold portfolio of all OLOs are reported for the first period: March 27, 
1991-September 16, 1992 (351 trading days) and the whole period: March 27, 1991-December 30, 
1992 (421 trading days). Abnormal retums of individual bonds are measured using five alternative 
benchmarks: (I) the return on a portfolio of OLOs and deposits with the same value and duration; (II) 
the return on a portfolio of OLOs and deposits with the same value, duration, and convexity; and the 
retum implied by the fitted prices from (III) the Vasicek model, (IV) the CIR model, and (V) the 
five-parameter Cubic Spline model. The table shows the CARs for an equally weighted portfolio of all 
OLOs, that is, without the deposits. For the t-ratios, standard errors use the Newey-West  correction 
with 4 lags. One asterisk denotes significance at 0.05 level and two asterisks at 0.01 level for a 
one-tailed test. 
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size effect familiar from CAPM tests suggests that an average return computed 
over a subset of low-fl stocks would systematically deviate from zero. Likewise, 
the cross-sectional average abnormal return computed over OLOs only - -  the 
high-duration assets - -  may deviate systematically from zero. Analogously, for 
the own-model return benchmark the average pricing error, across deposits and 
OLOs, is zero at each date, but this does not guarantee that the average return 
across all bonds is zero. To check for a possible non-zero average "abnormal"  
return in the benchmark, we computed abnormal returns averaged over all OLOs 
for each day t, and cumulated them over all days. The results are shown in Table 
6, and depicted in Fig. 2. For the three own-model implied return benchmarks, the 
cumulative abnormal return on the buy-and-hold-all-OLOs portfolio is consistently 
small, both statistically and algebraically. For the duration benchmark, however, 
the cumulative abnormal return on a portfolio of all OLOs gradually increases to 
reach a grand total of  0.50% over 351 days - -  not enormous in the economic 
sense, but nevertheless significant from a statistical point of view. For the DCM 
benchmark, finally, the cumulative abnormal return on the buy-and-hold portfolio 
of  all OLOs after 351 days is significantly negative (at -0 .45%) .  To remove 
possible bias, we work with a corrected average abnormal return, AAR, defined as 
follows 16. 

N~'t RESi, t-1 L ( 
AARx,t = ~ N~,, Hi, t-  1 - t 

i=1 ~ R E S i , t _  l L 
i = 1  

o, ARk, t ] 

A R i ' t -  Zk=, Ot 1' x = p , s .  

(35) 
where 0 t = the number of  outstanding OLOs at time t; and Hi. t ~-L = + 1 ( -  1) 
of bond i is underpriced (overpriced) on day t - 1 - L. That is, from the abnormal 
returns on individual bonds we subtract the corresponding abnormal return from 
holding an equally weighted portfolio containing all OLOs. This ensures that the 
modified abnormal returns, when averaged across all OLOs, are now exactly equal 
to zero on any given day t. Lastly, the average return from the combined trading 
portfolio (subscript c) is 

AARpa + AAR~.t 
AARc't = 2 (36) 

If a trading strategy can outperform the naive buy-and-hold portfolio, AAR t 
should be positive, on average. To test this, we compute the cumulative average 
abnormal return, starting from day 1 until day ~-: 

T 

CARx. , = Y'~ AA-Rx. ,, x = p,  s, c. (37) 
t = l  

16 A N  t is set equal to zero if the day-t trading portfolio contains no assets. 
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where ~- is the calendar time, measured in trading days. The t-test is based on the 
Newey-West standard deviation of AAR corrected for 4th degree autocorrelation. 

3.3.2. Validity issues 
Conrad and Kaul (1993) discuss three potential pitfalls in tests of contrarian 

trading rules: compounding of upward bias in asset returns over long holding 
periods, transaction costs, and bias stemming from bid-ask bounce in the data. In 
this section, we describe how these three issues are dealt with in our tests. 

(1) Upward drift, As we have seen, the returns we use are corrected for the 
return on a benchmark portfolio - -  the model's implied normal return, the 
duration-matched (DM) return, or the Duration and Convexity Matched (DCM) 
return. Each such benchmark controls for market-wide movements while taking 
into account also the bond's own characteristics. In addition, we eliminate the 
remaining average bias that shows up in the subsample of OLOs. This procedure 
should eliminate most of the potential bias stemming from the compounding of 
upward drift in asset returns over long holding periods: on any given day, the 
average cross-sectional abnormal return is exactly equal to zero. 

