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A New Stochastic Duration Based

on the Vasicek and CIR Term
Structure Theories

XUEPING Wu*

1. INTRODUCTION

Macaulay’s duration, being the most easily understandable
measure of exposure to interest rate risk, is widely used by
practitioners for the purpose of bond immunization.' In its
original form, the model unrealistically assumes a flat yield curve
and purely parallel shifts in the yield curve; but modifications
made in Bierwag and Kaufman (1977), Bierwag (1977) and
Khang (1979), now allow for non-lat term structures as well as
linear and decreasing-in-term shifts. However, as pointed out by
Ingersoll, Skelton and Weil (hereafter, ISW) (1978) and Cox,
Ingersoll and Ross (hereafter, CIR) (1979), a more fundamental
problem with the model is that even in its generalized form it
cannot be an equilibrium model, because it violates the no-
arbitrage condition. For these reasons, they suggest a
theoretically sounder measure of yield curve risk that is based
on the CIR one-ffactor term structure model. Boyle (1977)
discusses a similar duration measure that is based on the Vasicek
model. However, ISW (1978) and CIR (1979) did not empirically
test the so-called stochastic duration (hereafter, ISW/CIR’s
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duration), although they show numerically that the empirically
observed mean-reverting property of short-term interest rate
dynamics is consistent with dampened fluctuations of long yields,
which are captured by their stochastic duration but missed badly
by the traditional duration measure.

Unfortunately, using coupon bond data, empirical tests of
stochastic duration measures based on these (or even more
sophisticated) theoretical models have not demonstrated any
actual superiority to the simple Macaulay duration.” One
apparent reason is that both the Vasicek and CIR models imply
near-constant zero-coupon yields at the longest maturities; thus,
they fail to capture the movement in the long end of yield curves
so badly that even the ad hoc Macaulay duration still turns out to
be superior. The practical advantages of Macaulay’s duration
seem to stem from two aspects: (a) internal rates of return reflect
averages of zero-coupon rates, which means that they can capture
a lot of yield-curve information; and (b) internal rates of return
are bond- and hence maturity-specific, so that they capture the
average zero-coupon rates that are relevant for that particular
bond. In contrast, one-factor models focus on one specific yield
only, the instantaneous rate, which would be justified only if, as
predicted by the theoretical term structure models, all zero-
coupon yields were intimately linked to this short-term rate — and
this is manifestly not the case.

Given the poor immunization performance caused by the
misspecification of the one-factor equilibrium term structure
models, this paper proposes an alternative stochastic duration
measure within the one-factor framework. The proposed
stochastic duration uses the change in a longer zero-coupon
yield rather than the instantaneous rate as a proxy for the
relevant risk source of the unexpected changes in interest rates.
Empirically, a longer yield carries more useful information on
the movement of the term structure than the instantaneous
interest rate and, thus, compensates for much of the information
loss due to specification errors in the theoretical models. More
precisely, the risk-factor proxy we use in the price sensitivity (or
duration measure) of a coupon bond with time to maturity 7 is
specified as the change in a wr-period zero-coupon yield, where
w is a number below unity and, in fact, close to zero. Of course,
these risk factors differ across bonds with different maturities;
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thus, in the logic of the one-factor models these wr-yields
(factors) should all have different standard deviations. To make
the modified duration work effectively, however, one has to
assume that the differences of these factors are trivial. Although
such an assumption is not literally compatible with the
underlying bond pricing model, it is not a priori a very
unreasonable assumption if all these wr-yields (factors) still fall
in the short end of the maturity spectrum and are, therefore, very
similar across bonds. Nevertheless, the optimal choice of w is
largely empirically determined.

The advantages of the proposed approach are two-fold. First,
like the bond’s theoretical sensitivity to the instantaneous rate
and in contrast to the standard Macaulay duration, the proposed
interest-exposure measure preserves much of the theoretical and
empirical tractability that one-factor term structure models enjoy
and can be directly obtained from the models that a financial
firm may already be using for the pricing of bonds. Second, the
performance of the proposed measure of interest risk is quite
comparable to Macaulay’s duration and definitely superior to the
performance of a bond’s theoretical sensitivity to the
instantaneous rate. This claim is substantiated by the results of
a bond-immunization performance test using data on Belgian
defaultfree, non-callable bonds. The test shows unequivocally
that the new durations from both the Vasicek and CIR versions
are superior to the original ISW/CIR duration and, for values of
w between 2.5% and 5%, often outperform Macaulay’s duration.
The success of the modified stochastic duration becomes possible
because, as proven in Appendix A, the new stochastic duration
magnifies the original ISW/CIR duration, and does so more for
long bonds than for short bonds.

