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a b s t r a c t

Dimensionality reduction has many applications in pattern recognition, machine learning and computer

vision. In this paper, we develop a general regularization framework for dimensionality reduction by

allowing the use of different functions in the cost function. This is especially important as we can

achieve robustness in the presence of outliers. It is shown that optimizing the regularized cost function

is equivalent to solving a nonlinear eigenvalue problem under certain conditions, which can be handled

by the self-consistent field (SCF) iteration. Moreover, this regularization framework is applicable in

unsupervised or supervised learning by defining the regularization term which provides some types of

prior knowledge of projected samples or projected vectors. It is also noted that some linear projection

methods can be obtained from this framework by choosing different functions and imposing different

constraints. Finally, we show some applications of our framework by various data sets including

handwritten characters, face images, UCI data, and gene expression data.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In data analysis problems where there are a large number of
input variables, it is often beneficial to reduce the dimension of
data in order to improve the efficiency and accuracy of data
analysis. Consequently, dimensionality reduction becomes one of
key techniques in data analysis. Dimensionality reduction aims at
reducing the dimensionality of data such that the extracted
features are as representable as possible. During the past several
decades, a variety of algorithms and techniques [1–8] for
dimensionality reduction have been developed. Among them,
principal component analysis (PCA) and linear discriminant
analysis (LDA) are regarded as the most powerful tools of
dimensionality reduction. In general, PCA is to find an orthogonal
set of vectors by maximizing the variance of the projected data,
whereas LDA is to seek discriminant vectors by maximizing the
ratio of the between-class distance to the within-class distance. It
is shown that LDA is a more effective method for extracting
features in the classification problem as compared to PCA in
general cases. However, LDA often suffers from the small sample
size (3S) problem when the dimension of data is much larger than
the number of data points.

In recent years, many approaches [10–16] have been proposed
to deal with high dimensional data and the 3S problem. For
example, the Fisherface method [2] first applies PCA to reduce the
ll rights reserved.
dimension of samples to obtain a full-rank within-class scatter
matrix. Then standard LDA is used to extract features. In [15],
Chen et al. proposed the null space-based LDA, where the
between-class scatter is maximized in the null space of the
within-class scatter matrix. In [12], Howland and Park proposed
the LDA/GSVD algorithm which circumvents the singularity
problem by using the generalized singular value decomposition.
Direct LDA [17] first removes the null space of the between-class
scatter matrix and then seeks the projection to minimize the
within-class scatter. In order to reduce the computational cost of
LDA, Ye and Li [5] proposed a two-stage LDA extension (LDA/QR).
Their method first applies the QR decomposition on a small
matrix, and then followed by LDA. Further, Zhang and Sim [10]
analyzed LDA via the Fukunaga–Koontz transform, which provides
a unified framework for understanding some variants of LDA. In
[14], Li et al. proposed an efficient and stable method to calculate
discriminant vectors based on the maximum margin criterion
(MMC). The difference between Fisher’s criterion and MMC is that
the former maximizes the Fisher quotient while the latter
maximizes the average distance. In [18], the authors proposed a
unified framework for generalized LDA via a transfer function. It is
shown that uncorrelated LDA is a special case of PCA plus LDA and
regularized LDA.

Although PCA and LDA have been successfully used in solving
some problems in pattern recognition and machine learning, they
are prone to the presence of outliers due to the fact they do not
involve robust functions in the cost function. In order to deal
with this problem, some researchers proposed robust algorithms
[19–24] for dimensionality reduction in recent years. In [24], the
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authors formulated matrix factorization as an L1 norm minimiza-
tion problem, which can be efficiently solved by alternate convex
programming. However, the solution does not have rotational
invariance. Considering this point, the authors [21] proposed
rotational invariant L1 norm principal component analysis which
combines some merits of PCA and L1 PCA [24]. Their method can
suppress the effect of outliers by defining a modified covariance
matrix which softens contributions from outliers. In [19], the
authors proposed a method of principal component analysis
based on a new L1 norm optimization technique. The L1 norm
optimization algorithm is robust to outliers and is easy to
implement.

Note that the algorithms for robust PCA are to minimize the
error between original data and reconstructed data in terms of
different objective functions. However, they may produce un-
desirable classification performances due to the fact they are
devised from the viewpoint of data reconstruction. Furthermore,
they do not make full use of prior knowledge of data points such
as the geometrical structure of data points. To this end, we
develop a regularization framework of discriminant analysis by
using prior knowledge of data points. In this framework, one can
flexibly choose robust functions to suppress the presence of
outliers. Moreover, a regularization parameter is used to control
the tradeoff between the data reconstruction error and prior
knowledge of data points. It is found that the optimization
problem can be formulated as a nonlinear eigenvalue problem
under proper conditions. Further, we propose a projected non-
linear eigenvalue problem. In addition, we also conduct extensive
experiments to evaluate the proposed framework on various data
sets including handwritten numerals, UCI data sets, face images
and gene expression data. Overall, the main contributions of this
paper include
(1)
 We develop a regularization framework of discriminant
analysis for dimensionality reduction. In this framework, one
can choose robust functions to suppress the presence of
outliers. Moreover, we are also capable of using this frame-
work to implement the data reconstruction problem.
(2)
 We give the detailed analysis on the relationship among some
linear projected methods. In particular, we show that
regularized MMC is a special case of our framework, which
helps explain why regularized MMC is a robust feature
extraction method, and also point out the range of the
regularization parameter in regularized MMC.
(3)
 We conduct extensive experiments on various data sets to
evaluate the effectiveness of our framework and compare it
with some linear projected methods.
The rest of this paper is organized as follows. Section 2
overviews linear projection methods including PCA, LDA, MMC,
and regularized MMC. In Section 3, we give a regularization
framework of discriminant analysis for dimensionality reduction
and show how to solve the optimization problem. In Section 4,
links to some existing linear projected methods are given. Section
5 gives the detailed experimental results. Section 6 contains some
concluding remarks and further directions.
2. PCA, LDA, MMC and regularized MMC

Assume that x1; . . . ; xm are a set of n-dimensional samples of
size m, xiARn

ði¼ 1; . . . ;mÞ. Each sample belongs to exactly one of
c object classes fl1; . . . ; lcg and the number of samples in the ith
class is mi. The between-class scatter matrix, the within-class
scatter matrix, and the total scatter matrix are defined as:

Sb ¼
Xc

i ¼ 1

miðmi � mÞðmi � mÞ
T ;

Sw ¼
Xc

i ¼ 1

X
xA li

ðx� miÞðx� miÞ
T ; St ¼

Xm

i ¼ 1

ðxi � mÞðxi � mÞT ;

where i is the centroid of the ith class and m is the global centroid
of the sample set.

