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In fast phase-measuring profilometry, phase error caused by gamma distortion is the dominant error source. Pre-
vious phase-error compensation or gamma correction methods require the projector to be focused for best perfor-
mance. However, in practice, as digital projectors are built with large apertures, they cannot project ideal focused
fringe images. In this Letter, a thorough theoretical model of the gamma-distorted fringe image is derived from an
optical perspective, and a highly accurate and easy to implement gamma correction method is presented to reduce
the obstinate phase error. With the proposed method, high measuring accuracy can be achieved with the conven-
tional three-step phase-shifting algorithm. The validity of the technique is verified by experiments. © 2011 Optical
Society of America
OCIS codes: 120.2830, 120.6660, 110.6880.

Phase-measuring profilometry (PMP) has been recog-
nized as one of the most effective methods for practical
3D phase measurements [1]. In practice, there are many
factors affecting the precision of the resulting 3D mea-
surement. These factors can be classified as being from
uncertainty due to sensor noise or from a nonlinear re-
sponse of gamma distortion in the camera–projector pair
[2]. In contrast to measurement uncertainty that is phase
independent, gamma distortion leads to the deviation of
the captured fringe pattern from ideal sinusoidal wave-
forms and introduces an additional phase error. This kind
of phase error can be eliminated by using a large number
of phase-shifting fringe patterns [3]. However, in fast or
real-time PMP systems [4,5], a three-step phase-shifting
method is commonly used, and phase error caused by
gamma distortion is considered as the dominant error
source.
To overcome the gamma distortion problem, many ap-

proaches of phase-error compensation or gamma correc-
tion have been proposed [6–8]. Although most of the
previous methods can reduce the phase error to a certain
extent, they require the projector to be focused for best
performance. However, to maximize the brightness of
the projected pattern, digital projectors are usually built
with large apertures in practice. The trade-off between
focusing and brightness results in narrow depths of field
of the projectors. Therefore, in practical PMP systems,
there is only a small measurement range with sharp fo-
cus, out of which varying degrees of out-of-focus blur
would occur. Although some experimental researches
[9–11] indicate that rationally defocusing the projector
is good for PMP systems, theoretical study about this is-
sue is still lacking. Furthermore, a rigorous gamma dis-
tortion model and gamma calibration method that
considers the defocusing effect has not yet been un-
veiled. In this Letter, a complete theoretical model of
the gamma-distorted fringe image is derived from an op-
tical perspective. Based on this model, a high accuracy

and easy implementation gamma correction method is
developed for fast PMP systems.

Mathematically, the gamma of a digital projector
brings high-order harmonics to the projected fringe
image, and the intensity of the gamma-distorted fringe
image can be expressed as

IPnðx;yÞ¼ fAPðx;yÞþBPðx;yÞcos½ϕðx;yÞþδn�gγ

¼Aðx;yÞþ
X∞
k¼1

Bkðx;yÞcosfk½ϕðx;yÞþδn�g; ð1Þ

where ðx; yÞ denotes an arbitrary point in the image,
APðx; yÞ and BPðx; yÞ are user defined constants, δn re-
presents a phase-shifting amount, γ is the gamma value,
Aðx; yÞ denotes the direct component, Bkðx; yÞ denotes
the magnitude of the kth harmonic component, and
ϕðx; yÞ is the desired phase information. For conveni-
ence, ðx; yÞ will be omitted from the equations hereafter.

Following the derivation presented in [6], if Bk ≠ 0, the
ratio Bkþ1=Bk can be derived as

Bkþ1=Bk ¼ ðγ − kÞ=ðγ þ kþ 1Þ: ð2Þ
This is the ideal model of the gamma-distorted fringe

image. As we have described before, digital projectors
are built with large apertures, which prevents them from
projecting ideal focused fringe images. This phenomenon
can be modeled by the point spread function (PSF) of the
projector. While the PSF depends on the lens system, it
can be modeled as a 2D circular Gaussian of the form [12]

Gðx; yÞ ¼ 1

2πσ2 exp
�
−
x2 þ y2

2σ2
�
; ð3Þ

where σ is the standard deviation of the distribution and it
determines the degree of smoothing. In most practical
PMP systems, as the projector is quite bright, we
stop-down the aperture of the camera so that any defocus
introduced by the camera is negligible compared to that of
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the projector. Therefore, the actual intensity of the defo-
cused gamma distortion fringe images can be expressed
as

