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Abstract. This paper studies options on the minimum/maximum of two average prices. We provide a closed-
form pricing formula for the option with geometric averaging starting at any time before maturity. We show
overwhelming numerical evidence that the variance reduction technique with the help of the above closed-form
solution dramatically improves the accuracy of the simulated price of an option with arithmetic averaging. The
proposed options are found widely applicable in risk management and in the design of incentive contracts. The
paper also discusses some parity relationships within the family of average-rate options and provides the upper
and lower bounds for the proposed options with arithmetic averaging.
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Introduction

Corporate hedging has been increasingly important in the environment of today’s volatile
financial markets. The ever-increasing demand for various hedging instruments, which
are suitable for more complex applications, has stimulated the development of more and
more sophisticated derivatives. Among these often called “exotic derivatives,” average-rate
options are most successful. Average-rate options, or Asian options, have become widely
used by corporations that consider hedging against the unwanted average price movement
during an extended period of time. For example, domestic firms, having outstanding foreign
account payables due on the last working day of each week and wishing to hedge away
the foreign exchange risk for the next 26 weeks, can obtain the most suitable protection
by using a 26-week Asian option, with an arithmetic average of weekly foreign account
payables, which depends on the arithmetic average of the exchange spot rates. Thus, the
Asian option, whose use is more cost-effective than the use of a portfolio of ordinary options,
which are supposed to match individual cash flows, provides a one-shot solution to the risk
management that aims to cap an aggregate-level cost in domestic currency over a finite
future period.

*  We wish to thank Marco Avellaneda, Menachem Brenner (the Editor), Terry Cheuk, Lawrence Khoo, Yue-kuen
Kwok, Piet Sercu, Raman Uppal, Qiang Zhang, an anonymous referee, and seminar participants at the Catholic
University of Leuven, the international workshop on “Recent developments in derivative securities market” at
City University of Hong Kong, and the International Association of Financial Engineers 1998 Conference and
Annual Membership Meeting in New York for helpful comments and suggestions. City University of Hong Kong
provided financial support for this research.
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In many situations, a firm dealing with foreign account payables may enjoy the foreign
suppliers’ flexible invoicing policy that allows the firm to choose between different foreign
currencies. For example, to promote sales, an Italian exporter would like to make it easy
on a US importer by allowing the US firm to decide at the start of a designated period to
pay either British Pounds (GBP) or Italian Lira (ITL) for the period, since the Italian firm is
likely to have business with British firms and hence would need GBP anyway. Either ITL
or GBP can turn out to be favorable to the US firm but the US firm does not know it at the
moment it chooses the invoicing currency for payment. Assume that equal-amount account
payables are made on a frequent basis and that the risk-management-conscientious US firm
would like to cap the average cost in US dollars (USD) for the period. The issue boils down
to a desire of the US firm to choose between ITL and GBP without any regret later on. This
desire can not be met satisfactorily by using an ordinary Asian option because two average
prices rather than a single one enter the desired payoff function. Thus, an option on the
maximum of two average prices is needed.

The option on the maximum of two average prices obviously has an advantage over an
ordinary Asian option. This can be understood as follows. If either the average ITL account
payables A;) or the average GBP account payablég)( which are already translated
into USD (foreign exchangéorward rates are assumed to be quoted in WSD), turn
out to be larger than a controlled value or the strikg, during the concerned period,
the proposed option expires in the money anyway. Hence, the US firm ends up with a
hedged cost at or, luckily, less th&n depending on which foreign currency it has chosen.

In contrast, this is not generally true by using a standard Asian option. If the US firm
has agreed to pay a foreign currency whose future spot rates result in the minimum of
A; and A, the Asian option on the invoicing currency allows the firm to cap the cost
only at K, while the proposed option would allow the firm to incur a hedged cost less
thanK by |A; — Az|. As a matter of fact, it can be easily shown that the option on the
maximum of two average prices always has equal or higher payoffs than an ordinary Asian
option?

The use of the options this paper investigates is not limited to multinational firms’ hedging
of transaction exposures. It is shown in this paper that firms, when considering at least two
kinds of commodities in the production and when wishing to hedge away price uncertainties
of the commodities involved, will find the options on the minimum or the maximum of
two average prices to be convenient hedging instruments. Financial contracts, which are
based on the average prices of commodities, have the merit of anti-manipulation because
commodity prices, such as oil prices, are usually thought to be prone to manipulation by
big market participants as a result of the high level of concentration in the industry.

Another application that goes beyond risk management shows that the option on the min-
imum of two average prices appropriately enters the payoff function of incentive contracts
for executive compensation. A manager can be given, instead of the standard stock option,
a compensation package that includes the option on the minimum of the average stock
price of the firm the manager runs and the average stock price of a close competitor or
the industrial representative. This package is truly merit-based and should be fair to both
managers and shareholders, because there is little incentive for managers to boost the stock
prices temporarily for their own good. On the other hand, the average feature smoothes the
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randomness or the “noise” inherent in the stock prices so that the managers can be evaluated
more fundamentally.

In view of the potential wide applications of the options on the minimum or the maximum
of two average prices, it is somewhat surprising that, to the best of our knowledge, such
options have never been investigated.

This paper analyzes and values the European-style options on the minimum or the maxi-
mum of two average prices. In particular, we provide a closed-form pricing formula for the
option with the geometric averaging, which may start at any time before maturity. Thus,
our work is closely related to the two well-known contributions in derivatives research, that
is, average-rate options by Kemna and Vorst (1990), and options on the minimum or the
maximum of two risky assets by Stulz (1982). Both kinds of options are so popular that
they have become “classic” examples of non-standard options discussed in textbooks.