2.1. PCA

Principal component analysis, also called Karhumen–Loeve
transform in some sense, extracts the desired number of principal
components for data by minimizing the mean squared error
criterion. The optimal linear transformation UARn�k for PCA is
the one that maximizes the total scatter in a reduced dimensional
space. The matrix U can be obtained by performing the eigen-
decomposition on St and the columns of U are eigenvectors of St

corresponding to the first k largest eigenvalues. It is easy to verify
that the ith eigenvalue is the variance of data that is projected
onto the ith eigenvector. A good property of PCA is that it
decorates the data.

2.2. Classical LDA

Classical LDA seeks the direction on which data points of
different classes are far from each other while requiring data
points of the same class to be close to each other. To be specific,
LDA is to find the optimal projection by optimizing the objective
function in the following:

max traceððUT SwUÞ�1
ðUT SbUÞÞ: ð1Þ

The optimal transformation U can be obtained by solving the
generalized eigenproblem: Sbu¼ lSwu. In general, there are at
most c�1 eigenvectors corresponding to nonzero eigenvalues
since the rank of the matrix Sb is not bigger than c�1. When Sw is
singular, one can overcome it by applying some methods such as
LDA/QR [6], PCA plus LDA [2], LDA/GSVD [9], and LDA/FKT [10].

2.3. MMC and regularized MMC

MMC aims at maximizing the average margin between
different classes. To be specific, MMC is to optimize the objective
function: traceðUT ðSb � SwÞUÞ under the proper constraint. The
optimal transformation U can be obtained by performing the
eigen-decomposition on the matrix ðSb � SwÞ. The matrix U is
composed of the first k eigenvectors of Sb � Sw corresponding to
the first k largest eigenvalues. The regularized MMC is to
maximize traceðUT ðSb � gSwÞUÞ with a nonnegative regularization
parameter g. As pointed out in [25], the MMC or regularized MMC
can also be performed within the range space of St since the null
space of St does not contain any discriminant information. As a
result, the computational complexity of MMC or regularized MMC
can be further reduced.
3. The regularization framework of discriminant analysis

3.1. The regularization framework

In this section, we assume that the data is centralized without
loss of generality. In fact, this is easily obtained by a translation of
data. It is shown [26] that the standard PCA is equivalent to
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Table 1
The functions in our regularization framework where v40 is a parameter.

(1) f ðtÞ ¼ jtjv [27]

(2) f ðtÞ ¼ 1� expð�vt2Þ [35]

(3) f ðtÞ ¼ vt2

1þvt2 [33]

(4) f ðtÞ ¼ vjtj
1þvjtj [32]

(5) f ðtÞ ¼ t2 if jtjrv, f ðtÞ ¼ vðvþ2jt � vjÞ if jtj4v [28]

(6) f ðtÞ ¼ logðvt2þ1Þ [34]

(7) f ðtÞ ¼ logðvjtjþ1Þ [28]
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solving the following optimization problem:

min
Xm

i¼1

Jxi � UUT xiJ
2; ð2Þ

s:t: UT U ¼ Ik;

where J J denotes a 2-norm and Ik is an k� k identity matrix.
From Eq. (2), one can see that UUT xi denotes the reconstructed

data of xi in a subspace spanned by the column vectors of U and
PCA makes the reconstruction error of m data points as small as
possible. In some sense, this corresponds to recovering m data
points in a subspace. Further, motivated by some ideas of signal
and image recovery [27–31], we propose the general framework to
obtain the projection matrix U by minimizing the regularized cost
function of the form in the following:

FðUÞ ¼CðUÞþlFðUÞ ¼
Xm

i ¼ 1

cðJp;qðxi � UUT xiÞÞþl
Xr

i ¼ 1

fðJp;qðU
T giÞÞ;

ð3Þ

s:t: UT U ¼ Ik;

where CðUÞ is the data reconstruction term, FðUÞ is the
regularization term that penalizes the roughness or smoothness
of projected data or the projected matrix, and l is a non-negative
parameter controlling the tradeoff between CðUÞ and FðUÞ. In a
statistical framework, CðUÞ denotes the distortion between the
original data and the reconstructed data. In the Bayesian
estimation framework, FðUÞ is prior knowledge of projected data
or the projected matrix U. The linear operators gi : R-Rn in
Eq. (3), for i¼ 1; . . . ; r, are to produce the difference between
neighboring samples as done in [28], which will be discussed in
Section 3.2. The function Jp;qð Þ in Eq. (3) denotes a measure for the
vector. In general, the vector norm can be used as the measure.
Here, we define the following generalized measure for a vector y:

Jp;qðyÞ ¼ ð
Xn

i ¼ 1

jyij
pÞ

q=p; p40; qZ0: ð4Þ

where yi is the ith component of the vector y and n is the
dimension of the vector y. Note that the definition of Eq. (4)
obviously contains some widely used vector norms such as L1
norms and L2 norms. Further, one can observe that Jp;qð Þ may
become a non-smooth function by choosing p and q. For
simplicity, in this paper we set p=2. Thus J2;qð Þ is a smooth
function and this will lead to a low computational complexity for
dealing with Eq. (3). Moreover, J2;qð Þ gets penalized as q is
reduced. In other words, when q approaches zero, a big 2-norm of
y yields a small value of J2;qð Þ. This may suppress data points
where they have big reconstruction errors and may decrease the
effect of outliers in data analysis. In addition, the functions fð Þ
and cð Þ in Eq. (3) need to be defined. As discussed in [28], the
function cð Þ : R-R is a continuous function which decreases on
ð�1;0�, increases on ½0; þ1Þ, and satisfies cð0Þ ¼ 0; the function
fð Þ : R-R is a potential function. Note that the functions fð Þ and
cð Þmay be the same in real applications. In order to make outliers
be smoothed and preserve non-outliers effectively, we hope to
adopt robust functions in the regularized cost function in Eq. (3).
Table 1 lists some functions that can be used in our regularization
framework. In fact, these functions have been widely used in
signal and image recovery [27] and have been shown that outliers
can be suppressed by using these functions. Overall, the objective
function in Eq. (3) means that the data may lie in a potential
subspace and we hope to find this subspace by minimizing the
regularized objective function which considers prior knowledge of
data points.
To solve the above optimization framework of Eq. (3), we need
to introduce the Lagrangian as follows:

LðUÞ ¼ FðUÞþtraceðLT
ðUT U � IkÞÞ; ð5Þ

where L is an k� k matrix containing the Lagrange multipliers
associated with the constraint specified by UT U ¼ Ik.

The Lagrangian L has to be minimized with respect to the
variables U and L. If one differentiates L with respect to the
variables U and L, one can obtain the following first-order
necessary condition of Eq. (3):

rULðUÞ ¼ 0; ð6Þ

UT U ¼ Ik;

where rUL denotes an n� k matrix whose (i,j)th entry is the
partial derivative of L with respect to the (i,j)th entry of U.