(2) Transaction costs. In this paper we only present gross returns from trading, 
that is, abnormal returns before transaction costs, for the following reasons. First, 
although transaction costs are relevant for arbitrage-motivated trades, the level of 
these costs very much depends on the size of the trade and the capacity of the 
trader. Accordingly, we follow Fama (1991)'s suggestion and let the arbitrageur 
decide whether or not the gross returns from arbitrage are larger than the 
transaction costs. Second, transaction costs are irrelevant if the trade is inspired by 
exogenous in- or outflows of cash into a bond portfolio; thus, the gross returns will 
tell us whether it is worthwhile to select bonds on the basis of fitted bond prices 
(rather than just picking an issue at random) before such a liquidity-inspired trade 
is made. 

(2) Bid-ask bounce. If a last-trade price is a bid (ask) price, the bond is more 
likely to be classified as being underpriced (overpriced). But the trader has to buy 
an "underpriced" bond at the ask rather than the bid, and the seller likewise 
trades at the bid rather than the ask. Thus, if it is assumed that the contrarian trader 
can immediately deal at the last observed price, the computed return will tend to 
overstate the true return before transaction costs. To deal with this, we introduce 
lags of one to five days between the decision to trade and the actual implementa- 
tion of the trade. For example, in the case of a one-day lag, the trader buys at the 
close of the trading day following the identification of an underpriced bond. The 
introduction of such a lag will, on average, eliminate the bias stemming from 
bid-ask bounce under the assumption that the probability that today's last trade is a 
purchase is independent of whether the previous day's last trade was a purchase or 
not. There is no a priori reason to doubt this assumption; and direct tests in the US 
stock market have not rejected this hypothesis (Lehmann, 1990; Ball et al., 1995). 

The introduction of lags between the decision to trade and the actual implemen- 
tation of the transaction is conservative for three reasons. First, although bid-ask 
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Fig. 3. CARs from contrarian strategies when trading takes place with a one-day lag. 

bounce should no longer bias the estimated mean excess return once a delay is 
introduced, the bounce still boosts the variance of the returns and, therefore, 
makes it harder to obtain statistically significant results. Second, the longer the 
delay, the more likely it becomes that the initial mispricing will have partly or 
wholly disappeared. Thus, our computed results are likely to be inferior to the 
ones that can be obtained in practice because, in reality, the trader is able to buy or 
sell at the next opening rather than at the close of the nth next trading day. A last 
point, related to the second one, is that in our tests the trader is assumed to act 
upon the initial under- or overpricing signal without considering the current price 
of the bond that was mispriced n days ago. Thus, with a lag between decision and 
implementation, our tests will include some trades that would have been deemed 
unprofitable by a real-world trader because the initial mispricing has already 
disappeared or has even been reversed. 

3.3.3. Results 
The results for the Vasicek, CIR, and spline models are reported in Table 7 and 

shown in Fig. 3. The key findings are as follows: 

Notes to Table 7: 
a In the period March 27, 1991-September 16, 1992 (351 trading days) we trade, in calender time, on 
the basis of residuals from the daily cross-sectional estimations of four models: Vasicek, CIR, and a 
cubic spline with five or four parameters. If, in a cross-sectional regression on day t - 1, the residual is 
negative (positive) the bond is bought (sold), and at each date the portfolio weights are set 
proportionally to the size of the mispricing (contrarian weighting scheme). The trade is implemented 
with a lag that is varied from 0 to 5 trading days. The normal return is either the return on the portfolio 
matched in terms of value and duration (DM) or duration and convexity (DCM), or the return implied 
by the model's fitted prices. In addition, the return is corrected for the average bias, across all OLOs, 
that remains after subtracting each normal retum (as described in Table 6). Figures in parentheses are 
t-ratios, in which standard errors use the Newey-West  correction with 4 lags. One (two) asterisk(s) 
denotes significance at the one-tailed 0.05 (0.01) level. Bold numbers indicate the highest return, across 
models (that is, for a given strategy (buys, sell, or both, as indicated in the column heading) and 
benchmark (DM, DCM, model-implied return)) 
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• First, across all four models (Vasicek, CIR, five-parameter spline, and four- 
parameter  spline) and benchmarks (DM, DCM, and own-model  implied return), 
the cumulative abnormal returns in excess of  buy-and-hold are positive and 
significant when there is no delay in trading. The abnormal returns that would 
be obtained if  trading were immediate (at the price that provides the signal) 
range from 3% to almost 6% over a period of about 351 trading days for the 
DM and own-model  benchmarks, and occasionally up to 10% if convexity is 
taken into account in the matching portfolios 17 