Kemna and Vorst (1990) investigate average-rate options with both arithmetic and geo-
metric averaging for the underlying asset price that obeys the geometric Brownian motion
and come up with an analytical pricing model for geometric average-rate options. Although
the direct application of an option with geometric averaging makes only limited economic
sense, the closed-form solution of the option with geometric averaging is indispensable in
the variance reduction technique employed in the Monte Carlo simulation approach. In
pricing path-dependant options without analytical expressions such as in the Asian option
with arithmetic averaging, the simulation approach is often dSgte simulation approach
has the advantage that it can provide standard errors for the estimates and is traditionally
used as a benchmark approach in the horse-race with different techniques.

Stulz (1982) provides a closed-form pricing formula for (European-style) options on the
minimum or the maximum of two risky assets. He illustrates many applications ranging from
valuation of foreign currency debt and option-bonds to risk-sharing contracts and growth
opportunities involving mutually exclusive investments. As a matter of fact, options on
the maximum or the minimum, labeled as Rainbow options, are often used in global asset
allocation. A Rainbow option allows the holder to choose between two indexes such as
S&P500 and Nikkei225 (two colors in this case), or among many indexes (see e.g., Johnson,
1987). Rainbow options are also called outperformance (or relative performance) éptions.

The options we propose in this paper non-trivially combine average-rate options with
rainbow ones; thatis, both the average-rate options and rainbow ones in the existing literature
are special cases of our hybrid options. This is important for two reasons. First, our options
can be used to meet many kinds of firms’ financial management demands that cannot be
satisfied by derivative assets already known in the literature. In light of the MM theory and
market efficiency hypothesis, one way for financial managers to add value to their firms is
to introduce innovative financial products that meet as yet unsatisfied demands and render
the market more complete (see Chapter 17 of the textbook by Brealey and Myers, 1996).
Thus, by adding to such financial innovations, our paper serves a useful purpose to both the
supplier and the user of the products. Second, creating an option that encompasses existing
ones is unusual and is more likely to occur when academics are involved: in the street,
most efforts are directed towards producing increasingly specific derivative assets. Thus,
the generality of our options would spawn wider and more interesting applications than the
existing literature can offer.
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The paper is organized as follows. Section 1 analyzes and values the proposed options.
We start with presenting a closed-form pricing formula for the option with geometric aver-
aging and then we demonstrate how the closed-form solution is implemented in the variance
reduction technique to obtain an accurately simulated price of the option with arithmetic
averaging. Section 2 discuses some parity relationships and provides the upper and lower
bounds for the options with arithmetic averaging. Section 3 illustrates some typical appli-
cations of options on the minimum or the maximum of two average asset prices. Section 4
concludes.

1. Pricing Options on the Minimum or the Maximum of Two Average Prices

In this section, we solve the pricing of options on the minimum or the maximum of two
average prices. We first provide a closed-form pricing formula for a call option on the
minimum of two geometric averages (subsection 1.1) and then use this analytical solution in

a variance reduction technigue to obtain accurately simulated option prices when arithmetic
averages are considered (subsection 1.2). Average-rate options with arithmetic averaging
have no closed-form pricing formulas if the underlying variables are assumed to follow a
geometric Wiener process because the arithmetic average of a so-assumed variable does
not remain in the family of the Ito process.

1.1. A Model of the Call Option on the Minimum of Two Geometric Averages

We price a European-style call option on the minimum of two Geometric averages. The
maximum case can be easily derived from the parity relationship discussed in Section 3.
Using the case of the minimum as the attacking point directly follows the tradition of the
literature (e.g., Stulz, 1982).

Assume a continuous-time framework to start with, and assume that the price df,asset
denoted byS (t), obeys the following Geometric Wiener process:

dSt) = ui SOt + 0 SOAW (D), =12 1)

whereW (t) is a Wiener process ang ando; are constant. The correlation coefficient
betweenW, (t) andWa(t) is p.
For 0 < s <'t, we introduce a new variable

t
li :/ In S(s)ds, i=1,2, (2)
0

and hence the geometric mean overt]ds simply G; (t) = €'i/t.5

The payoff of a European-style call option on the minimum of two geometric averages
with maturity T is Max{Min[G1(T), G2(T)] — K, 0}. Letthe option price at(0 <t < T)
beV (S, $, 11, 12, K, t). The option value is path-dependant brit) and I»(t), but it
is fundamentally driven by the two original underlying variables in (1), which are traded
assets. Assume that the instantaneous rate of inteilesbnstant over the remaining life of



TWO AVERAGE PRICES 187

the option. Using the riskless hedging argument and applying Ito’s Lemma, we can derive
the PDE as follows (see Black and Scholes 1973, and Merton, 1973):

ﬂ+|n Sl— +1In Sz— 151 +<7102,08182 92V
at dly 2 asf 1S$10S
%02253225\2 +r Slﬂ +I‘Sz% —rv =0. ©)
Given the boundary conditions of the option:
V(S &, 11,12, T) = Max{Min[G(T), G2(T)] — K, 0}, 4)
V(O, &, I1,12,t) = 0, 5)
and V(S0 1y, 15t) = O, (6)

the solution to (3)—(6) is given as follows (see Appendix A for the derivation):
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andN; («, 8, 0) is the bivariate cumulative standard normal distribution with upper limits
of integrationo andg, and correlation coefficierst.

The closed-form formula in (7)—(11) gives the price of a European-style call option on
the minimum of two geometric averages. Next, we discuss the pricing of a similar option
with arithmetic averaging, which most applications call for.

1.2. Pricing of the Option on the Minimum of Two Arithmetic Averages

The pricing of a path-dependant European-style option can always be implemented using
the popular Monte Carlo simulation. The simulation approach sometimes becomes the last
resort especially when there is no closed-form formula available, such as the pricing of
the option with arithmetic averaging. One important issue in implementing the simulation
method is the accuracy of the calculated option price. To achieve high accuracy of the
simulation results within a feasible number of simulation runs, the implementation of a
variance reduction technique is necessary (see e.g., Boyle, 1977, and Hull and White,
1987)°

The geometric average can serve not only as a lower bound for the arithmetic average but
also as a control variable in the variance reduction technique. Thus, the closed-form formula
in (7)—(11) with geometric averaging becomes indispensable in the simulation approach to
the pricing of options with arithmetic averaging because the formula plays an integrated
part in the variance reduction.