In the case that p=2 in Eq. (3), it is easy to obtain

rULðUÞ ¼
Xm

i ¼ 1

c0ððxT
i xi � xT

i UUT xiÞ
q=2
Þ

q

2
ðxT

i xi � xT
i UUT xiÞ

ðq=2Þ�1
ð�2xix

T
i ÞU

þ
Xr

i ¼ 1

f0ððgT
i UUT giÞ

q=2
Þ

q

2
ðgT

i UUT giÞ
ðq=2Þ�12ðgig

T
i ÞUþ2UL;

where c0ð Þ denotes the derivative of cð Þ and f0ð Þ denotes the
derivative of fð Þ.

For notational simplicity, let

HðUÞ ¼
Xm

i ¼ 1

c0ððxT
i xi � xT

i UUT xiÞ
q=2
Þ

q

2
ðxT

i xi � xT
i UUT xiÞ

ðq=2Þ�1
ðxix

T
i Þ

�
Xr

i ¼ 1

f0ððgT
i UUT giÞ

q=2
Þ

q

2
ðgT

i UUT giÞ
ðq=2Þ�1

ðgig
T
i Þ: ð7Þ

From Eqs. (6) and (7), one has

HðUÞU ¼UL: ð8Þ

One can find that the eigenvalue problem of Eq. (8) is nonlinear
since HðUÞ contains the matrix variable U in the general case. It is
noted that the eigenvalue problem of Eq. (8) becomes linear when
cðtÞ ¼fðtÞ ¼ t2 and q¼ 1. Also note that UQ is a solution for any
orthogonal matrix Q ARk�k if U is a solution. As a result, the
solution of the nonlinear eigenvalue problem is a k-dimension
invariant space rather than a specific matrix. As pointed out in
[36–38], the most widely used technique for solving the nonlinear
eigenvalue problem is to reduce it to a sequence of linear
eigenvalue problems. Based on this idea, the method called the
self consistent field (SCF) iteration [36] is used to deal with the
nonlinear eigenvalue problem. The basic idea of the SCF iteration
is the following. Given an initial Uð0Þ, one can compute HðUð0ÞÞ and
then obtains Uð1Þ which consists of eigenvectors corresponding to
the first k biggest eigenvalues by solving the linear eigenvalue
problem HðUð0ÞÞU ¼UL. From Uð1Þ, one continues to obtain
the next projection matrix and the process is repeated until the
stopping criterion is met. For completeness, we briefly outline the
main steps of the SCF iteration for solving the nonlinear
eigenvalue problem in the following.
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SCF iteration for solving Eq. (8)

(1) Given an initial matrix Uð0Þ

(2) For i¼ 1;2; . . . until convergence

(3) Compute HðiÞ ¼HðUði�1ÞÞ from Eq. (7)

(4) Obtain UðiÞ such that HðiÞUðiÞ ¼UðiÞLðiÞ and LðiÞ contains the

first k largest eigenvalues of HðiÞ.
(5) end

Note that the SCF iteration will locally converge under some
conditions [38]. Since the SCF iteration may not be converge, it is
common to keep track of the objective value found so far, i.e., the
one with the smallest objective value. At each iteration, we set
FðiÞbest ¼minfFði�1Þ

best ; FðU
ðiÞÞg, where Fði�1Þ

best is the best objective value
found in previous i�1 iterations and FðUðiÞÞ is the objective value
of the ith iteration. Since FðiÞbest is a decreasing sequence, it has a
limit point. In addition, from Eq. (7), it is found that HðUÞ is an
n�n matrix and it is necessary to perform the eigen-decomposi-
tion on HðUÞmany times in the above algorithm. It is obvious that
directly performing step 4 in the above algorithm is not effective
or impractical in real applications when the dimension of data is
large. To deal with this problem, the authors in [36] developed a
strategy by restricting the solution of the nonlinear eigenvalue
problem to a subspace. To be specific, at each iteration, the
solution of the nonlinear eigenvalue problem is restricted to
the subspace spanned by the solution in the previous iteration,
the gradient of the Lagrangian, and the search direction provided
in the previous iteration. In some sense, this corresponds to
solving a projected nonlinear eigenvalue problem.

Based on similar ideas in [36], we restrict the solution of Eq. (8)
to a subspace spanned by the samples in the training set. That is,
we can obtain the approximate solution, denoted by

U ¼ XA; ð9Þ

where X is the data matrix and A is an m� k matrix.
Substituting Eq. (9) into (3) and setting p¼ 2, one can obtain:

FðXAÞ ¼
Xm

i ¼ 1

cðJ2;qðxi � XAAT XT xiÞÞþl
Xr

i ¼ 1

fðJ2;qðA
T XT giÞÞ ð10Þ

s:t: AT XT XA¼ Ik:

In a similar way, the first order necessary condition of Eq. (10)
can be obtained by setting the gradient of the Lagrangian
associated with Eq. (10) to zero with respect to the variable A.
Then it is not difficult to obtain

ĤðAÞA¼ XT XAL

where

ĤðAÞ ¼
Xm

i ¼ 1

c0ððxT
i xi � xT

i XAAT XT xiÞ
q=2
Þ

�
q

2
ðxT

i xi�xT
i XAAT XT xiÞ

ðq=2Þ�1
ðXT xix

T
i XÞ

�
Xr

i ¼ 1

f0ððgT
i XAAT XT giÞ

q=2
Þ

q

2
ðgT

i XAAT giÞ
ðq=2Þ�1

ðXT gig
T
i XÞX:

As a result, solving Eq. (10) is equivalent to solving the following
problem

ĤðAÞA¼ XT XAL; ð11Þ

AT XT XA¼ Ik:

In general, when the number of the training samples is smaller
than the dimension of samples, the generalized nonlinear
eigenvalue problem of Eq. (11) is much smaller than the nonlinear
eigenvalue problem in Eq. (8) since ĤðAÞ is an m�m matrix.
Consequently, solving the nonlinear eigenvalue problem of
Eq. (11) is much more efficient than solving Eq. (8) in the small
sample size problem in terms of the computational complexity.
Similar to the algorithm of the nonlinear eigenvalue problem,
Eq. (11) can also be solved by reducing it to a sequence of
generalized linear eigenvalue problems. Here we also summarize
the main steps for solving Eq. (11).

SCF iteration for solving Eq. (11)

(1) Given an initial matrix Að0Þ.