ICn ¼ αIPn � Gðx; yÞ; ð4Þ
where * denotes convolution and α ∈ ½0; 1� is the reflectiv-
ity of a scanned object. This convolution is a low-pass fil-
ter, which can suppress the high-order harmonics and
accordingly reduce the phase error. To demonstrate this,
the optical transfer function (OTF) of the projection op-
tics is derived by taking the Fourier transform of the
PSF. In practice, the fringe patterns are either vertical
or horizontal, and because only one cross section perpen-
dicular to the fringe patterns needs to be considered, the
problem is reduced to a 1D problem and the OTF can be
expressed as

Tðf Þ ¼
Z∞

−∞

GðxÞ expði2πf xÞdx ¼ expð−2π2σ2f 2Þ: ð5Þ

For sinusoidally varying the object intensity, the image
intensity is equal to the object intensity multiplied by the
OTF. Similarly, the captured distorted fringe can be given
by

ICn ¼ αIPnTðf Þ ¼ ~Aþ
X∞
k¼1

~Bk cos½kðϕþ δnÞ�; ð6Þ

where ~A ¼ αA, and ~Bk ¼ αTðkf 0ÞBk. The coefficients
Tðkf 0Þ decay according to Eq. (5), providing the desired
low-pass filtering effect. For any reasonable OTF, the
magnitude decreases rapidly as f becomes large. Com-
paring Eq. (6) with Eq. (1), we can see that projector de-
focus will attenuate the high-order harmonics of the
gamma-distorted fringe patterns.
So far, a more precise mathematical model is derived

for the gamma-distorted fringe image. Consequently, we
can more accurately establish the practical magnitude
of the residual phase error for the three-step phase-
shiftingmethod. In this Letter, in Eq. (6), we only consider
harmonics up to the third order. Nevertheless, it should be
noted that the following derivation can be easily extended
to higher-order harmonics and other phase-shifting
methods.
Using Eq. (6) in the three-step phase-shifting method,

the measured phase ϕ0 can be given as

ϕ0 ¼ − arctan

� ~B1 sinðϕÞ − ~B2 sinð2ϕÞ
~B1 cosðϕÞ þ ~B2 cosð2ϕÞ

�
: ð7Þ

The measured phase ϕ0 can be considered as the sum of
the actual phase ϕ and the phase error Δϕ. Thus, the
phase error can be derived as

Δϕ ¼ − arctan

��~B2

~B1

sinð3ϕÞ
�
=

�
1þ

~B2

~B1

cosð3ϕÞ
��

: ð8Þ

To gauge the magnitude of the phase error, by setting
dΔϕ=dϕ ¼ 0, the maximum phase error of the three-step
phase-shifting method can be obtained. That is,

Δϕmax¼arctan

�� ð~B2=~B1Þ2
1−ð~B2=~B1Þ2

�
1=2

�
¼arctan

��
p2

1−p2

�
1=2

�
;

ð9Þ
where

p ¼
~B2

~B1

¼ Tð2f 0Þ
Tðf 0Þ

B2

B1
¼ expð−6π2σ2f 20Þ

γ − 1
γ þ 2

: ð10Þ

Through the equations above, we can know that the
phase error is not only related to gamma value (γ), phase
steps (N), and phase value (ϕ), but it is also related to the
defocus degree (σ) and spatial carrier frequency (f 0). The
maximal phase error monotonically increases in the
scope of p ∈ ð0; 1Þ, and as Tð2f 0Þ=Tðf 0Þ < 1, the defocus
decreases the ratio p and accordingly reduces the max-
imal phase error. This is the theoretical cause of why
proper projector defocus is good for weakening the ef-
fects of gamma distortion. Nevertheless, at the same
time, the defocusing effect will make the phase error un-
steady and variational in the measuring space. One fea-
sible way to solve this problem is gamma correction,
which calibrates the accurate gamma value and encodes
it to the generated phase-shifting images. In this Letter,
based on the derived mathematical model, an accurate
gamma correction method is developed.