Without loss of generality, we focus on the price at the incepttos:- (0, denoted by
AV(5(0), $(0), 0, T), of a European-style call option on the minimum of two arithmetic
averages with maturity T in the simulation that follows. The arithmetic counterpart of (2)
is defined as,

t
|iA=f S(s)ds, i=1,2, (12)
0

and hence the arithmetic mean overt[ds simply A (t) = 14/t.
To implement the simulation, we take the discrete approximatigk defined as follows:

n
s .
A = =12 13
'()J;nﬂ" .2, (13)
whereT; = j(T/nm) withTo =0, T, =T, andj = 1,..., n. For comparison with Kemna

and Vorst (1990), we choo§e = 4 months or 13 year andh = 88 in our later calculation.
In other words, our sampling interval is deemed as one trading day.

Following the risk-neutral valuation argument by Cox and Ross (1976), the price of a
European-style call option on the minimum of two arithmetic averages can generally be
expressed as follows:

AV(S(0), $(0),0, T) = e™'" Eq [Max{Min[ A(T), Ax(T)] — K, 0}] , (14)

whereEg is the expectation under a risk-neutral probability measure (see e.g., Harrison
and Kreps, 1979, and Harrison and Pliska, 1981).
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LetR (T)) = In(§(Tj)/S(Tj—1), (i =1, 2). Under the risk-neutral probability measure,
we can replace the drift coefficient;, in (1) by the instantaneous riskless natand hence,
{R1(Tj), Ro(T))} is bivariate-normally distributed with mearis — %aiz)T/n, variances
aizT/n, (i = 1,2), and a correlation coefficient. Thus, the random twin sequence

{SI(T), S(MT)}, ..., {S(Th), S(Tn)} can be generated by the following processes:
m%ﬂ)zmaﬂLﬂ+Q—%ﬁ>%+mJ§M (15)

1 T T
INS(T) = InS(Tj—1) + (r — 5022> Y +02\/;y,- (16)

where{x;, yj} is governed by a standard bivariate normal distribution with a correlation
coefficientp. As a result{xs, y1}, ..., {Xn, Yn} consist of a two-dimensional sequence of
independent drawings from the standard bivariate normal distribution.

We implement a total of 10,000 simulation runs. For every run, a realization of a two-
dimensional sequence can be obtained and a single simulated option price can be calculated
as follows,

Z(T) = e " Max{Min[ Ay(T), Ax(T)] — K, 0}. (17)

The simulation estimate of the option price is simply the expected valdg Df, namely,
the mean oZ(T) over 10,000 runs.

The simulation results are reported in Table 1. The choice of the current asset prices of
40 USD, the time-to-maturity of four months, and other various numerical inputs mainly
follows the literature (e.g., Cox and Rubinstein, 1985, and Kemna and Vorst, 1990). The
column undeAVreports the simulated option prices with various inputs. The column under
Std(AV) shows the standard error of simulatéd under each set of inputs. For example,
in Table 1, Panel A, with the following set of inputs= 0.03,p0 = 0.5,07 = 0.2,0, = 0.3,

K = 40 USD, andT = 4 months or 13 year, the estimated price at the inception of the
call option on the minimum of two arithmetic averages is 0.66847 USD with a standard
error of 0.01303 USD. If a firm wishes to hedge an average risk exposure of four million
USD in the above situation, the standard error of the average hedging cost to the firm will
stand at 1,303 USD.

Of course, derivative houses would like to provide prices of their derivative products
that are as fair as possible in a competitive market. Fortunately, a more accurate simu-
lation estimate can be achieved by using the variance reduction technique. In order to
implement the variance technique #V, there should be available a control variable,
namely a random variabl&y¥(T), which is driven by the same random twin sequence
{SI(Ty), S(TD)}, ..., {S(Th), S(Ty)}as forZ(T) in (17) and is a close approximation of
Z(T) but has a closed-form expression for its expected vatey(T)].

We choose the following random variable as the control variable:

W(T) = e "7 Max{Min[G1(T), G2(T)] — K, 0} (18)
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Table 1.Valuation results of options on the minimum of two average prices.

Panel A: Valuation at = 0.03

o1 02 K AV Std AV) AV* StdAV*) GVv*
p=-03
35 3.12351 0.02134 3.14199 0.00050 3.09182
0.2 0.3 40 0.25436 0.00691 0.26012 0.00026 0.25054
45 0.00081 0.00035 0.00083 0.00004 0.00070
35 2.90434 0.02295 2.89729 0.00073 2.83643
0.2 0.4 40 0.26721 0.00737 0.27617 0.00038 0.26432
45 0.00183 0.00049 0.00170 0.00006 0.00145
35 2.67154 0.02548 2.64503 0.00079 2.57226
0.3 0.4 40 0.33972 0.00968 0.34043 0.00051 0.32273
45 0.01085 0.00161 0.00991 0.00023 0.00825
p=0.1
35 3.47097 0.02397 3.47741 0.00049 3.42712
0.2 0.3 40 0.45019 0.01018 0.44149 0.00035 0.42697
45 0.00540 0.00091 0.00667 0.00010 0.00591
35 3.29790 0.02625 3.25902 0.00074 3.19653
0.2 0.4 40 0.46524 0.01078 0.46961 0.00043 0.45283
45 0.01054 0.00147 0.01077 0.00016 0.00953
35 3.15056 0.03010 3.11394 0.00083 3.03727
0.3 0.4 40 0.60500 0.01432 0.59423 0.00066 0.56737
45 0.04288 0.00345 0.04425 0.00040 0.03869
p =05
35 3.88484 0.02696 3.88982 0.00051 3.83803
0.2 0.3 40 0.66847 0.01303 0.66665 0.00041 0.64746
45 0.02294 0.00235 0.02283 0.00022 0.02033
35 3.67025 0.02919 3.68789 0.00077 3.62390
0.2 0.4 40 0.71828 0.01434 0.70582 0.00052 0.68324
45 0.03092 0.00256 0.03101 0.00029 0.02751
35 3.70914 0.03388 3.68633 0.00093 3.60252
0.3 0.4 40 0.91422 0.01897 0.91706 0.00082 0.87999
45 0.11302 0.00655 0.11377 0.00063 0.10176