(2) For i¼ 1;2; . . . until convergence

(3) Compute Ĥ
ðiÞ
¼ ĤðAði�1ÞÞ from Eq. (11)

(4) Obtain AðiÞ such that Ĥ
ðiÞ

AðiÞ ¼ XT XAðiÞLðiÞ and LðiÞ contains
the first k largest eigenvalues.
(5) end

From Eq. (11), it is observed that the inner product of data
points is involved when one computes Ĥ

ðiÞ
and XT X is a Gram

matrix. Based on these facts, one can use a kernel function to
replace the inner product of data points. Thus one can easily
extend the above algorithm to its kernel version. As a result, the
above algorithm also gives us a strategy to extend the
regularization framework of Eq. (3) to its kernel version. In
addition, when the dimension of data and the number of
samples are relatively large, directly adopting the sample space
may involve solving a large eigenvalue problem. In order to
further avoid this problem, one can further restrict the solution
of Eq. (3) to a small subspace that is smaller than the sample
space. To be specific, one partitions the data into many clusters
by k-means algorithm [25] and obtains the centroid of each
cluster. Then we use the centroid to approximate the structure
of clusters since the centroids are a good approximation of the
original data. Finally, we restrict the solution to the subspace
spanned by the centroids of clusters. It is obvious that this
subspace belongs to the sample space. In an extreme case of
supervised learning, one can restrict the solution to the
subspace spanned by the centroids of classes if the number of
classes and the dimension of data are relatively large. As a result,
one can deal with large-scale data sets by using this simple
strategy in our regularization framework.
3.2. The selection of regularization operators

In this subsection, we show how to choose the regularization
operators in the general case. Let G denote an n� r matrix whose
ith column is the linear operator gi in Eq. (3). Typically, G can be
simply set as an identity matrix, i.e., G¼ In, where In is an identity
matrix and r¼ n. This simple setting corresponds to providing
prior knowledge for the projection matrix U. In general, the
regularization operators in signal and image recovery [28] are
often defined as the difference between neighboring samples in
the original space. In a similar way, we define the regularization
operators in our framework to produce the difference between
neighboring samples in the projected space. For clarity, we will
discuss them in two cases: supervised learning and unsupervised
learning.

In supervised learning, one knows that one sample must
belong to one class. In such a case, we have prior knowledge of
class information. Similar to the setting in signal recovery, we set
UT gi to be the difference between xi and its neighboring samples
in the projected space. Assume that x1; . . . ; xs; xi belong to the
same class. We regard x1; . . . ; xs as the neighboring samples of xi.
In such a case, we define the difference between xi and its
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neighboring samples in the projected space as follows:

UT gi ¼
Xs

j ¼ 1

ðUT xi � UT xjÞ;

where UT xi is the projected data of xi. Further, we also give
another definition of linear operators. Since xi belongs to some
class, one can obtain the mean of the samples whose labels are the
same as that of xi, denoted by m. Then one regards m as a virtual
sample and further takes it as the neighborhood of xi. In such a
case, the first-order difference between xi and m in the projected
space is defined as UT gi ¼UT xi � UTmðiÞ, where mðiÞ denotes the
mean of the class to which xi belongs. Note that there are m linear
operators since there are m data points in such a case. In addition,
a more reasonable definition for linear operators is to use the
weighted first-order difference between xi and the other samples
in the class to which xi belongs.

In unsupervised learning, one does not have any class
information. However, in real applications, one hopes to preserve
the local structure of data points when they are projected into a
new space. Specifically, it requires that the projected data should
be close to each other if the data points xi and xj are close to each
other. In general, the local structure of data points is characterized
by the neighborhood of data points. Usually, one obtains the
neighborhood of xi with the property: Oðxi; eÞ ¼ fxjJx� xiJoeg,
where e is a positive constant, or simply defines s nearest-
neighbor points of xi. Then one can define the difference between
xi and its neighboring points in the projected space. Assume that
there are s neighboring points of xi. Here we give the weighted
difference between xi and its neighboring points in the projected
space, denoted by

UT gi ¼
Xs

j ¼ 1

wðxi; xjÞðU
T xi � UT xjÞ;

where wðxi; xjÞ ¼ expð�Jxi � xjJ
2=sÞ is the weight of the samples xi

and xj, and s is a parameter. Particularly, when the parameter s
approaches the positive infinity, then wðxi; xjÞ ¼ 1 holds.

Finally, it should be pointed out that the regularization
operators in unsupervised learning can be used in supervised
learning and combing them may yield the regularization
operators in semi-supervised learning. In practice, the linear
operators defined above are very similar to those defined in signal
and image recovery [28]. In order to enforce more strong
smoothness, one can use the high-order difference between the
samples in the projected space which are similar to the high-order
difference in signal and image recovery. The difference between
the operators in our framework and the operators in signal and
image recovery is that the former is used in a vector space and the
latter is mainly used in a scalar space. More specifically, some
methods in image recovery [28] are mainly used to recover an
image. However, the proposed framework in this paper can be
used to simultaneously recover some images or the vector-valued
image such as a color image in a subspace.

4. Links to linear projection techniques

In this section, we will show the relationship between our
framework and classical linear projected methods. It is of interest
to note that some linear projected methods belong to our
framework by choosing different functions in Eq. (3).

(i) When l¼ 0, cðtÞ ¼ t2, p=2, q=1, Eq. (3) can be written as

Xm

i ¼ 1

ðxT
i xi � xT

i UUT xiÞ; ð12Þ

s:t: UT U ¼ Ik:
It is straightforward to verify that minimizing Eq. (12) is
equivalent to obtaining the first k eigenvectors of XXT correspond-
ing to the first k largest eigenvalues. In the case that the data is
centralized, this is equivalent to classical PCA [26].

(ii) When l¼ 0, p=2, q=1, Eq. (3) can be written as

Xm

i ¼ 1

cð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT

i xi � xT
i UUT xi

q
Þ; ð13Þ

s:t: UT U ¼ Ik:

Thus, minimizing Eq. (13) is equivalent to rotational invariant
L1-norm PCA [21].

(iii) When cðtÞ ¼fðtÞ ¼ t2, p¼ 2; q¼ 1, and gT
i U ¼ ðUT xi�

UTmðiÞÞT , where mðiÞ denotes the mean of samples in the class to
which xi belongs, Eq. (3) can be written as

Xm

i ¼ 1

ðxT
i xi � xT

i UUT xiÞþl
Xn

i ¼ 1

ðUT xi � UTmðiÞÞT ðUT xi � UTmðiÞÞ

¼ traceðXXT Þ � traceðUT XXT UÞþl traceðUT SwUÞ: ð14Þ

Since traceðXXT Þ is a constant, minimizing Eq. (14) is equivalent
to the following optimization problem under proper constraints:

max½traceðUT XXT UÞ � l traceðUT SwUÞ�: ð15Þ

Note that Eq. (15) can be further written as follows in the case of
the centralized data:

max½traceðUT SbUÞ � ðl� 1ÞtraceðUT SwUÞ�: ð16Þ

Thus, the optimization problem of Eq. (16) is equivalent to the
regularized MMC. Consequently, regularized MMC belongs to our
framework. Further, one remarkable difference between our
framework and regularized MMC is that the former can be used
in unsupervised learning and the latter is only available for
supervised learning where each class at least has two samples. In
addition, note that the regularization parameter g in regularized
MMC often takes positive values. However, it is reasonable that
the parameter in the regularized MMC takes negative values since
regularized MMC becomes PCA in the case of g=�1. It is not
pointed out in previous literature that which range of the
parameter g in regularized MMC is reasonable when the
parameter l takes negative values. From our regularization
framework, one knows that the parameter g in our framework
takes values in ½0; þ1Þ. From this point, we can infer that the
parameter g in regularized MMC should be chosen from the
interval of ½�1; þ1Þ.