• Second, about half of  this profit disappears if the trade is delayed one working 
day. It is impossible for us to say to what extent this drop in profits is due to 
the elimination of  the bid-ask bounce bias rather than genuine corrections in the 
mid-point  prices. However,  the results for lag = 1 (that is, when trading takes 
place with a one-day delay) remain significantly positive everywhere. As, in 
practice, a trader can deal within a shorter delay and with more recent 
information, we conclude that before-cost profits from bond-picking on the 
basis of  term structure residuals was surely profitable. 

• Third, the adjustment in market prices takes time: trading profits remain 
positive and significant even if the trade is delayed by four or five days after 
the signal (see lines " l ag  2 - 5 "  in Table 7). Note also that the trading profits 
become smaller the longer the delay - -  that is, market prices and model prices 
do converge over time. This suggests that all models are to some extent able to 
detect genuine mispricing. 

• Fourth, the abnormal returns that use the own-model implied return as a 
benchmark are not systematically higher than the abnormal returns computed 
from the two duration-based models. This suggests that the abnormal returns 
are not likely to be the result of  a circular application of the model. 

• Fifth, for any given trading delay and benchmark, the results from trading on 
the basis of  the five-parameter spline model residuals are inferior to the results 
based on the economic-oriented models: the Vasicek model outperforms its 
competitors more often than any other model, CIR comes in second, and the 
five-parameter spline is a distant last. Combined with our earlier finding of a 
better fit in the cross-sectional estimation, this suggests that the traditional 
spline model, with its five free parameters and its flexible form, is actually 
over-fitting the data. is 

17 We have no clear explanation why the results for the DCM benchmark seem uniformly better. One 
element may be that, unlike the other benchmarks, the DCM-matched portfolio contains short-term 
deposits. Also, with three portfolios needed to match a given bond, the matching portfolios contain few 
assets and are, therefore, more noisy. Lastly, the DCM-matching portfolio does not contain the bond 
that is being matched; in contrast, duration matching uses the equally weighted market portfolio of all 
assets (including the mispriced bond), and the own-model benchmark likewise uses all bond prices. 

18 Recall that the two economic models consistently misprice OLOs 03 and 09, and that we assume 
that the trader never learns from past mistakes. Thus, the results from Vasicek and CIR probably 
understate the results a real-life trader would have made. This reinforces the conclusion that these 
models do best. 
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Sixth, a substantial part of the overfitting by the five-parameter spline can be 
avoided by eliminating one free parameter: when the number of knot points is 
cut down from two to one, the resulting four-parameter spline does a consis- 
tently better job than the five-parameter spline, and occasionally even beats the 
Vasicek and especially the CIR model. 
Lastly, we note that for virtually all models, benchmarks, and lags, the 
abnormal returns from selling overpriced bonds tend to be higher than the 
abnormal returns from buying underpriced issues. This suggests that, at least 
during the test period, short-selling restrictions may have been important in 
practice. This is not a foregone conclusion: overpricing should quickly disap- 
pear if arbitrageurs have sufficient long positions in the bonds that are 
overpriced, or if there is a sufficiently large flow of liquidity-motivated sales. 
An alternative explanation of the persistence of overpricing could be taxes on 
capital gains; but for Belgian corporations such taxes are waived if the 
transaction is an "arbitrage" transaction, that is, if the realized capital gains are 
reinvested within a short period. 

3.4. Fil ter rule tests 

The contrarian weighting scheme assumes that it is optimal to buy (or shortsell) 
more of a bond the larger the estimated initial mispricing. In this section we verify 
this assumption empirically, by having the trade decision depend on the size of the 
initial mispricing. The results will also shed some light on our conjecture that the 
spline model's better cross-sectional fit is, actually, the result of overfitting. 