Fig. 1. (Color online) Experiment results: (a) gamma calibra-
tion results and (b) phase errors without and with gamma
correction.
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According to discrete-time Fourier series, ~B1 and ~B2
can be expressed as

~Bk ¼
1
L

��XL
l¼1

ICl sin

�
k
2πl
L

��
2
þ
�XL
l¼1

ICl cos

�
k
2πl
L

��
2
�

1=2
;

ð11Þ
where k ¼ 1, 2, and L is the number of patterns. The ef-
fect of the high-order harmonic on the main harmonic
depends on the number of patterns L; the larger is L,
the smaller is the effect of the high-order harmonic.
Therefore, we can estimate correct ~B2=~B1 from Eq. (11)
with a large L. We note that Eq. (11) is consistent with the
equation derived by [6]. However, they do not consider
the influence of the projector defocusing effect and di-
rectly take ~B2=~B1 for B2=B1 to calculate γ from Eq. (2).
Actually, ~B2=~B1 is less than B2=B1 owing to the influence
of the defocusing, so γ calculated from their method is
less than the actual one.
From Eqs. (10) and (11), we can know that, with an

arbitrary none-1 encoding γ0 preapplied to the computer-
generated fringe images, the ratio ~B2

0=~B1
0 can be ex-

pressed as

~B2
0

~B1
0 ¼

Tð2f 0Þ
Tðf 0Þ

B2
0

B1
0 ¼ expð−6π2σ2f 20Þ

γ=γ0 − 1
γ=γ0 þ 2

: ð12Þ

Similarly, we can also estimate correct ~B2
0=~B1

0 from
Eq. (11) with a large L. Then, combining Eqs. (10) and
(12), we can easily calculate γ and σ for each pixel. In
practice, γ at each pixel is not exactly the same. So a
trade-off solution is to apply a mean gamma value �γ to
encode the computer-generated phase-shifting images.
The above approach is summarized as:

1. With a simple-shape object (e.g., a white flat
board) as a target, we use two groups of phase-shifting
fringe images with a large L (e.g., L ¼ 16), encoded with
γ0 ¼ 1 and γ0 ¼ 2, to calculate ~B2=~B1 and ~B2

0=~B1
0, respec-

tively, according to Eq. (11).
2. Calculate γ and σ for each pixel according to Eqs.

(10) and (12), and estimate the mean gamma value �γ.
Then, encode �γ to the computer-generated three-step
phase-shifting images.
3. Once �γ is calibrated and encoded to the generated

phase-shifting images, a conventional three-step phase-
shifting method can be used to retrieve phase with
gamma distortion removed.

The performance of the proposed gamma correction
method was verified with a PMP system composed of

a digital projector (Infocus LP70þ) and a CCD camera
(DH-1410FM). A white flat board was put in front of
the system, perpendicular to the optical axis of the pro-
jector. The projected images were adjusted to be in focus
on the board manually. Then, applying the proposed
method, a gamma matrix with a reliably estimated mean
gamma value �γ can be calculated. For comparison, the
Liu method [6] was also employed to obtain the �γ. Then
we moved the flat board to ten different positions before
and after the focus plane, with an interval of 20 mm, and
we repeated the above process. The obtained �γ are
shown in Fig. 1(a). From the top and bottom figures,
we can see that �γ obtained from our method vary in a
small range (from 4.01 to 4.05), while the ones obtained
from the Liu method have smaller values but with a big-
ger range of change (from 2.95 to 3.17). The obtained σ
are plotted in the middle figure. It is seen that, at
z ¼ −40 mm, σ is minimum, being equal to 0.92. Accord-
ingly, the �γ obtained from the Liu method is maximum. It
is because at this position, the projected image is at op-
timal focus. Therefore, the effect of defocusing is the
minimum. These results agree well with the theoretical
model. The phase errors obtained from the three-step
phase-shifting method without and with gamma correc-
tion are shown in Fig. 1(b). The actual phase values
are obtained from a 16-step phase-shifting method. The
maximal phase error before gamma correction is
0:464 rad. Preencoding the gamma value obtained from
Liu’s method and our method, the maximal phase error
reduces to 0.137 and 0:045 rad, respectively. The results
show that our method is more accurate.

Next, a plaster model with free-form surface is mea-
sured with our gamma correction method. The measure-
ment result is given in Fig. 2. The measured 3D surface
with our gamma correction method shows that there is
no obvious ripple on the 3D surface, which indicates that
our gamma correction method can significantly improve
the measuring precision.
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Fig. 2. (Color online) Measurement result of a complex plaster
model: (a) captured fringe image, measured 3D surface (b)
without and (c) with our gamma correction, and (d) partial en-
larged detail.
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