Finally, it should be pointed out that the constraint UT U ¼ Ik is
imposed in our framework. In fact, one also imposes the
constraint UT BU ¼ Ik in our framework, where B is a positive
definite matrix. Thus a class of generalized algorithms can be
induced from our framework and this will further extend our
framework in some sense. For example, if one hopes to extract
uncorrelated feature vectors, one can replace UT U ¼ Ik with
UT StU ¼ Ik in our regularization framework.
5. Experimental results

In this section, we carry out experiments on various data sets
to explore the performance of the proposed regularization
framework. In the regularization framework, the functions and
parameters we use are set as follows. cðtÞ ¼ t2 if jtjrv,
cðtÞ ¼ vðvþ2jt � vjÞ if jtj4v, where the parameter v is set as the
median value of the reconstructed error as done in [21], jðtÞ ¼ t,
and q¼ 1. We also assume that the samples in the same class are
close to each other. Further, when the classification problem is
involved, the nearest neighbor distance rule with the Euclidean
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distance measure is used as the classifier. In addition, note that
our experiments are implemented on a Pentium 1.6-G computer
with 1024M RAM and all the algorithms are programmed using
Matlab language.

5.1. Experiments on handwritten numerical characters

In this section, we report experimental results using the well-
known character dataset: the United States Postal services (USPS)
database, in which there are 9298 handwritten character
measurements divided into 10 classes. The entire USPS dataset
is divided into two parts, a training set with 7291 measurements
and a test set with 2007 measurements. All digits are 16�16
images which represent as 256 feature vectors and are collected
from mail envelopes in buffalo, NY. In our framework, the linear
operators in Eq. (3) are set as follows:

UT gi ¼
Xs

j ¼ 1

wðxi; xjÞðU
T xi � UT xjÞ;

where wðxi; xjÞ ¼ expð�Jxi � xjJ
2=sÞ is the weight of the samples xi

and xj, and s is set as the standard derivation of training sample
pairs.

In the first set of experiments, we demonstrate the effective-
ness of the regularization framework in different regularization
parameters for data visualization. First, we choose 300 samples
from 1, 6, 9 numerals, each class having 100 samples. As a result,
Fig. 1. Visualization of handwritten character images in different regu
we have 300 samples to train our method and then obtain the
projection matrix U. Thus these 300 samples are projected into a
two-dimension space. Fig. 1 shows the projection of the training
samples in different regularization parameters lð0;1;100;10 000Þ.
Note that our method with l¼ 0 is equivalent to rotational
invariant L1 PCA [21]. As can be seen from Fig. 1, incorporating
prior knowledge in the data reconstruction can change the
distribution of projected data points. Thus one can obtain better
visual results by tuning the regularization parameter. Further, this
shows that the regularization parameter may have a potential
effect on the data classification problem.

In the second set of experiments, we evaluate our method on
handwritten numerals. We randomly choose 100 samples per
class to form the training set and then use all the 2007 testing
samples to form the testing set. First, we carry out experiments to
show the effect of parameters in our framework. Fig. 2(a) shows
error rates of our method versus various parameters (log) on
handwritten numerals. As can be seen from Fig. 2(a), the
performance of our method becomes worse when the parameter
l is larger than some value and this shows that choosing an
improper parameter may result in performance degradation. As a
result, choosing a proper parameter is very important for our
framework. In addition, for comparison, we perform regularized
MMC, orthogonal LDA [5] and LDA/FKT [10]. LDA/FKT and
orthogonal LDA are two effective methods for solving LDA. The
regularization parameter g in RMMC and the regularization
parameter l in our framework are chosen from f0;0:0001;0:01;
larization parameters: (a) l=0; (b) l=1; (c) l=100; (d) l=10 000.
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Fig. 2. Experimental results on handwritten numerals: (a) error rates (%) versus various parameters; (b) error rates (%) versus reduced dimensions.
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. . . ;1000;10 000g. In our experiments, we randomly perform 5
runs to choose optimal parameters and perform additional 5 runs
to obtain the experimental result. Fig. 2(b) shows the average
error rate of each method versus the reduced dimensions from
five runs. It is observed from Fig. 2(b) that the best classification
performance of LDA/FKT, RMMC or OLDA is lower than that of our
method. This may come from the fact that the RMMC method
does not use robust functions and the number of extracted
features in LDA/FKT or OLDA is limited to nine. Our method,
however, adopts robust functions to overcome the influence of
outliers such as characters with the bad image quality. Moreover,
the projected dimension of our framework is not limited by the
number of classes. In short, these experiments show that
discriminant information can be effectively obtained by using
our framework in terms of robust functions.
5.2. Experiments on UCI data sets