The test works as follows. We start on day 25 ~9. If, on a given day, an OLO is 
deemed to be sufficiently overvalued in the sense that its time t -  1 estimated 
pricing error is positive and larger than a certain number of basis points (the filter), 
we short-sell the overvalued bonds. Similarly, if the residual for an OLO is 
negative and below (minus) the filter size, we say that the bond is sufficiently 
undervalued, and we buy and add it to the portfolio. For every given filter size, we 
again report the results for the purchase-rule and shortselling-rule separately as 
well as pooled. In the pooled results, the filter is symmetric; that is, the percentage 
overpricing that triggers the sale is the same as the percentage underpricing that 
triggers a purchase. The amounts invested in each mispriced bond are assumed to 
be equal, with day-to-day portfolio rebalancing, such that the abnormal return 
from the portfolio is given by the equally-weighted average abnormal return 
adjusted for bias on day t, AA--R t, over the N t bonds in the portfolio: 

Nt A A R i  tH i  t i 
A A R  t = ~ ' ' -  (38) 

i=1 Art 

J9 We lose 24 days at the beginning of the period to compute standard deviations for the average 
abnormal returns. 
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where 

AR t = the average abnormal return on day t; 

N, 

Nt = ~_, I Hi. t -  11 is the number of bonds in the portfolio on day t; 
i = l  

ARi, t = the abnormal return realized between t - 1 and t, 

defined as in either Eq. 28 or Eq. 32; 

ni,t-I 

i 1 if the bond is underpriced and if the trading rule allows buying; 

= 1 if the bond is overpriced and if the trading rule allows shortselling; 

otherwise 

As before, the abnormal returns for all benchmarks were corrected for the 
corresponding abnormal return on the buy-and-hold portfolio of all OLOs. Abnor- 
mal returns are then cumulated over time, and t-tests are computed as in Bjerring 
et al. (1983) 20 

To avoid repetition, Table 8 reports only the results for the best- and worst-per- 
forming models (Vasicek and the five-parameter spline), using as benchmarks the 
DM and own-model implied return. These results can be summarized as follows. 
First, the underporfermance of trading on the basis of spline model residuals, 
relative to trading on the basis of the Vasicek model, seems to hold for any given 
filter size. Thus, the spline model again appears too flexible and, therefore, less 
able to distinguish mispricing or bid-ask noise from true equilibrium values. A 
second conclusion from Table 8 is that, when increasing the size of the filter, 

20 If at least one bond is included in the day-t trading portfolio, we trace back the history of the 
portfolio's average abnormal return (adjusted for bias, as in Eq. (35)) over days t -  24, t -  23, . . . ,  
t - 5 ,  and calculate the Newey-West  4th-order autocorrelation adjusted standard deviation, o- t. AAR t 
is then standardized into a Student's variable Z t = AAR t / o -  t with, under the null hypothesis that the 
trading rule yields no systematically positive returns, mean zero and standard deviation 

~ / 2 0 / ( 2 0 - 2 )  = 1.0541. Still under the same null, the statistic I / T x ~ - 2 6  SUMtr= 25Zt/1.0541) 
converges to a unit normal if T is sufficiently large. In this test, T < 420 because in some days the 
trading portfolio is empty. 

Notes to Table 8: 
a If, in a cross-sectional regression on day t - 1, the residual exceeds the size of the pre-set filter 
(varied between 0 and 30 basis points), the bond is added to an equally weighted portfolio. The return 
is corrected by either (1) the return on the duration-matched portfolio of OLOs and deposits or (2) the 
return implied by the model 's  fitted prices. In addition, the return is corrected for the average bias, 
across all OLOs, that remains after subtracting each normal return (as in Table 6). CARs are then 
cumulated in calendar time. t-statistics are as in Bjerring et al. (1983). * ( * * ) denotes significance at 
0.05 (0.01) level, one-tailed. The best result across filters, per column and benchmark, is printed in 

bold. 
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Table  8 

Prof i ts  o f  f i l ter  rules a 

Fltr.  Buy  strategies  Sel l  s t rategies  C o m b i n e d  strategies  

(bp) obs. C A R  t obs. C A R  t obs. C A R  t 

(A.I ) Vasicek residuals - -  Benchmark: return on DM portfolio: 

0 396 3.23 

5 396 3.61 

10 396 4.03 

15 396 4.70 

20 379 2.96 

25 271 2.35 

30 183 1.22 

3.04 * * 396 3,22 2.89 * * 396 2.90 

3.36 * * 396 4.64 2.98 * * 396 3.76 

2.89 * * 396 5.70 3.09 " * 396 4.91 

2.47 * * 393 5.91 4.96 * * 396 6.02 

2.47 * * 323 3.88 2.90 * 382 4.43 

2.28 * 205 2.10 1.42 313 3.04 

0.55 108 1.38 - 0 .70 226 1,92 

3.01 * * 

3.19 * * 

3.15 * * 

3.13 * * 

3.58 * * 

2.70 * * 

0.23 

(A.2) Vasicek residuals - -  Benchmark: return f romf i t t ed  prices: 