Thus, one contribution of this paper to the literature is that it
provides a stochastic duration measure preserving considerable
theoretical and empirical tractability, which outperforms
Macaulay’s duration in reasonable cases and beats definitely the
theoretical measures of term structure risk. Most importantly, the
proposed approach sheds light on how practitioners can apply
term structure models which are bound to suffer specification
errors. A second contribution is that the paper adds one more
dimension in testing the Vasicek and CIR onedfactor term
structure models. While much work has been done in estimating
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the competing models’ parameters, little empirical work has
been provided as to how well these models fare in bond
immunization.®

At first sight, immunizing M bonds with M factors may look
similar to using an M-factor, APT-style model (Ross, 1976).
However, there is a fundamental difference: in our application,
the M yields are mathematically linked by a term structure theory
while no functional structure is imposed among the APT factors.
One implication is that, in this paper, the sensitivity of each bond
to its own factor is not constant, but varies over time in a way that
is determined by the underlying bond pricing model. In contrast,
empirical work on APT bond models assumes constant exposures
to pre-specified factors. Because of this fundamental difference
in modeling, our use of the zero-coupon yields with only short
maturities does not necessarily contradict, for instance, the
finding by Elton, Gruber and Michaely (1990) that the four-year
spot rate best proxies for the risk source of a one-factor model of
the APT type.

The remainder of this paper is organized as follows. Section 2
gives a brief review of the Vasicek and CIR one-factor term
structure models and proposes the new stochastic duration
measure in both the Vasicek and CIR versions. Section 3
describes the data and the estimates of model parameters.
Section 4 compares immunization performance among
different duration measures. Performance evaluation is based
on a comparison, across models, of root mean square errors
(RMSE’s) of daily time series of residual returns of individual
bonds. The residual return of a bond is defined as the
difference between the holding period return of the bond and
that of a duration-and-value matched portfolio formed from
the rest of the bonds in the sample. Section 5 concludes the

paper.

2. TERM STRUCTURE MODEL AND STOCHASTIC DURATION

For the sake of clarity and continuity, the Vasicek and CIR term
structure models are briefly presented before introducing the
new duration measure. In a one-state-variable model, the price at
t, P(r, t, T), of a zero bond maturing at 7, is treated as a
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contingent claim on the instantaneous interest rate, r(¢), which
usually follows a mean reverting stochastic process:

dr = k[m —r(t)] + 6(r, t)d= (1)

Mean reversion means that r(¢) is pulled back toward its long
term mean, m, at rate of . The volatility, 6(r, ¢), is constant, o,
for the Vasicek model and o+/r(¢) for the CIR model. In (1), dzis
a Wiener process, and s and m are positive constants.

Since dz is the only risk source of both the contingent claim
and the state variable, 7(?), a locally risk-free hedge can be
established and hence there exists an intertemporal no-arbitrage
condition, known as the fundamental PDE,

oP oP  §(r, t) 0P

E—i—,u(r, t)a—i- (27 )W—TP:O. (2)
In the Vasicek model, u(r, t) equals k[m — r(t)] — go with ¢ being
specified as a constant price of risk of changes in the
instantaneous rate, 7({), while in the CIR model, u(r, ¢) equals
klm—r(t)] — q(r, )o(r, t) =km— (k+ A)r(t) with the risk
premium,  Ar(r, t) = gq(r, t)o(r, t), being  endogenously
determined. The other parameters are the same as in (1).

Given boundary conditions of a zero-coupon bond, both the
Vasicek and CIR models lead to closedform bond pricing
formulas. Because of the constant volatility specification in (1),
the Vasicek zero-coupon bond pricing model takes a simpler form:

P(r, 7) = A(T)efr(t)g(f)’ )
with
A(r) = 1= -1 @)
and
1 —RT
B(T):—(l—e )7 (5)
K
_km—qo 102' _102' o |
where ¢ = —-"——5-5; ¢2 = ;-5 and 7 is time-to-maturity,

e, 7=T—1t.

The CIR model also conforms with the general form in (3).
However, both A(7) and B(7), which are solely determined by
time to maturity, become less neat, namely:
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01692T g
AlT) =
= e ©
and
T — 1
B(1) = 7
(T) 92(6917 — 1) + 91 ) ( )
0
where 6, = (/1—1—)\)2 + 202; 09 :$; and 03 :214_2771.
o

In cross-sectional estimation, the unobservable state variable,
r(t), can be estimated as an implied instantaneous rate. So, there
are four parameters in each of the models. Since a zero coupon
bond with a maturity of more than one year is not always available
in all countries, estimation is usually done using coupon bond
data. In fact, the price of a coupon bond at ¢, P(r, ¢, ¢, T), with
coupon rate, ¢, maturing at 7, is simply a portfolio of zero coupon
bonds, whose prices are determined directly by the zero-coupon
bond pricing models in (3), (4) and (5) or (3), (6) and (7).
These models can be easily expressed in the form of the
continuously compounded zero-coupon yield, namely:

R(r, 1) = —%ln P(r, 7). (8)

With the above estimated term structures, bond price sensitivity
to interest rate changes can be expressed in a more elegant
fashion. Duration in general is a measure of bond return risk
caused by unanticipated changes in interest rates. In the
traditional Macaulay duration measure, the unanticipated
changes are assumed to come from the parallel shifts in a flat
term structure of interest rates; that is, all yields are assumed to
have the same variance and to be perfectly correlated.
Theoretically as well as empirically, the assumption of pure
parallel shifts and flat term structures is untenable. In contrast,
the one-factor Vasicek and CIR framework identifies a specific
risk source of the unanticipated changes in interest rates because
the whole term structure movement is assumed to hinge on the
instantaneous rate, r(#). Still, it would be naive to believe that the
unexpected changes in interest rates can be satisfactorily
explained by just the instantaneous rate. To solve this problem,
one could adopt two- or multiple-factor models; however, these
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are often hard to estimate. Alternatively, one could look for a
single risk-factor that (a) is better at capturing twists and shifts of
the term structure of interest rates than the instantaneous
interest rate, and (b) is actually observable. The latter alternative
is the route adopted in this paper.