To further demonstrate the performance of the proposed
regularization framework, we continue to carry out experiments
on a collection of benchmark data sets that can be obtained from
UCI machine learning repository [39]. These data sets have been
widely used in testing and evaluating the performance of some
machine learning algorithms. The attributes of each data set are
normalized to the interval of [�1, 1]. In order to evaluate the
performance of algorithms, 10-fold cross validation is performed.
The 10-fold cross-validation is a widely used technique in machine
learning and involves partitioning the whole data set into 10
roughly equalized parts. The classifier is trained on nine of the
partitions and tested on the remaining partition. This is repeated
until each partition has been tested on a new classifier built with
the remainder of the data set. For comparison, we also perform
LDA/FKT, OLDA regularized MMC (RMMC), Chernoff LDA(CLDA)
[40]. The regularization operators in Eq. (3) are set the same as
done in Section 5.1. We also perform double 10-fold cross-
validation on these data sets. One is to choose regularization
parameters in our framework or regularized MMC and the other is
to report our experimental results. Fig. 3(a) shows the performance
comparison on the breast data, which consists of 683
measurements from 2 classes in a 10-dimensional space. It is
shown that the best performance of all methods is obtained by our
method. Fig. 3(b) shows the performance comparison on the
diabetes data, which consists of 768 measurements from 2 classes
in an eight-dimensional space. It is shown that our method is
superior to RMMC when the number of features is bigger than 4
and the CLDA method does not perform well on this data set.
Fig. 3(c) shows the performance comparison on the glass data,
which consists of 214 measurements from 6 classes in a nine-
dimensional space. It is shown that our method outperforms CLDA
and OLDA is superior to LDA/FKT in most cases. Fig. 3(d) shows the
performance comparison on the heart data, which consists of 270
measurements from 2 classes in a 13-dimensional space. It is
shown that RMMC is superior to our method and the performance
of OLDA is the same as LDA/FKT since both only extract a feature.
Fig. 3(e) shows the performance comparison on the iris data, which
consists of 150 measurements from 3 classes in a 4-dimensional
space. It is shown that our method is superior to RMMC when the
number of features is bigger than 1. Fig. 3(f) shows the performance
comparison on the Ionosphere data, which consists of 351
measurements from 2 classes in a 34-dimensional space. It is
shown that our method achieves the best performance among all
methods and the performances of our method and CLDA
alternately change with the change of features. Fig. 3(g) shows
the performance comparison on the sonar data, which consists of
208 measurements from 2 classes in a 60-dimensional space. It is
shown that the performance of our method is better than that of
RMMC in most cases and our method still achieves the best
performance among all methods. On this data set, the CLDA
method performs worse. Fig. 3(h) shows the performance
comparison on the vehicle data, which consists of 846
measurements from 4 classes in an 18-dimensional space. It is
shown that our method outperforms RMMC with the increase of
features and the CLDA method can obtain the best performance.
Fig. 3(i) shows the performance comparison on the wine data,
which consists of 178 measurements from 3 classes in a 12-
dimensional space. It is shown that our method achieves
competitive performance with RMMC and OLDA in the case of
the best performance and the performance of CLDA becomes better
with the increase of features. These experimental results show our
method can achieve better classification performances than other
methods in most cases due to the fact we adopt robust functions in
Eq. (3). In the following, we carry out experiments to compare the
running time of various dimensionality reduction methods. Here
the convergent condition of our method is set if the difference
between the norms of L in Eq. (8) in successive iterations is less
than 10�3 or the maximal number of iterations is 100. Table 2
shows the average time consumed by different methods and
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average numbers of iterations of our method is also reported. From
Table 2, it is found that the time of our method is much longer than
that of other methods (RMMC, LDA/FKT, OLDA, and Chernoff LDA)
since our method involves a series of linear eigenvalue problems
and other methods only solve an eigenvalue problem. It is also
Fig. 3. Error rates (%) versus reduced dimensions on UCI data sets: (a) Breast; (b) Diab
found that the average numbers of iterations for our method do not
exceed the maximal number of iterations in the case that the
difference between the norms of L in Eq. (8) in successive
iterations is less than 10�3. This shows that our method locally
converges on these data sets based on our defined cost function.
etes; (c) Glass; (d) Heart; (e) Iris; (f) Ionosphere; (g) Sonar; (h) Vehicle; (i) Wine.
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Table 2
Time and iterations of different methods on some UCI data sets.

Average time (s) Iterations

LDA/FKT OLDA RMMC ChernoffLDA Ours Ours

Breast 0.064 0.076 0.065 0.064 4.75 4

Diabetes 0.073 0.078 0.072 0.075 8.05 45.2

Glass 0.001 0.014 0.001 0.015 0.57 50.5

Heart 0.006 0.014 0.003 0.109 0.62 23.6

Iris 0.004 0.003 0.003 0.007 0.24 34.3

Ionosphere 0.028 0.028 0.034 0.046 2.49 49.6

Sonar 0.026 0.05 0.003 0.084 0.98 17.7

Vehicle 0.195 0.203 0.201 0.214 14.15 79.3

Wine 0.004 0.009 0.006 0.008 0.33 25.6

Fig. 3. (Continued)

Fig. 4. The image and its noisy images: (a) the original image; (b) the image with

Gaussian noise; (c) the image with salt and pepper noise.
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5.3. Experiments on face images

In this section, we investigate the performance of the proposed
regularization framework for image reconstruction and image
classification on the UMIST database [41]. The UMIST database
contains 20 persons with totally 564 images. There are variations
of race, sex and appearance with different subjects. The size of
each image is approximately 220*210 pixels with 256 grey levels
per pixel. Precropped images with a size of 112*96 may also be
made available from the database. For computational simplicity,
we downsample each image into 56*46 pixels in our experiments.

In the first set of experiments, we show the effectiveness of our
regularization framework for the image reconstruction problem.
Since we focus on the image reconstruction problem, the operator gi

in our regularization framework is simply set as gi ¼ eiði¼ 1; . . . ;nÞ,
where ei is an n�1 vector in which the ith component is 1 and
others are zero, and the regularized parameter l takes values in
{0.01, 1, 100}. This corresponds to providing prior knowledge on the
projection matrix. First, we use all the samples as the training
samples to obtain the projected matrix U. Since UUT xi denotes the
reconstructed data of xi, we reshape UUT xi into the image. Fig. 5(a1)–
(a3) shows 10 reconstructed images of the first image in Fig. 4
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obtained by our method with different numbers of features
k¼ 1; . . . ;10 and different parameters. It is observed that the
reconstructed images become clearer as the dimension of
the subspace is increased. For comparison, the PCA method is
also performed to represent and reconstruct the same face image.
Fig. 5(a4) shows the reconstructed images obtained by PCA. It is
Fig. 5. The reconstructed images in different scenarios: (a) the reconstructed images

reconstructed images by our method l¼ 1; (a3) the reconstructed images by our

the reconstructed images with Gaussian noise: (b1) the reconstructed images by our

reconstructed images by our method l¼ 100; (b4) the first 10 reconstructed images

the reconstructed images by our method l¼ 0:01; (c2) the reconstructed images by our

10 reconstructed images by classical PCA.
observed that the images obtained by our method are smoother than
the images obtained by PCA due to the fact we add prior knowledge
of the projected matrix. In addition, two noisy images are
constructed by adding white Gaussian noise with the mean 0 and
the variance 0.01 and the salt and pepper noise with noise level 0.05
to the original images. Fig. 4(b) and (c) show the noisy images
without noise: (a1) the reconstructed images by our method l¼ 0:01; (a2) the

method l¼ 100; (a4) the first 10 reconstructed images by classical PCA; (b)

method l¼ 0:01; (b2) the reconstructed images by our method l¼ 1; (b3) the

by classical PCA; (c) the reconstructed images with salt and pepper noise: (c1)

method l¼ 1; (c3) the reconstructed images by our method l¼ 100; (c4): the first
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obtained by adding noise to the first image in Fig. 4(a). The
reconstructed images obtained by our method with different
numbers of features and different parameters are shown in
Fig. 5(b1–b3) and (c1–c3). The reconstructed images obtained
by classical PCA are displayed in Fig. 5(b4) and (c4). As can be
seen from these figures, the PCA method does not perform well
though it is to minimize the mean squared error. The reconstructed
images obtained by our method have slightly better visual quality
than those obtained by classical PCA method. The possible reason
may lie in the fact we use robust functions and add smoothing
Fig. 6. Average error rates (%) of various methods versus reduced dimensions.