2The table presents the prices of options on the minimum of two average prices. The options prices with geometric
averaging, denoted b@ V*, are determined by the formula in (7)—(11) while the option prices with arithmetic
averaging are calculated using the Monte Carlo simulation wit#1*) and without AV) a variance reduciton
technique. The two underlying asset prices are chosgnatS, = 40. The time to maturity is 4 months ofa
year and n= 88. Valuation results at three different values of the interestrrad&bs, 5%, and 7%, and standard
deviations for simulation resutl&V and AV* are reported in Panels A, B, and C, respectively. In each panel,
various values of other input parameters, o2, p, andK, are used. The number of simulation runs is 10,000.

where
1
n n+1
G(M=|[[sam| . i=12 (19)
j=0
It is easy to notice thaE[W(T)] is the expected price of a call option on the minimum of
two geometric averages and its closed-form expression is already given by (7)—(11).
We run the simulation to obtain the estimated valueEpZ (T) — W(T)]. Because
Z(T) andW(T) are closely related random variables, the estimation errors of HEfh
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Table 1.Continued.

Panel B: Valuation at = 0.05

o1 02 K AV StdAV) AV* Std AV*) GV*
p=-03
35 3.26151 0.02159 3.23298 0.00048 3.18359
0.2 0.3 40 0.28985 0.00742 0.28772 0.00028 0.27727
45 0.00089 0.00031 0.00101 0.00004 0.00088
35 3.02007 0.02329 2.98099 0.00072 2.92010
0.2 0.4 40 0.31224 0.00812 0.30280 0.00037 0.28987
45 0.00189 0.00052 0.00205 0.00007 0.00177
35 2.73642 0.02549 2.72267 0.00079 2.64906
0.3 0.4 40 0.36288 0.00985 0.36650 0.00057 0.34661
45 0.01075 0.00148 0.01083 0.00017 0.00940
p=01
35 3.55305 0.02406 3.56832 0.00048 3.51805
0.2 0.3 40 0.47338 0.01051 0.47607 0.00035 0.46157
45 0.00757 0.00124 0.00799 0.00014 0.00694
35 3.30745 0.02617 3.34172 0.00074 3.27945
0.2 0.4 40 0.50033 0.01121 0.50438 0.00047 0.48620
45 0.01204 0.00166 0.01252 0.00018 0.01099
35 3.18207 0.02985 3.19158 0.00085 3.11419
0.3 0.4 40 0.61742 0.01446 0.62704 0.00066 0.59889
45 0.05121 0.00389 0.04851 0.00042 0.04241
p=05
35 3.92185 0.02664 3.98098 0.00052 3.92831
0.2 0.3 40 0.69035 0.01327 0.70942 0.00039 0.69016
45 0.02227 0.00222 0.02571 0.00022 0.02308
35 3.80992 0.02937 3.77139 0.00077 3.70627
0.2 0.4 40 0.74090 0.01440 0.74791 0.00052 0.72466
45 0.03309 0.00276 0.03462 0.00028 0.03096
35 3.73540 0.03432 3.76491 0.00093 3.68027
0.3 0.4 40 0.93123 0.01887 0.95800 0.00081 0.91931
45 0.12339 0.00669 0.12194 0.00061 0.10937

andW(T) that are bound to occur during the simulation should be very similar in a well-
controlled simulationtest. Asaresult[Z(T)—W(T)]incurs very small estimation errors.

To obtain the call option price, we take the sum of the simulated resLft(T) — W(T)],

and the analytical valuez[W(T)], from (7)—(11). It is worth mentioning that there is

an inevitable small bias between the (continuous-time) analytical value and the simulated
value of E[W(T)] due to discrete sampling. Nevertheless, such a bias is much offset by
a similar bias forE[Z(T)] in simulatedE[Z(T) — W(T)]. Thus, the estimate8[Z(T)]

using the control-variate approach is, strictly speaking, of continuous-time type and has
reduced variance since it bears the same small estimation erigafZ&s) — W(T)] does.

In Table 1, the column undeAV* reports the simulation estimates B{Z(T)] for
various inputs, using the variance reduction technique described above, and the column
underStd AV*) shows the standard error of AV* under each set of inputs. The evidence of
substantial variance reduction is overwhelming. For example, in Table 1, Panel A, with the
same set of inputs,= 0.03,p = 0.5,07 = 0.2,02 = 0.3, andK = 40 USD, the estimated
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Table 1.Continued.

Panel C: Valuation at = 0.07

o1 02 K AV StdAV) AV* Std AV*) GV*
p=-03
35 3.30846 0.02152 3.32477 0.00048 3.27525
0.2 0.3 40 0.29849 0.00746 0.31696 0.00028 0.30598
45 0.00117 0.00036 0.00128 0.00004 0.00110
35 3.06885 0.02330 3.06476 0.00074 3.00382
0.2 0.4 40 0.33594 0.00839 0.33108 0.00039 0.31713
45 0.00224 0.00055 0.00256 0.00010 0.00215
35 2.81670 0.02561 2.80055 0.00079 2.72628
0.3 0.4 40 0.40477 0.01060 0.39329 0.00056 0.37174
45 0.01062 0.00146 0.01236 0.00019 0.01070
p=01
35 3.64576 0.02415 3.65972 0.00050 3.60883
0.2 0.3 40 0.50545 0.01080 0.51358 0.00034 0.49802
45 0.00683 0.00098 0.00899 0.00011 0.00812
35 3.46978 0.02651 3.42370 0.00074 3.36237
0.2 0.4 40 0.54945 0.01195 0.54069 0.00047 0.52116
45 0.01424 0.00161 0.01438 0.00017 0.01264
35 3.28295 0.03022 3.26986 0.00086 3.19141
0.3 0.4 40 0.65495 0.01510 0.66019 0.00068 0.63159
45 0.04716 0.00359 0.05204 0.00039 0.04643
p=05
35 4.07721 0.02755 4.07119 0.00054 4.01835
0.2 0.3 40 0.73767 0.01376 0.75547 0.00041 0.73460
45 0.02827 0.00238 0.02936 0.00024 0.02615
35 3.88041 0.02954 3.85420 0.00076 3.78855
0.2 0.4 40 0.79688 0.01494 0.79283 0.00053 0.76756
45 0.04059 0.00312 0.03921 0.00030 0.03478
35 3.84091 0.03468 3.84267 0.00093 3.75815
0.3 0.4 40 0.97967 0.01959 0.99959 0.00083 0.95972
45 0.12300 0.00665 0.13073 0.00066 0.11743