Suppose, initially, that the unexpected changes in interest rates
can be tracked by one state variable, the instantaneous interest
rate. Even though one-week (and, in many markets, overnight)
interest rates are observable, the instantaneous rate itself is not.
However, one can always construct an intermediary and
observable factor, F, that, in turn, is driven by the instantaneous
rate. Then a general duration measure takes the following form:

-1 dP(r, ¢, t, T)
P(ry ¢, t, T) dF

Duration =

_ P(r, ;1t7 T) ; CF(TZ) dP(dT}’? 7'1)7 (9)

N
where P(r, ¢, t, T) = Z CF(7;)P(r, 1) is the price of a bond
=1

with N coupons (plus face value at 7) to be due and CF(7;) is the
tth  component cash flow with time to due date,
7(r <7=T—1t VI). As the intermediary risk factor, F we
propose one of the zero-coupon yields in (8), and we assume it is
able to capture, with the help of a term structure model, the
unanticipated changes in all interest rates.

Thus, one can easily get around the problem of unobservability
of the instantaneous rate. More problematic is the fundamental
assumption that one single factor, such as F(r(t)) or r(¢) itself,
drives all bond prices. In reality, even the best-chosen single
factor can only capture the systematic risk for all bonds, that is,
the risk caused by the ‘average’ component of shifts in the term
structure. But the term structure movements often cause more
unanticipated price changes for one group of bonds than for
another, as illustrated by, for instance, Elton, Gruber and
Michaely (1990). In other words, one factor does not seem to
be able to take care, at the same time, of ‘average’ (systematic)
risk as well as maturity-specific risk. Nor can we reasonably
assume, as we often do in models for equity markets, that the
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maturity-specific risk can be satisfactorily diversified away: by
definition, that specific risk equally affects all bonds with similar
terms to maturity. To remedy this, we let the risk factor be partly
determined by the time-to-maturity of the bond. More precisely,
the zero-coupon yield that we choose as our intermediary factor
is bond-specific, in the sense that we select the yield that
corresponds to a fixed fraction, w, of the time-to-maturity of the
coupon bond in question, 7.* Using (3), (8) and defining
F = R(r, wr), we find:

. . —1 N dP(T’ Tl)
Duratlon = m; CF(T[) W (10)
X SBE)P mdr
N P(T, ¢, t, T); CF( l) B(wu;_T) 0 (11)
— - CF(TZ)P(T, Tl) wT
- l=1m[ (”)W]- (12)

Equation (10) specifies the risk-factor proxy to be the change
in a zero-coupon yield for time to maturity wr. The time to
maturity of the yield factor is tied to the maturity of the bond in
question. As a result, the factor for a long bond is a longer zero-
coupon yield while the factor for a short bond is a shorter one.
For example, if we set w at 0.05, the factor for a 10-year bond is
the six-month interest rate, while for a 5-year bond the factor is
the three-month rate. Equation (11) says that both zero-coupon
bond prices, P(r, 7;), and the risk factor, R(r, wr), for the
specific coupon bond in turn depend on the instantaneous rate,
r(t), with B(7) being defined in (3); and equation (12) simply
results from rearranging (11). Notice that the first fraction after
the summation operator is the relative present value weights of
component cash flows of the coupon bond. The term in the
square brackets is the price sensitivity of a zero-coupon bond with
a time-to-maturity of 7; for the tth coupon to be due. It is worth
mentioning that, unlike Macaulay’s duration, the dimension of
the price sensitivity in (12) is not a number of units of time.”
Since the change in the wr-period yield is taken as the risk factor
instead of the change in the instantaneous interest rate, the price
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sensitivity is modified by It will be argued below that such

wT
B(wr)’
an adjustment is appropriate.
It follows that the general form of duration in (12) can be
specified according to the term structure model either in (3), (4)

and (5) or in (3), (6) and (7). That is:

Dvssicoh = ZM [l (1—¢") x M]’ (13)

=1 P(T7 ¢, 1 T) K 1 — ¢—#(wr)
and
CF Tl V 7‘1)
D(IR Zl 7‘ ‘. t T)
011 1 0 01 (wr) _ 1 0
: o PeOrl g
Oy — 1) + 6, Oiwr) — 1

where all parameters were defined before. The first part of the

1
bracketed terms in (13), —(1 — ¢ ") = B(7) (for the Vasicek
K

A —1
@ 1)1 0, = B(7) (for the

CIR model, from (7)), represent the price sensitivity using the
single instantaneous rate as the risk factor. This part becomes
constant as 7; — o0. It is well known that short-term interest rates
fluctuate much more than long rates. Thus, prices of a long zero-
coupon bond tend to be much less sensitive to changes in short-
term interest rates than those of a short one, as reasonably
described by both the Vasicek and CIR models. The second part,