Fig. 7. Error rates (%) of various methods versus reduced dimensions on ge
constraints to the objective function. This further shows that
choosing a proper function and adding smoothing constraints in
our framework can improve the quality of the reconstruction images
in some sense.

In the second set of experiments, we devise experiments to
show the performance of our regularization framework on the
image classification problem. In this set of experiments, 50%
images are randomly chosen and added to white Gaussian noise
with the mean 0 and the variance 0.01. Then a training sample set
is formed by randomly choosing 5 images from each individual
and the remaining images are used for testing. To enhance the
accuracy of performance, the classification performance reported
in the experiment is averaged over 20 runs. In other words, 20
different training and testing sets are used for performance
evaluation. Note that the regularization operators are set the same
as done in Section 5.1 and we also perform LDA/FKT, OLDA and
regularized MMC (RMMC) for comparison purposes. The regular-
ization parameters in our framework and RMMC are chosen from
additional 5 runs. Fig. 6 shows experimental results of different
projected methods versus reduced dimensions. As can be seen
from Fig. 6, our method can obtain similar performances with
RMMC since these two methods involve the regularization
technique and the regularization method is an effective
technique for overcoming data fitting. It is also observed that
OLDA is superior to LDA/FKT due to the fact that orthogonalization
contributes to noise reduction as discussed in [5]. Overall, this
experiment shows that our framework is a stable and robust
method for feature extraction.
ne data sets: (a) Breast cancer; (b) Colon; (c) Leukemia 2; (d) SRBCT.
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5.4. Experiments on gene expression data

The recently developed microarray technology is expected to
contribute significantly to progress in cancer treatment. In
general, the dimension of gene data is huge and the number of
samples is relatively small. How to extract the effective features is
very important for gene data classification and this will affect
cancer diagnosis. Here we further explore the performance of our
optimization framework on four available data sets: Breast
cancer(2 classes/24481genes/97samples) [42], Colon(2/2000/6)
[43], Leukemia2(3/11225/72) [44], and SRBCT(4/2308/83) [45].
Note that gene expression values of all gene data are normalized
to the interval of [�1, 1].

In this set of experiments, we also use 10-fold cross validation
to evaluate the performance of our regularization framework
since these data sets are relatively small. That is, the classification
performance is averaged over 10 runs. Since these data sets belong
to the small sample size, we carry out Null LDA [15] except OLDA,
LDA/FKT, and RMMC for comparison. It is also noted that the
regularization operators are set the same as done in Section 5.1.
Fig. 7 shows the error rate of each data set with various numbers
of extracted features. From Fig. 7(a), one can see that the best
performance of RMMC is superior to that of OLDA, LDA/FKT or Null
LDA on breast cancer data set. It is also noted that our framework
adopting the robust function can achieve competitive
performance with RMMC. From Fig. 7(b), one can see that our
method consistently outperforms RMMC with the change of
features and the performance of OLDA is consistent with that of
LDA/FKT or Null LDA on the colon data set. From Fig. 7(c), it is
observed that the best performance of our method is the same as
that of RMMC and LDA/FKT is superior to OLDA on the Leukemia
data set. From Fig. 7(d), it is noted that the best classification
performance of our framework is superior to that of LDA/FKT,
OLDA or Null LDA and our method is competitive with RMMC on
the SRBCT data set. Overall, these experiments further show that
our regularization framework is an effective and robust feature
extraction method for high-dimensional data.
6. Conclusions and further directions

In this paper, we propose a family of dimensionality reduction
algorithms based on a new form of regularization. The objective
function of the proposed framework contains the data reconstruc-
tion term and the regularization term which allows us to exploit
prior knowledge of data points. Different from some previous
dimensionality reduction methods, the proposed framework can
suppress the presence of outliers of data when robust functions
are chosen. That is, the regularized cost function allows outliers to
be smoothed in the general case. Moreover, it is found that
different discriminant algorithms are characterized by different
functions and different types of prior knowledge can be included
in our regularization framework. More specifically, some linear
projection methods such as PCA, L1-PCA, and RMMC could be
derived from the regularization framework. This explains why
RMMC is a robust feature extraction method and also provides
new insights for us to understand the problem of dimensionality
reduction. In addition, we also conduct extensive experiments to
demonstrate the effectiveness of our framework by choosing
robust functions.

It should be pointed out that the performance of our frame-
work might be improved by using different cost functions or
regularization operators. However, we do not attempt to find
better functions or regularization operators since our aim here is
to develop a regularization framework of robust dimensionality
reduction, which are the directions of our future work. Specifi-
cally, based on this regularization framework, we plan to explore
discriminant algorithms in the future by applying special func-
tions under different conditions and to study the effectiveness of
various functions including nonsmooth cost functions and non-
smooth regularization operators occurring in image and signal
recovery [27]. In addition, another further work is to implement
our regularization framework in the reproducing kernel Hilbert
space induced by a nonlinear function. We hope to study these
problems in the near future.
Acknowledgments

This work described in this paper was supported by the
Research Grants of Council of Hong Kong (No. CityU117507) and
China University of Mining and Technology.

References

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition, second ed.,
Academic Press, New York, 1990.

[2] P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces:
recognition using class specific linear projection, IEEE Transactions on Pattern
Analysis and Machine Intelligence (1997) 711–720.

[3] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, S. Lin, Graph embedding and
extensions: a general framework for dimensionality reduction, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2007) 40–51.

[4] S. Yan, D. Xu, B. Zhang, H.J. Zhang, Graph embedding: a general framework for
dimensionality reduction, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2005, pp. 830–837.

[5] J. Ye, Characterization of a family of algorithms for generalized discriminant
analysis on undersampled problems, Journal of Machine Learning Research
(2005) 483–502.

[6] J. Ye, Q. Li, A two-stage discriminant analysis via QR decomposition, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2005) 929–941.

[7] X. He, S. Yan, Y. Hu, P. Niyogi, H.J. Zhang, Face recognition using
Laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27 (3) (2005) 328–340.

[8] Y. Pang, L. Zhang, Z. Liu, Neighbourhood preserving projections (NPP): a novel
linear dimension reduction method, Lecture Notes in Computer Science, vol.
3644, Springer, Berlin, 2005, pp. 117–125.