price of the call option on the minimum of two arithmetic averages is 0.66665 USD with

a standard error of 0.00041 USD. For an average risk exposure of four million USD, the
standard error of the average hedging cost drops to only a paltry 41 USD from 1,303 USD
for the estimated price of the same option without using the variance reduction technique.

2. Properties of Options with Two Average Prices

In the last section, we focused only on the pricing of a call option on the minimum of two
average prices. The foreign account payables hedging problemiillustrated in the introduction
requires, however, a call option on the maximum of two average prices. In this section,
we show that the call option on the maximum of two average prices can be derived from
the option on the minimum of two average prices via a parity relationship. In fact, we
discuss several useful parity relationships from which some variants of the options on the
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minimum or the maximum can be easily derived (subsection 2.1). We also provide the
upper and lower bounds for the call option on the minimum of two arithmetic average
prices (subsection 2.2).

For ease of discussion in this section, we employ a new notation system as follows.
Let CMA(S, S, A1, A, K, t) be a call option on the minimum of two average prices
with the terminal payoffCMA(T) = Max{Min[ Ay(T), A2(T)] — K, 0}, which we use
as a benchmark option and whose pricing has been already solved in Section 2. Although
arithmetic averaging is presented, the discussion on parity relationships holds for geometric
averaging as well.

2.1. Some Useful Parity Relationships

We discuss here some parity relationships among related average-rate European-style
options! It is sufficient to show that the parity relationships hold at maturity.

2.1.1. Pricing of a Call Option on the Maximum of Two Average Prices

LetCXA(S, S, A1, Az, K, t) be the price of a call option on the maximum of two average
prices with the terminal payoff @XA(T) = Max{Max[A1(T), Ax(T)] — K, 0}. Itis easy
to verify that the following parity relationship holds:

CXAT) = Max{A.(T) — K, 0} + Max{Ax(T) — K, 0} — CMA(T). (20)

Thus, a call option on the maximum of two average prices can be synthetically created
by taking long positions in two corresponding ordinary average-rate options and a short
position in a call option on the minimum of two average pric&8lA(S;, S, A1, Az, K, 1).

From parity relationship (20), we find that either value of the options on the minimum
or the maximum of two average asset prices is smaller than the sum of the values of two
corresponding standard average-rate options. This cost-effectiveness justifies the preference
of the proposed option over two corresponding standard average-rate options.

2.1.2. Pricing of an Option on the Best of Two Averages and a Discount Bond

LetBA(S, S, A1, Ay, K, t) be the price of an option on the best of two average prices and
a discount bondK , with the terminal payofBA(T) = Max{A:(T), Ax(T), K}. Clearly,
we have

BA(T) = K + CXA(T). (21)
Thus, the price of an option on the best of two average prices and a discount bond is

determined by the value of the discount boKa~"T—, and the price of a call option on
the maximum of two average pric€BXA(S, S, Az, Az, K, t).
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2.1.3. Pricing of an Average-Rate Exchange Option

Let XA(S, S, A1, Az, t) be the price of an average-rate exchange option with the terminal
payoff XA(T) = Max{Ax(T) — A1(T), 0}. This option is the average-rate version of an
exchange option by Margrabe (1978) and is analyzed by Boyle (1993), who provides a
closed-form formula, which is a special case of our formula in (7)—(11). As a matter of
fact, the payoff of the average-rate exchange option can be decomposed into

XA(T) = Max{Ax(T), 0} — Max{Min[ A1(T), Ax(T)], O}. (22)

Thus, the price of an exchange average-rate option is determined by the price of an ordinary
average-rate option with a zero strike minus the price of a call option on the minimum of
two average prices with a zero strike, nameMA(S,, S, A1, A2, 0, 1).

2.1.4. Pricing of a Put Option on the Minimum of Two Average Prices

LetPMA(S, S, A1, Az, K, t) be the price of a put option on the minimum of two average
prices with the terminal payoff dPMA(T) = Max{K — Min[ A;(T), A2(T)], 0}. Then,
we have

PMA(T) = K — Max{Min[ A.(T), Ax(T)], 0} + CMA(T). (23)

Thus, a put option on the minimum of two average prices can be synthetically created by
a portfolio of a long position in a discount bond with face vakiga short position in a

call option on the minimum of two average prices with a zero strike, which has a value
of CMA(S,, S, A1, A, 0,1), and a long position in a call option on the minimum of two
average prices with exercise prig which has a value dEMA(S;, S, A1, Az, K, t).