K(wT) {0s[er ™) — 1]+ }wr
1 — ¢—r(wr) eh(wr) 1 !
recoup part of the maturity-specific risk lost due to specification
errors. This part is greater than unity and approaches unity as w
shrinks to zero (see proofs in the Appendix). Therefore, the use
of the wr-period yield as a risk factor for a specific coupon bond
does not simply modify but magnify, more for long bonds than
for short bonds, the price sensitivity with little loss of both
theoretical and empirical tractability. At the same time, the
original ISW/CIR stochastic duration measure (w = 0) is nested
in the new duration measure (w > 0).

model from (5)), and in (14),

in (13) and n (14), help to
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According to a one-factor equilibrium model, of course, any
given bond has a unique theoretical price variability. Thus, if we
re-specify the factor in a way that the bond’s duration increases,
there would be an offsetting drop in the variability of the factor
— which brings us back to square one. To get out of this circle,
an ad hoc assumption is needed that is similar to the hypothesis
of parallel shifts of internal yields in Macaulay’s duration. We
assume that the w7(i)- and wr(j)-yields of two different bonds i
and j, have the same variability. This obviously violates the spirit
of the theoretical models. However, if w is small, say, 0.05 or
0.025, then all bond-specific factors are really short-term
interest rates, which, although they are of slightly different
maturities, still do not appear to have overly different volatilities
in practice. Our second defense of the ad hoc assumption is
eminently pragmatic. If, in practice, this approach does better
than either the theoretically correct approach (which fails to
capture term structure movements) or the generalized
Macaulay model (that has a totally unstructured approach to
the term structure), then the assumption of equal volatilities is
not a bad one after all. To verify whether the assumption holds
well, one can immunize bonds by going short in a portfolio with
a matched duration measure. Thus, we test whether that
immunization strategy outperforms strategies based on the
theoretically correct approach or on the purely ad-hoc Macaulay
duration.

The potential gains with the wr-period yield for a specific
coupon bond in capturing the relevant risk come from two
aspects. First, any (finite) positive value of w means that we are
choosing, as the factor, a zero-coupon yield with a finite maturity
rather than the instantaneous interest rate. Thus, the risk factor
carries some yield-curve information that would otherwise have
been missed out due to specification errors in the model.
Second, wr is tied to the time-to-maturity of the (coupon) bond
in question. This is important because it is known that, the longer
the time-to-maturity of the bond, the less the instantaneous rate
tends to matter, and hence the more information on longer
yields is needed. The only remaining issue is the choice of w for
the wr-period yield. For simplicity, unlike 7, we prefer wnot to be
bond-specific. And w should be small if the equal variability for
yields R(r, wr(i)) and R(r, wr(j)) is able to hold reasonably.
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Apart from these a priori considerations, we let the choice of wbe
settled as a purely empirical matter.

3. DATA AND TERM STRUCTURE PARAMETERS

Data are obtained from the data service of the Financieel
Economische Tijd (a major financial newspaper in Belgium). The
data consist of prices of OLOs (Obligations Linéaires/Lineaire
Obligaties, a class of non-callable Belgian government bonds first
introduced around 1990) and shortterm discount bonds
constructed from Brussels interbank offer rates in Belgian Franc
(BIBORs). There are 351 daily cross sections, after deleting non-
trading and thin-trading days from March 27, 1991 through
September 16, 1992. Parameter estimates of the Vasicek and CIR
term structure models are directly taken from Sercu and Wu
(1997), who provide (time-varying) daily cross-sectional
estimations.

Over time, the number of traded OLOs increases from six to
eleven because of introduction of new issues. At the beginning of
the sample period, times to maturity of OLOs range from three
to 12 years while near the end, from 1.5 to 15 years. The OLO
prices are last-trade quotes from the continuous on-screen
trading in the CATS (Computer Aided Trading System). Bond
prices (invoice or trade prices) were computed from closing
quotes (flat prices) plus accrued interest according to the 360-day
year rule that holds in the bond market. The one-week settlement
rule means that the invoice prices are actually one-week forward
prices. This effect is corrected for by computing the implied spot
prices from the forward prices. Our use of BIBORs rather than T-
bill yields is dictated by the fact that, because of poor liquidity,
the yields on the T-bills were often higher than comparable
BIBORs by at least ten basis points. Therefore, we prefer BIBORs
to fill in the gap in the short end of the full yield curve. The bid-
ask spread is 12.5 basis points usually, and we used the midpoint
rates. Five BIBORs, namely, 1-, 2-, 3-, 6- and 12-month, are
available throughout the whole sample period.

As shown in Figure 1 in Sercu and Wu (1997), estimated zero-
coupon-yield curves for both the Vasicek and CIR models are
sharply humped around five months, and the zero-coupon-yield
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curves tend to shift downward over the sample period indicating
a bull market. With time to maturity in units of days, the mean
cross-sectional estimates of the parameters are ¢; = 0.0240,
¢o = 0.0048, £k =0.0101 and r =8.76% per annum (Vasicek)
and 60; = 0.0103, 6, = 0.0079, 05 = 0.2061, and r = 8.90% per
annum (CIR). The mean RMSEs of cross-sectional regressions
are 13.5 (Vasicek) and 12.5 basis points (CIR), respectively.