0 396 4.12 

5 396 4.63 

10 396 5.60 

15 396 6.26 

20 379 3.96 

25 271 2.48 

30 183 1.36 

3.86 * * 396 3.65 

4.07 * * 396 4.92 

4.67 * * 396 5.73 

3.19 * * 393 6.48 

5.06 * * 323 4.84 

2.78 * * 205 2.38 

1.07 108 1.60 

3.16 " * 396 3.54 

3.05 * * 396 4.51 

2.75 * * 396 5.99 

4.97 * * 396 7.30 

7.70 * ' 382 6.17 

5.81 * * 313 3.51 

2.17 * 226 2.27 

3.29 * * 

4.00 * * 

3.30 * * 

4.28 " * 

6.65 " " 

3.26 * * 

1.32 

(B.1) Spline residuals - -  Benchmark: return on DM p o r ~ l i o :  

0 396 2.36 2.35 * * 396 2.50 

5 396 3.38 2.44 * * 396 3.34 

10 396 3.10 - 6,99 ~ * 396 4.98 

15 312 1.34 1,97 * 334 3.21 

20 121 1.14 0.50 191 1.58 

25 42 0.63 2,07 * 36 0.91 

30 26 - 0 .09 0,22 23 0.45 

2.75 * * 396 2.29 2.73 * * 

1.85 ' 396 3.13 2.82 * ~ 

2.76 * * 396 4.43 2.33 * * 

3.14 * * 352 3.16 1.30 

1.18 221 1.65 - 0 . 3 7  

1.85 * 45 0.99 1.35 

0.00 26 0.05 0.29 

(B.2) Spline residuals - -  Benchmark: return f rom f i t ted prices: 

0 396 3.34 4.48 * * 396 3.26 

5 396 4.71 5.30 * " 396 4.95 

10 396 3,92 4,02 * * 396 5.36 

15 312 1.80 3.20 " * 312 3.03 

20 121 1.40 1.18 121 1.62 

25 42 0.88 3.21 * " 36 0.74 

30 26 0.05 0.21 23 0.28 

3.45 * * 396 3.10 

2.66 * * 396 4 .54  

3.06 * * 396 5.12 

2.39 * * 352 3.21 

1.43 221 2.12 

0.87 45 1.15 

0.00 26 0.05 

3.29 * * 

3.08 * 

2.96 * 

1.96 * 

1.98 * 

1.60 

0.26 



P. Sercu, X. Wu /Journal of Banking & Finance 21 (1997) 685- 720 719 

profits tend to go up first but then tend to go down. Thus, the contrarian weighting 
scheme - -  which places greater emphasis on bonds that are deemed to be highly 
mispriced - -  is not optimal. The finding that very large residuals lead to lower 
average profits suggests that, for all models, large residuals are more likely to be 
the result of model mis-speciflcation or -estimation rather than mispricing. Third, 
we find that the optimal filters tend to be smaller for the spline model than for the 
Vasicek model. Conversely, large residuals from the spline model (which, one 
may recall, are also relatively rare) are even more suspect, on average, than large 
residuals from the Vasicek models. 

4. Conclusions 

We estimate daily Vasicek/CIR bond models on BEF government bonds and 
interbank deposits, 1991/1992. The Vasicek model produces slightly larger 
MSE's than the CIR model, but the results are otherwise very similar. The five- 
and four-parameter cubic spline models, on the other hand, easily beat the two 
economic models in terms of average fit. Regression tests reveal that part of the 
deviation between observed price and model price are reversed the next day, and 
also the second day after the observation of the initial mispricing. This suggests 
that the estimated residuals do reflect genuine pricing errors, not just model 
mis-specification or mis-estimation and bid-ask bounce bias. After correction for 
market-wide changes, a strategy of buying underpriced bonds or (especially) 
selling overpriced bonds turns out to be profitable, yielding a significant 3 -9% 
more, over eighteen months, than a buy-and-hold bond portfolio. The best results 
are obtained if trading is based on the Vasicek and CIR models. The traditional 
five-parameter spline model, being more flexible, seems to overfit the data and is, 
therefore, less able to detect mispricing; but the spline's performance can be 
improved by cutting the number of knot points down to one. Lastly, large model 
residuals are more likely to be the result of model misspecification or -estimation 
than are small or medium-sized residuals. Thus, it is better not to adopt a 
contrarian strategy of increasing one's stake in a bond the greater its degree of 
mispricing. 