2.1.5. Pricing of a Put Option on the Maximum of Two Average Prices

Let PXA(S, S, Ag, K, t) be the price of a put option on the maximum of two average
prices with the terminal payoff ?#XA(T) = Max{K — Max[A1(T), A2(T)], 0}. Then, we
have

PXAT) = K — Max{Max[A.(T), Ax(T)], 0} + CXAT). (24)

Thus, a put option on the maximum of two average prices can be synthetically created
by a portfolio of a long position in a discount bond with face valiga short position

in a call option on the maximum of two average prices with a zero strike, whose value
is determined byYCXA(S, S, A1, A2, 0,1), and a long position in a call option on the
maximum of two average prices with exercise pri€e whose value is determined by
CXAS, &, A1, Ag, K, 1).
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2.2. Upper and Lower Bounds for the Option with Two Arithmetic Averages

This subsection provides the upper and lower bounds for the option on the minimum or the
maximum of two average arithmetic average prices. Our goal is to find tight upper and lower
bounds that can be easily determined by the values of traditional options or options with
closed-form pricing formulae. We first show such upper and lower bounds for the option
on the minimum of two arithmetic average prices. It is easy to verify that the following
inequality holds:

CMA(T) < Min[Max{A.(T) — K, 0}, Max{ Ax(T) — K, 0}]. (25)

Thus, the price of the option on the minimum of two arithmetic average prices is no greater
than the minimum value of the two corresponding standard arithmetic average-rate options.
As a matter of fact, similar to (25), the geometric counterpart defines an upper bound for
the concerned option with geometric averaging as well.

Furthermore, the lower bound for the value of an option with arithmetic averaging can
be found using a similar option with geometric averaging. CMG(S;, S, G1, Gy, K, t)
be the price of a European-style option on the minimum of two geometric average prices
with the terminal payoff ofCMG(T) = Max{Min[G1(T), G»(T)] — K, 0}, whereG; and
G, are defined as a continuous-time version of (19). Then, we have the following relation:

CMG(T) < CMA(T). (26)

Thus, the lower bound of the price of an European-style option on the minimum of two
arithmetic average prices is the price of its geometric-average counterpart. This is from the
fact that a geometric average is no larger than its arithmetic counterpart.

Table 1, columnGV* reports values of the option on the minimum of two geometric
average prices with various input parameters according to the closed-form formula in (7)-
(11). It is worth mentioning that (26) is verified by the numerical results that all the values
in the GV* column are smaller than the comparable values in col&h, which are the
estimated values of the option on the minimum of two arithmetic average prices.

The upper and lower bounds for an option on the maximum of two arithmetic average
prices are given as follows:

Max[Max{ A¢(T) — K, 0}, Max{ Az(T) — K, 0}]
= CXAT)
< Max{A((T) — K, 0} + Max{Ax(T) — K, 0} — CMG(T), (27)

where the first inequality can be easily understood from the definiti@X#{T) while the
second inequality is from parity relationship (20) using the fact of (26).

3. Applications

The options on the maximum or the minimum of two average prices that we have dis-
cussed so far not only have applications in risk management (subsections 3.1-3.3) but also
enter in the payoff function of an incentive contract of a management compensation plan
(subsection 3.4).
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3.1. Hedging under a Flexible Two-FX Invoicing Policy

As discussed in the introduction, the flexible invoicing policy a foreign exporter offers
can benefit a domestic importer if the option on the maximum of two average prices is
available. LetS; and S, be the two foreign exchange rates (quoted as YFST) that the
foreign exporter is willing to receive, and let andc, be the positive constant foreign
account payables i8;, and S, respectively, in each period for an extended period T. The
US importer is concerned about the average cost in USD during the period and wishes to
cap it atk without any regret later about which foreign currency it has chosen in the first
place.

The desire of the US firm can be best met by its holding an option with the terminal payoff
Max{Max[c1 B;, c;B;] — K, 0}, whereB; and B, are simply two arithmetic averages of
the spot rate$§, and S over the concerned period, respectively. Defiie= ¢;B;, and
A, = ¢;B,. The price of the option is given B@XA(S, S, A1, Az, K, t).

3.2. Hedging Production Costs with Stochastic Prices of Two Substitutable Inputs

Some production facilities are designed to be able to take either of two kinds of substitutable
raw materials as inputs. For example, an oil refinery can use two kinds of different crude
oils. If the firm orders periodic shipments of one kind of raw material for an extended
period and wishes to hedge the average production cost for the period without worrying
about what kind of raw material would turn out to be cost-effective, it is most suitable for
the firm to hold an option on the maximum of the two average prices.

Let S and S, be the prices of the two kinds of substitutable raw materials the firm can
use as inputs, and lét andh, be the comparable, constant quantities of the two kinds
of raw materials in each shipment for an extended period T. The desire of the firm to
be able to cap the average costkatwithout any regret later about which raw materiel
has been chosen in the first place can be best met by the option with the terminal payoff
Max{Max[h, D4, h,D,] — K, 0}, whereD; and D, are simply arithmetic averages of the
pricesS; and S, over the concerned period, respectively. Defiae= h1D;, andA; =
h,D,. The price of the option is given BBXAS, S, A1, Az, K, t).

3.3. Hedging Profit Markups with Stochastic Input and Output Prices

An oil refinery faces the hedging problem with price uncertainties not only in inputs like
crude oil but also in outputs such as heating oils and jet fuels that the refinery produces. Risk
management using a single derivative that takes into account all stochastic prices involved
in production is desired because of the cost-effectiveness of hedging.

If a firm wants to hedge away unwanted price movements of the finished products as well
as those of the raw material, two ordinary average-rate options are traditionally needed.
However, the average exchange option that consists of the option on the minimum of
two average prices proposed in this paper can provide a one-shot solution to this hedging
problem.
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Let S andS be the price of input and the price of the output of a comparable unit, respec-
tively, and letr be the average profit markup (a positive percentage) for each production
cycle the firm wishes to secure for an extended period T. Thus, the firm’s desire can be
best met by holding an option with the terminal payoff Mdx+ 7)H; — Hy, 0}, where
H; and H, are simply arithmetic averages of the input and output prigesnd S; over
the concerned period, respectively. Defihg = (1 + 7)H;, and A, = H,. This is the
average-rate exchange option and its price is giveKAYG,, S, Az, Ag, t).