4. COMPARISON OF IMMUNIZATION PERFORMANCE

Table 1 reports, for each asset, the time-series averages of the
Macaulay, Vasicek and CIR duration measures during the sample
period, as well as the modified stochastic durations for various

Table 1

Duration Measures

Maturity w=0% w=5% w=10%

Macaulay Vasicek  CIR  Vasicek CIR Vasicek CIR

Bibor-1m 0.082 0.071 0.077 0.071 0.077 0.072 0.077
Bibor-2m 0.167 0.123 0.143 0.125 0.144 0.127 0.145
Bibor-3m 0249 0.161 0.195 0.165 0.197 0.168 0.199
Bibor-6m 0.496 0.222 0.290 0.233 0.295 0.244 0.302
Bibor-12m 1.000  0.256 0.343 0.281 0.357 0.308 0.374

Bond05 28 Feb. 94 1.390 0.257 0.344 0.295 0.366 0.336 0.394
Bond02 5 Apr. 96 3.071 0.259 0.347 0.357 0.410 0.475 0.503
Bond08 29 Aug. 97 4.194 0.255 0.341 0.406 0.444 0.597 0.609
Bond04 1Jan. 98 4.203 0.261 0.350 0.404 0.447 0.584 0.600
Bondll 30 Jul. 98 4.785  0.260 0.350 0.435 0.471 0.657 0.668
Bond01 1Jun. 99 5.294 0.260 0.349 0.463 0.494 0.725 0.732
Bond03 1 Aug. 00 5836  0.260 0.350 0.505 0.531 0.829 0.832
Bond07 27 Jun. 01 6.347 0.260 0.349 0.538 0.560 0.909 0.910
Bondl10 25 Jun. 02 6.842 0.260 0.349 0.577 0.594 1.000 1.000
Bond06 1 Mar. 03 6.989 0.259 0.347 0.603 0.616 1.064 1.063
Bond09 1 Oct. 07 8281 0.245 0.327 0.748 0.749 1.416 1.410

Notes:

The average duration measures over the sample period (from March 27, 1991, or the first
issue date, through September 16, 1992) are reported. Macaulay’s duration is in units of
time (years) but the stochastic duration measures have no dimension. For the Vasicek and
the CIR duration measures, w is the fraction of the time to maturity(7) of each bond, and
the change in the wr-period yield (annualized) is used as a risk factor proxy for the
unexpected changes in interest-rates. Bonds are ascendingly tabulated from top to bottom
by maturity.
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finite values of w. The original ISW/CIR stochastic duration in
both the Vasicek and CIR versions, which takes the instantaneous
rate as the risk factor, is tabulated in the columns under w = 0%.
To interpret the numbers, Macaulay’s duration of five years
means that a 1% change in the continuously compounded
internal yield leads to a 5% change in bond prices.’ Likewise, a
stochastic duration of, say, 0.3 indicates that a 1% change in the
wr-zero-coupon yield leads to a 0.3% change in the prices of a
bond with time to maturity, 7.

From the table we see that when time-to-maturity is very short,
the Macaulay, Vasicek and CIR duration measures are close.” The
stochastic duration measures initially increase with the bond’s
maturity (but more slowly than their Macaulay counterpart),
then remain almost constant for a wide range of coupon bonds in
the middle, and decrease for the long bonds, a pattern that
reflects the models’ prediction that very long-term yields are
constant. When the Macaulay duration reaches the value of
4.785, the Vasicek and CIR duration measures peak at 0.26 and
0.35 respectively.

Different duration definitions take different proxies for the
unobservable risk sources, so one cannot draw any conclusions
from the different levels of the durations. Specifically, if the
instantaneous interest rate has a sufficiently high variability and
reasonably succeeds in capturing movements in the entire term
structure (via a bond pricing model), then a low ISW/CIR
duration can still explain a substantial part of bond price changes.
Thus, even though in Table 1 the price sensitivities of long
(coupon) bonds according to the original ISW/CIR duration
(w = 0%) are much lower than those according to the Macaulay
counterpart and the difference between the two tend to increase
with 7, one cannot conclude from this that the Macaulay duration
would overstate the true price sensitivity of long bonds or that the
stochastic duration measure is likely to understate it.®> Even more
importantly, it is not sufficient that a factor has the ability to
predict the variance of bond prices; the factor’s predicted bond
price should also be highly correlated with the actual bond price.
Thus, what counts is not the durations’ individual magnitudes,
but their cross-sectional patterns across bonds, the variability of
the chosen source of risk, and the factor’s ability to capture
overall movements of the term structure.
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In practice, the variability of the short-term interest rate turns
out to be too low to explain even the variance of price changes of
longer-term coupon bonds. Improvement may be possible with a
magnified stochastic duration measure, that is, a duration
measure with w > 0. If the zero-coupon yields for maturity wr
are taken as the relevant risk factors, the Vasicek and CIR
duration measures become larger, as expected, and tend,
reasonably, to increase with time-of-maturity (see columns under
w=>5% and w = 10%, respectively). This confirms the price-
sensitivity-intensifying effect of taking zero-coupon yields longer
than the instantaneous rate as the risk sources. However, no
conclusion on the effectiveness of such a modification can be
drawn until it is verified that bond portfolios with equal modified
durations also have highly correlated price changes. Thus, we
need to evaluate the immunization performance.