Acknowledgements 

We are grateful to Ray Ball, Stan Beckers, Nai-Fu Chen, Jin-Chuan Duan, 
Leora Klapper, Michelle Lee, Peter Schotman, Raman Uppal, Cynthia Van Hulle, 
and Lambert Vanthienen, and other participants in workshops at K.U. Leuven, the 
1994 EAA Doctoral Tutorial, the 1995 EFA Conference, and the City University 
of Hong Kong, and especially to two anonymous referees, whose comments 
helped us to improve both the contents and the presentation. All remaining errors 
are our sole responsability. 



720 P. Sercu, X. Wu / Journal of Banking & Finance 21 (1997) 685-720 

References 

Ball, R., S.P. Kothari and C.E. Wasley, 1995, Can we implement research on stock trading rules?, 
Journal of Portfolio Management 21, 54-63 

Bjerring, J.H., J. Lakonishok and T. Vermaelen, 1983, Stock prices and financial analysts' recommen- 
dations, Journal of Finance 38, 187-204. 

Black and Scholes, 1973, The pricing of options and corporate liabilities, Journal of Political Economy 
81,637-659. 

Brown, R.H. and S.M. Schaefer, 1994, The term structure of real interest rates and the Cox, Ingersoll, 
and Ross model, Journal of Financial Economics 35, 3-42. 

Brown, S. and P. Dybvig, 1986, The empirical implications of the Cox, Ingersoll, Ross theory of the 
term structure of interest rates, Journal of Finance 41,617-630. 

Conrad, J. and G. Kaul, 1993, Long-term market overreaction or biases in computed returns?, Journal 
of Finance 48, 39-63. 

Cox, J.C., J. Ingersoll and S. Ross, 1985b, A theory of the term structure of interest rates, 
Econometrica, 53, 385-407. 

De Munnik, J. and P. Schotman, 1994, Cross sectional versus time series estimation of term structure 
models: Empirical results for the Dutch bond market. Journal of Banking and Finance 18, 
997 - 1025. 

Elton, E.J. and M.J. Gruber, 1991, Modern Portfolio Theory and Investment Analysis, 4th ed. (Wiley, 
New York). 

Fama, E.F., 1990, Term-structure forecasts of interest rates, inflation, and real returns, Journal of 
Monetary Economics 25, 59-76. 

Fama, E.F,  1991, Efficient markets: II, Journal of Finance 46, 1575-1617. 
Grrgoire, Ph. and I. Platten, 1995, An empirical study of general equilibrium models on the Belgian 

bond market, Working Paper (Facultrs Universitaires Notre-Dame de la Paix, Namur). 
Lehmann, B.N., 1990, Fads, martingales, and market efficiency. Quarterly Journal of Economics, 

1-28. 
Longstaff, F., 1992, Multiple equilibria and term structure models, Journal of Financial Economics, 32, 

333-344. 
Longstaff, F. and E. Schwartz, 1992, Interest-rate volatility and the term structure: A two-factor 

general-equilibrium model, Journal of Finance 47, 1259-1282. 
Merton, R.C., 1973, Theory of rational option pricing, Bell Journal of Economics and Management 

Science 4, 141-183. 
Pearson, N.D. and T.S. Sun, 1994, Exploiting the conditional density in estimating the term structure: 

An application to the Cox, Ingersoll, Ross model, Journal of Finance 49, 1279-1304. 
Platten, I., 1994, Non-linear general equilibrium models of the term structure: Comments and 

two-factor generalization, Finance 15, 63-78. 
Reilly, F.K. and R.S. Sidhu, 1980, The many uses of bond duration, Financial Analysts Journal 46, 

59-72. 
Shea, G., 1985, Interest term structure estimation with exponential splines: A note, Journal of Finance 

40, 319-325. 
Vasicek, O., 1977, An equilibrium characterization of the term structure, Journal of Financial 

Economics 5, 177-188. 
Vasicek, O. and W. Fong, 1982, Term structure modeling using exponential splines, Journal of Finance 

37, 339-348. 