3.4. Incentive Contracts for Executive Compensation

The incentive contract discussed in Stulz (1982) can be motivated by using average under-
lying prices. For one thing, average prices are anti-manipulative. On such an incentive
contract, consequently, managers find it difficult to boost their firm’s stock prices tem-
porarily just because they want to exercise the options that are traditionally included in
their compensation package. Moreover, the average feature smoothes out the randomness
and the “noise” inherent in the stock prices so that the managers can be evaluated more
fundamentally.

Let S and S be the stock prices of the managers’ firm and the competing firm or
the industrial representative, and let andL , be the average prices, respectively, for an
evaluation period T. The compensation plan involves a fixed amount of reward and a variable
incentive-related reward. Following Stulz (1982), the latter can be designed to have the
following payoff

Min[Max{y L1 — §L,, 0}, Max{y L, — K, 0}],

wherey and$ are positive constants for desired adjustments,kaigla fixed performance
benchmark.

The managers would not be entitled to an extra rewargdlif < SL, (worse than
competitors) ovL; < K (below the mark). Otherwise, the extra reward depends on how
they have outperformed the competitors and the pre-agreed fixed benchmark. As argued
earlier, the incentive contract so designed is truly merit-based and should be fair to both
managers and shareholders.

The payoff of the incentive contract can be decomposed into

Max{yL; — K, 0} — Max{Min{y L1, L.} — K, O}.
It follows that the value of the incentive contract is the value of a portfolio of a long position

in an ordinary average-rate option and a short position in an option on the minimum of two
average prices.

4. Concluding Remarks

This paper presents a new variety of financial derivatives: options on the minimum or the
maximum of two average asset prices. In particular, we provide a closed-form pricing
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formula for the options with the geometric averaging, which may start at any time before
maturity. We then price the option with arithmetic averaging in conventional simulations.
The overwhelming numerical evidence demonstrated in the paper confirms that the variance
reduction technique with the help of the above closed-form formula dramatically improves
the accuracy of the simulated price. Thus, substantial savings in computation time can be
achieved.

One way for financial managers to add value to their firms is to use financial innovations
which are able, for example, to mitigate financial distress costs. Thus, risk management
is closely liked to financial innovations and has become increasingly important to modern
corporations. The proposed options that non-trivially bridge the Asian options and the
Rainbow options obviously provide great value-added potentials. In particular, the options
not only have wide applications in risk management but also appropriately enter the payoff
function of incentive contracts for management compensation, a problem in the theory of
corporate finance.

Appendix A: Derivation of the Pricing Formula in (7)—(11)

To start with, we apply the following transformation

yi=_||_—i+$ln3, i=12, (28)
V(S, S 11, 12, ) = U (Y1, ¥, 1), (29)
to equation (3) and (4) to yield
e + }Lt)z <01282—U + 201(72,082—U + 02282—U>
at 2 T2 ay2 Y102 dy5
3 T () T e o
U (1. Y2. T) = max[min(e”, €?) — K, 0] . (31)

This transformation is also employed by Wilmott, Howison and Dewynne (1995) in pricing
a standard Asian option.
Next, we apply another transformation

t 1 ,\T—t 1 T —1)2
2=y [ (r-50) Tyt (- 50t) Tl =12 @)
T

2 T 2" 2T
Uy, Y2, t) = & TOW(z1, 25, 1) (33)
to equations (30) and (31) to obtain
AW L(T 12 [ ,0°W PW 02w
e W 2 =0, 34
ot "2 12 \TzZ o207, T2 (34)

W(z1, 25, T) = max[min(e®, %) — K, 0] . (35)
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Then, we transform the time variable as follows:

t o2 13
__/ (T-92  _ (T-t°

36
3T? (36)
It follows that equations (34) and (35) above become
oW 1 232 PW 1 282W
37
Bt 27 92 T %002, T 2% 52 37)
W(z1, 75, 0) = max[min(e™, ?) — K, 0], (38)

where equation (37), after an appropriate change of variables, becomes a classical two-
variable heat equation (see, e.g., Logan, 1998). Further, we realize that the following
transformation

X = A~ (—3007 (39)
W(Z]_, Zy, l') = F(X]_, X2, r)e” (40)

can transform equations (37) and (38) to the PDE in Stulz (1982):

oF 1 2X282F+ x 3°F
ar 2 01X 1 P0102X1 2 %10
1, ,d°F dF dF
—05X rx rx,— —rF, 41
+20228x§+ Yoxe * 2 9% (41)
F (X1, X2, 0) = max[min(xy, x2) — K, Q] . (42)

And the solution to equations (41) and (42), which was first derived by Stulz (1982) and
has been verified by us using Green'’s function approach, takes the following form:

1
In—+(r+§012>t |FIE—%<72 oo
F(X1, X2, 1) = XNz - R
01/T o /T o
X 1
In—2+(r+—022)t Inﬁ—}o2
+ %oNs K 2 Xp 2 poL— 02
o2/T ’ oJt = o
X1 1
|nE+(r —20'f>1' |n_2+(r __0—22)-[
Ke "N 2 (43)

O'lﬁ ’ O'zﬁ » P )
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whereNz(«, 8, 6) is the bivariate cumulative standard normal distribution with upper limits
of integrationa andg, correlation coefficien, and
0% =024 02 — 2p0109. (44)

Thus, the solution to equations (37) and (38) is given by

en 1
In— +0121 Z— 71+ 5(022 — 012 — o)1

W(zi, 25, 7) = ezl+%afr N, I;lﬁ ’ G ’ ,0020— o1
+ g2 +395TN, n % * GZZI’ a-nt %(012_022_02”’ pO1 — 02
02T ot o
f Ine?
KN, 015?’ a;f/?’ ol. (45)
It follows that the solution to our original problem (3)—(6) becomes
V(S S, 11, 2. 1) =" T OW(zy, 25, 1), (46)

where functionW(zy, 7, t) is given by (45), withz;, i = 1, 2, defined by (32) using (28)
andr defined by (36) respectively.
Alternatively, the solutin to our problem (3)—(6) can be written as

V(S S, 11, 12, ) = €7 T VE(x, X, 1), 47)

where the functiork (xq, X2, 7) is given by (43), with

o i T-—t 1\ (T-1)2 1, .
xl_exp<?+ T InS+(r—§ai)?—<r—§q ), 1=12 (48)

By doing some algebra, the solution to our problem (3)—(6) can be further written as (7)—(11)
in the paper.