Instead of immunizing a single liability for one specific date, we
immunize individual coupon bonds using each of the alternative
duration measure. The procedure is as follows. On each trading
day, ¢, we obtain, from previous trading day, duration
information about three assets: a duration for a specific coupon
bond, m, the duration for the equal-weight short maturity
portfolio consisting of five zero-coupon bonds constructed from
BIBORs, Sd, and the duration for the equal-weight long maturity
portfolio consisting of all available OLOs excluding the one to be
matched, Ld. Since the specification of duration (either a
stochastic one or Macaulay’s) has not been made here, what
follows is very general. The equal-weight matched portfolio is
determined by finding out X and Y (weights on the short
portfolio and long portfolio, respectively) such that
m=X Sd+ Y Ld (duration matching) and 1= X+ Y (value
matching). Thus, one can calculate the matched portfolio
effective return as mr = X Sr (short portfolio return)+Y Lr(long
portfolio return), and hence the abnormal (residual) return
using this matched portfolio as benchmark. Of course, using
different duration measures will generate different matched
portfolios (X and Y) and hence result in different hedging

performances.
Besides the residual return for the l-day horizon, five other
residual returns for the 2-, 3-, ..., and the 6-day horizon are

calculated and measured by jday averages.” The motivation for
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looking at a longer holding period is that a stochastic duration
measure may not be able to show its potential within a short
horizon. The reason is that bond prices tend to fluctuate around
their fundamental values, which are implied by the estimated
term structures using cross-sectional bond prices.'” Therefore,
within a short horizon, such a temporary departure will introduce
noise into the performance of the stochastic duration measures
that largely rely on the estimated term structures.

Average RMSE’s for different holding periods and for different
values of w (only relevant for the Vasicek and CIR duration
measures) are reported in Table 2. The conclusions are as follows.
Comparing across methods we see that for all horizons, the
Macaulay duration measure resoundingly beats the original ISW/
CIR duration in both the Vasicek and CIR versions (w = 0%). For
example, at the one-day horizon, Macaulay immunization has a
RMSE of less than 6.1 basis points for the 1-day horizon, while the

Table 2

Bond Immunization Performance Comparison

w Duration Horizon (Trading Days)
(%) Measure
1 2 3 4 5 6
Macaulay 6.08 4.27 3.79 3.73 3.32 3.08
0.0 Vasicek 8.57 6.26 5.27 4.75 4.19 3.80
CIR 8.58 6.26 5.28 4.75 4.20 3.80
2.5 Vasicek 6.50 4.56 3.89 3.70 3.32 3.08
CIR 6.91 4.83 4.05 3.76 3.33 3.04
5.0 Vasicek 6.50 4.57 3.95 3.82 3.44 3.22
CIR 6.42 4.46 3.80 3.63 3.24 2.99
7.5 Vasicek 6.75 4.76 4.15 4.01 3.60 3.38
CIR 6.55 4.57 3.94 3.79 3.38 3.14
10.0 Vasicek 6.93 4.91 4.30 4.15 3.72 3.48
CIR 6.75 4.73 4.11 3.97 3.52 3.28

Notes:

The performance is gauged by the average of RMSE’s of the daily time-series of residual
returns (in basis points) over all OLO bonds. The residual (abnormal) return is the
difference between a holding period effective return of individual bonds and the
benchmark return of the duration-and-value matched portfolio. The residual return of
the fday horizon at a cross section is defined as the cumulative daily residual returns up to
the fday horizon divided by j days. The average RMSE’s no greater than the Macaulay
counterparts are marked with a single underline. w is the fraction of the time-to-maturity
(1) of a bond, and the bond-specific wr-period yields (annualized) are used to proxy for
the relevant risk sources of the unexpected changes in interest-rates.
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ISW/CIR immunization in both the Vasicek and CIR versions has a
RMSE close to 8.6 basis. However, the performance of stochastic
duration measures does improve across the board when w is set
greater than zero, confirming that longer zero-coupon yields
better capture the unexpected changes in interest rates than the
instantaneous interest rate. Moreover, in some cases (marked with
a single underline) the performance of the modified stochastic
duration measures is comparable to, or better than, the
performance of Macaulay’s duration. For example, this is true
for the modified duration of the Vasicek model when w = 2.5% for
the 4-, 5- and 6-day horizons, and for the CIR model when
w = 2.5% for the 6-day horizon and when w = 5% for the 4-, 5- and
6-day horizons. Tables 3 and 4 further show more detailed
immunization performance results by asset, which are in general
consistent with the results in Table 2. These results confirm our
early conjecture that the new duration may only work effectively if
w is smallish.

In a nutshell, a stochastic duration becomes effective if one
considers changes in longer zero-coupon yields rather than the
single instantaneous rate, as the relevant risk sources of the
unexpected changes in interest rates. The proposed stochastic
duration measure undoubtedly beats the original ISW/CIR
duration. The bond immunization performance race also shows
that the new duration outperforms the popular Macaulay
duration in some cases when the value of wis in a range between
2.5% and 5%. The optimum value of w tends to be small, at least
in this particular sample. It is likely that, in different samples, the
optimal value for w would be different. However, even in
different databases one would not expect substantially larger
values for the optimal w. The reason is that, if w is very large, say,
0.5, the factors would become very different across bonds, which
would violate the assumption that they are all driven by the same
single factor and have comparable volatilities.

5. CONCLUSION

In this paper, we argue that changes in zero-coupon yields, which
are slightly longer than the instantaneous rate, can be a better
proxy for the relevant risk sources of unexpected changes in
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Table 3
Performance of Macaulay’s and ISW/CIR’s Duration Measures by Asset

Horizon (Trading Days)

Asset Obs 1 2 3 4 5 6

Panel A: Macaulay’s Duration

Bond05 299 4.72 3.28 2.70 2.30 2.01 1.89
Bond02 321 5.51 3.80 3.08 2.74 2.32 2.14
Bond08 218 4.59 3.26 2.69 2.65 2.38 2.24
Bond04 314 4.62 3.24 2.73 2.39 2.17 1.94
Bondl11 30 4.40 3.92 3.85 4.10 3.82 3.25
Bond01 313 7.25 4.79 4.06 3.34 2.81 2.37
Bond03 323 6.24 3.88 3.18 2.87 2.68 2.54
Bond07 281 6.02 4.15 3.86 4.52 3.18 2.83
Bond10 50 6.71 4.18 3.76 4.75 4.45 4.27
Bond06 318 8.39 5.40 4.50 3.94 3.55 3.33
Bond09 117 8.42 7.03 7.25 7.47 7.15 7.07

Panel B: Vasicek Duration (w = 0%)

Bond05 299 1346 1095 957 839 742  6.77
Bond02 321 792 606 505 492 425  3.86
Bond08 218 565 459 414 414 372 352
Bond04 314 519 385 336 301 269 236
Bond11 30 6.04 511 461 480 450  3.83
Bond01 313 730 475 397 331 272 222
Bond03 323 710 446 355 303 263 242
Bond07 281 782 508 417 372 313 272
Bond10 50 1045 757 577 514 467 438
Bond06 318 1003 688 565 486 439 395
Bond09 117 1331 957 818 681  6.03 573

Panel C: CIR Duration (w = 0%)

Bond05 299 13.44 1094 958 840 744  6.80
Bond02 321 796 606 502 492 425 384
Bond08 218 559 455 411 411 369 351
Bond04 314 523 387 335 299 269 236
Bond11 30 6.03 510 460 480 449  3.83
Bond01 313 734 479 401 336 277 227
Bond03 323 717 452 362 312 269 247
Bond07 981 785 510 420 374 313 272
Bond10 50 1046 757 578 514 467 438
Bond06 318 998 684 563 485 438  3.93
Bond09 117 1329 955 814 677 599  5.69

Notes:
RMSE’s no greater than the Macaulay counterparts are marked with a single underline.
See also the detailed explanatory notes in Table 2.
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Table 4

Performance of the New Stochastic Duration
Measures (w=2.5%) by Asset

Horizon (Trading Days)

Asset Obs 1 2 3 4 5 6

Panel A: Vasicek Duration (w = 2.5%)

Bond05 299 7.02 5.60 4.94 4.31 3.86 3.57
Bond02 321 5.78 4.17 3.42 3.20 2.68 2.42
Bond08 218 4.64 3.40 2.92 291 2.58 2.42
Bond04 314 4.71 3.30 2.87 2.50 2.22 1.98
Bondl1 30 454 390 368 384 353 299
Bond0l 313 716 460 383 318 264 219
Bond03 323 640 396 518 280 253 23
Bond07 981 650 417 359  3.63 280  2.49
Bond10 50 801 529 380 408 391 379
Bond06 318 827 515 411 350 318 295
Bond09 117 848  6.63 644 669 662 672
Panel B: CIR Duration (w = 2.5%)

Bond05 299 8.91 7.11 6.17 5.33 4.64 4.18
Bond02 321 6.31 4.61 3.75 3.61 3.00 2.69
Bond08 218 4.82 3.69 3.28 3.34 3.02 2.88
Bond04 314 4.72 3.40 2.95 2.60 2.33 2.06
Bondl1 30 473 411 381 405 372 3.15
Bond0l 313 719 462 385  3.21  2.68  2.22
Bond03 323 6.49 4.03 3.25 2.94 2.70 2.57
Bond07 981 700 440  3.64 349 274  2.38
Bond10 50 870 596 437 428 402  3.84
Bond06 318 877 545 430 357 320 285
Bond09 117 8.35 5.79 5.24 4.88 4.59 4.64

Notes:
RMSE’s no greater than the Macaulay counterparts are marked with a single underline.
See also the detailed explanatory notes in Table 2.

interest rates. We prove that, using such a zero-coupon yield as a
risk factor for a specific coupon bond, the stochastic duration
derived from the Vasicek and CIR models is larger, increasing
with bond maturity, than the original ISW/CIR duration. The
immunization performance test shows that the proposed
stochastic duration definitely beats ISW/CIR’s duration and
can in some cases outperform Macaulay’s duration.
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APPENDIX
First, using L’Hopital’s rule, it is trivial to prove that the modified

K(wT)