Appendiz B: Pricing the Forward-start-averaging Option with the Minimum or the
Maximum of Two Geometric Average Prices

For a forward-start-averaging option on the minimum or the maximum of two geometeric
average prices, we use time notations as follows= Gtart of the optiont = option
valuation dateil, = start of the averaging; antl = maturity of the option or the end of

the averaging. We assume<0t < T, < T, with the forward-start-averaging taken over
[To, T]. Note thatfor0< Ty <t < T, we can invoke the “plain vanilla” pricing formula

of (7)—(11).
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We already know from (7)—(11) that the option price at Ty as follows:

201

V(S, . K, To)
1 1
In 3 + (I‘ + —61*2> (T—To) In S EU*Z(T -To .
_ SN K 2 S 2 01
AT T T edT- T o
1 1
n>2 + (r + —02*2> (T—=To) In 3_ Zo*(T — To) .
SN K 2 S 2 1793
GVT - To NG e R
1 1
In §+<r ——af2> (T —To) In§+(r ——cr;z) (T —To)
_ Kefr(TfTo)N2 K 2 K 2 Y
oI VT —To ’ osVT—To ’
(49)
where
S = e NT-To), i=12, (50)
1 1 1 .
w=3 <r - iffiz) +gol =12 (51)
oi
o = 2L i=12 52
=3 (52)
* = %, o= 0'12 +O’22 — 200107 (53)

Thus, the option price dt < Ty is simply thet-time value of a derivative with a terminal

value atTy determined by (49)—(53), i.e.,

f(S, &) =V(S, & To).

(54)

It follows that the option price can be obtained by solving the following integral:

V(S, 1)

=e / / f(SeVIH=30D1 g+ =300l (v, 'y, p)dyidy,,  (55)

wherel = Tp — t andn; is the bivariate normally distributed density function. Through
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some tedious algebra, we have the forward-start-averaging option formula:

V(S, &, K, t)
S 1
_sN, N340 +3T—t) NE—302T =0 pox o
oi/T —t ’ o*yT -t = o
] Sf 1 %
+$Nzln%+q+§q%a—u Ing = 302T =0 por g3
o3/T =t ’ o /Tt = o*
SI 1 _x Sz 1
_KeTT-ON, In g+ — 30T - t)’ In g+ — 30T - t)’p (56)
ofvT —t oy /T —t
where
Sk — Se(u,**r)(T*To)’ i=12 (57)
1 1 1 .
Mr=§<r—§#)+éq% i=12 (58)
27 — 1 .
o =0 37 tO’ i=12, (59)
2T — T,
c*=o0 1—§T—_t0, az\/af+022—2p0102. (60)

Note that (56) takes the same form as (7), but (57)—(60) are different from their counterparts
(8)-(11).

Notes

1. Most exotic options are promoted as more cost-effective than ordinary options. The option on the maximum
of two average prices is more expensive than a standard Asian option but is cheaper than the portfolio of two
corresponding Asian options, as shown later in the paper.

2. Commodity (such as oil) bonds come into being as a good application of the Asian option. A commodity bond
allows the bond holder to redeem a fixed face value plus the difference, if positive, between a variable related
to an average of the commodity prices and the face value (e.g., the Oranje Nassau bond, which is detailed
in Kemna and Vorst, 1990, and Bouaziz, Briys, and Crouhy, 1994). The average feature commodity bonds
embed purges much of the influence of the high volatility of commodity prices due to temporary manipulation.
Such bonds have two particular advantages. First, the issuing firm can enjoy built-in hedging by tying its debt
financing cost to its future revenues from producing the commodity. Second, those investors who are not able
or not allowed to trade commodity options can have a more sophisticated bet on commaodity prices. Naturally,
such commodity bonds can be easily modified to the case of two commaodities the firm produces.

3. Seee.g., Kemnaand Vorst (1990), Haykov (1993), and Corwin, Boyle, and Tan (1996). Extensive research has
focused on other computationally efficient techniques such as the analytic approximations that yield closed-
form expressions (see e.g., Turnbull and Wakeman, 1991, Levy, 1992, Geman and Yor, 1992, Vorst, 1992,
1996, Bouaziz, Briys and Crouhy, 1994, and Milevsky and Posner, 1998).
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4. Since the options this paper develops have characteristics of both Asian options and Rainbow options, we can
appropriately call them Asian Rainbow options. In general, the use of Asian Rainbow options is legitimately
justified as long as Stulz's Rainbow options require a modification with average prices. The Asian Rainbow
options are shown to generate many important and interesting applications.

5. For the ease of presentation, we focus on the “plain vanilla” case, namely the averaging is taken over the
whole life of a new option, i.e., [OT]. For completeness while saving space, we deal with the forward-start-
averaging, which starts in the middle of the life of a new optiin(0 < T, < T), in Appendix B. In fact, as
Kemna and Vorst (1990) have already discussed regarding the forward-start-averaging setting with an ordinary
Asian option, the value of the proposed optior aefore [Tp, T] can be determined in two steps. First, the
option with averaging taken ovef(, T]is evaluated alp as the “plain vanilla” case. Second, the value of the
derivative with the terminal value &t that is set equal to the calculated value of the option with two average
prices in the first step can be routinely determined.

6. In this paper we use the variance-reduction technigue which is first employed by Boyle (1977) for estimating
option prices. For innovations in variance-reduction techniques with applications in path-dependent options,
see e.g., Glasserman, Heidelberger, and Shahabuddin (1999) which combines the importance sampling with
the stratified sampling.

7. Stulz (1982) has a similar discussion on his options on the minimum or the maximum of two risky assets.
Ritchken (1996) presents additional parity relationships related to Stulz’s options.
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