T (Vasicek) or
_ e—ﬁ wT

part of the price sensitivity,

{Oo[" @) — 1] + 0, }wr
eth(wr) _ 1

(CIR) approaches unity when w goes to

zero.
Second, to prove that the modified part is greater than unity,
let us first look at the case of the Vasicek duration measure. Let
f(x) =x—14¢" (x=krwr > 0), then, the problem is to prove:
Jx)=x—1+e"2>0. (A1)
We have f/'(x) =1 — ¢ *and f”(x) = ¢ * Because ["(x) = ¢ * > 0,
there exists a global minimum for x > 0. For f'(x) =1 — ¢ * =0,
there is only one solution, x = 0 So, f(x) has a minimal value at
x = 0 Therefore, (A.1) holds.
Next, let us look at the case of the CIR duration measure. Let
f(x) = [02("* — 1) + O1]x — (1% — 1), (x = wr > 0), likewise, the
problem becomes to prove:

f(x) = [B2("* = 1) + 01]x — (1 = 1) > 0. (A.2)
And we have:
(%) = 0102xe"* + [0o("* — 1) + 601] — 61" (A.3)
= [010ox — (61 — 09)] "™ + (61 — 62)
and
I (x) = 0102"* + 01[0109x — (6 — 02)]"* (A4)
= "¥[0,(205 — 61) + x6205].

. . Km
Note that, when the current interest rate is above ——, the

K+ N
term structure is falling; and when the rate is below it, the term
structure is humped or rising. See Cox, Ingersoll and Ross (1985,
p.- 394, following equation (26)). It follows that x+ A >0
because km > 0 and an interest rate is positive, and hence that
0o > 0. See the definition of the parameter 6o below equation
(7), and also notice that 260y —6; = x+ A > 0. Therefore,

© Blackwell Publishers Ltd 2000



930 wu

f"(x) > 0 (from A.4), and hence there exists a global minimum
for x > 0 For f'(x) = 0 there is only one solution, x = 0, (from
A3). So, f(x) has a minimal value at x =0 Therefore, (A.2)
holds.

Note that in both cases, we have f’(x) > 0. Thus, f(x) is an
increasingly monotonic function in x and hence in 7, indicating
that the price sensitivity of long bonds is more magnified than
that of short bonds.

NOTES

1 Fisher and Weil (1971). See also Bierwag, Kaufman and Khang (1978) for a
review of applications of Macaulay’s Duration.

2 See also Ingersoll (1983), Nelson and Schaefer (1983) and Brennan and
Schwartz (1983). There is an exception. According to Haugen (1993), the
unpublished work of Lau (1983) did show that the CIR duration measure is
comparable to Macaulay’s duration in immunizing a single liability using
two monthly rebalanced highest-yield bonds from each side of the duration
of the liability.

3 See Brown and Dybvig (1985), Pearson and Sun (1994), De Munnik and
Schotman (1994), and Sercu and Wu (1997), among others.

4 If there are M coupon bonds with different maturities, we will have M
factors, 7(k), k=1,..., M, just like M internal yields in the case of
Macaulay’s duration. However, the M wr-yields are fundamentally different
from the M internal yields because the relation among the formers is
governed by a bond pricing model.

5 The stochastic duration measure in (10) stands for the price sensitivity and
is consistent with that in Ingersoll, Skelton and Weil (1978). However,
without the concern on duration matching, Cox, Ingersoll and Ross (1979)
further propose to convert, non-linearly, the dimensionless stochastic
duration measure into one in units of time. It is straightforward to make
duration matching with the measure in (10) because price sensitivities
should be additive. Therefore, this paper uses the dimensionless stochastic
duration measure.

6 The modified version of Macaulay’s duration (Macaulay’s duration divided
by one plus the internal yield) is used.

7 For a very short 7, the dimensionless zero bond price sensitivity, 7dR(7)/dr,
approaches 7. Therefore, as long as the unit of interest rates is consistent
(annualized), Macaulay’s duration and stochastic duration measures are
comparable at the very short end.

8 With numerical examples of duration measures, Cox, Ingersoll and Ross
(1979) point out that, for coupon bonds, the stochastic duration measure
converted into units of years peaks at 10 years, and they contend that this is
realistic compared to the remote peak at 50 years with the Macaulay
counterpart. However, which duration measure better captures the risk in
bond returns requires an empirical check on immunization performance.
And the remainder of the paper will carry out such a task.

© Blackwell Publishers Ltd 2000



NEW STOCHASTIC DURATION 931

9 If the RMSE of the cumulative return is wanted rather than the average, it
suffices to multiply by the number of days. Whether one uses averages or
sums, the RMSEs for different horizons obviously cannot be compared
across horizons; however, either RMSE can always be compared across
immunization methods. Note also that the fday cumulative return starting
from date ¢ substantially overlaps with the jday cumulative return starting
from date ¢+ 1 etc., which provides one more reason not to compare the
RMSEs across horizons. However, there is no reason to believe the overlap
in the observations would be in favor of a particular duration measure; that
is, it is unlikely to undermine the cross-sectional comparison.

10 There are always bond pricing model residuals. Nevertheless, Sercu and Wu
(1997) find that these residuals tend to revert to the mean over time.
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