[9] G.H. Folub, C.F. Van Loan, Matrix Computation, third ed., The Johns Hopkins
University Press, MD, USA, 1996.

[10] S. Zhang, T. Sim, Discriminant subspace analysis: a Fukunaga–Koontz
approach, IEEE Transactions on Pattern Analysis and Machine Intelligence
29 (10) (2007) 1732–1745.

[11] H. Cevikalp, M. Neamtu, M. Wilkes, A. Barkana, Discriminative common
vectors for face recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 27 (1) (2005) 4–13.

[12] P. Howland, H. Park, Generalized discriminant analysis using the generalized
singular value decomposition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 8 (2004) 995–1006.

[13] J. Ye, R. Janardan, C.H. Park, H. Park, An optimization criterion for generalized
discriminant analysis on undersampled problems, IEEE Transactions on
Pattern Analysis and Machine Intelligence 8 (2004) 982–994.

[14] H. Li, K. Zhang, T. Jiang, Efficient and robust feature extraction by maximum
margin criterion, IEEE Transactions on Neural Networks 17 (1) (2006) 157–
165.

[15] L.F. Chen, Y.M. Liao, M.T. Ko, J.C. Lin, G.J. Yu, A new LDA-based face recognition
system which can solve the small sample size problem, Pattern Recognition
(2000) 1713–1726.

[16] R. Huang, Q. Liu, H. Lu, S. Ma, Solving the small sample problem of LDA, in:
Proceedings of the IEEE International Conference on Pattern Recognition, vol.
3, 2002, pp. 29–32.

[17] H. Yu, J. Yang, A direct LDA algorithm for high-dimensional data with
application to face recognition, Pattern Recognition 34 (10) (2001) 2067–
2070.

[18] S. Ji, J. Ye, A unified framework for generalized discriminant analysis for
generalized linear discriminant analysis, 2008, pp. 1–7.

[19] N. Kwak, Principal component analysis based on L1-norm maximization, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2008) 1672–1680.

[20] H. Aanas, R. Fisker, K. Astrom, J. Carstensen, Robust factorization, IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (9) (2002)
1215–1225.

[21] C. Ding, D. Zhou, X. He, H. Zha, R1-PCA: rotational invariant L1-norm principal
component analysis for robust subspace factorization, in: Proceedings of the
23rd International Conference on Machine Learning, June 2006.

[22] A. Baccini, P. Besse, A.D. Falguerolles, A L1-norm PCA and a heuristic
approach, in: E. Diday, Y. Lechevalier, P. Opitz (Eds.), Ordinal and Symbolic
Data Analysis, Springer, Berlin, 1996, pp. 359–368.



ARTICLE IN PRESS

Z. Liang, Y. Li / Pattern Recognition 43 (2010) 1269–1281 1281
[23] Q. Ke, T. Kanade, Robust subspace computation using L1 norm, Technical
Report CMU-CS-03-172, Carnegie Mellon University, /http://citeseer.ist.psu.
edu/ke03robust.htmlS, August 2003.

[24] Q. Ke, T. Kanade, Robust L1 norm factorization in the presence of outliers and
missing data by alternative convex programming, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, June 2005.

[25] J. Liu, S. Chen, X. Tan, A study on three linear discriminant analysis based
methods in the small sample size problem, Pattern Recognition 41 (2008)
102–116.

[26] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning—

Data Mining, Inference, and Prediction, Springer-Verlag, Berlin, 2001.
[27] M. Nikolova, Analytical bounds on the minimizers of (nonconvex) regularized

least-squares, AIMS Journal on Inverse Problems and Imaging 1 (4) (2007)
661–677.

[28] M. Nikolova, Minimizers of cost-functions involving non-smooth data-fidelity
terms. Application to the processing of outliers, SIAM Journal on Numerical
Analysis 40 (3) (2002) 965–994.

[29] M. Nikolova, Efficient reconstruction of piecewise constant images using
nonsmooth nonconvex minimization, SIAM Journal on Imaging Sciences 1 (1)
(2008) 2–25.

[30] S. Durand, M. Nikolova, Denoising of frame coefficients using L1 data-fidelity
term and edge-preserving regularization, SIAM Journal on Multiscale
Modeling and Simulation 6 (2007) 547–576.

[31] M. Nikolova, M. Ng, Analysis of half-quadratic minimization methods for
signal and image recovery, SIAM Journal on Scientific Computing 27 (3)
(2005) 937–966.

[32] D. Geman, G. Reynolds, Constrained restoration and recovery of disconti-
nuities, IEEE Transactions on Pattern Analysis and Machine Intelligence 14
(1992) 367–383.

[33] S. Geman, D.E. McClure, Statistical methods for topographic image recon-
struction, in: Proceedings of the 46th Session of the ISI, Bulletin of the ISI, vol.
52, 1987, pp. 22–26.
[34] T. Hebert, R. Leahy, A generalized EM algorithm for 3-D Bayesian reconstruc-
tion from Poisson data using Gibbs priors, IEEE Transactions on Medical
Imaging 8 (1989) 194–202.

[35] Y.G. Leclerc, Constructing simple stable description for image partitioning,
International Journal on Computer Vision 3 (1989) 73–102.

[36] C. Yang, J.C. Meza, L. Wang, A trust region direct constrained minimization
algorithm for the Kohn–Sham equation, SIAM Journal on Scientific Comput-
ing 29 (2007) 1854–1875.

[37] Z. Bai, C. Yang, From self-consistency to SOAR: solving nonlinear eigenvalue
problems, SIAM News, April, 2006.

[38] C. Yang, W. Gao, J. Meza, On the convergence of the self-consistent field
iteration for a class of nonlinear eigenvalue problems, with LBNL Report
63037, 2007.

[39] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine
learning databases, /http://www.ics.uci.edu/mlearn/MLRepository.htmlS,
1998.

[40] M. Loog, R.P. Duin, Linear dimensionality reduction via a heteroscedasitc
extension of LDA: the Chernoff criterion, IEEE Transactions on Pattern
Analysis and Machine Intelligence 1 (2004) 732–739.

[41] /http://images.ee.umist.ac.uk/danny/database.htmlS.
[42] L. Veer, H. Dai, M. Vijver, A.M. Hart, M. Mao, et al., Gene expression profiling

predicts clinical outcome of breast cancer, Letters to Nature 415 (2002) 530–
536.

[43] N. Barkai, D.A. Tterman, et al., Broad patterns of gene expression revealed by
clustering analysis of tumour and normal colon tissues probed by
oligonucleotide arrays, in: Proceedings of National Academy of Sciences of
the United States of American, vol. 96, 1999, pp. 6745–6750.

[44] S. Armstrong, et al., MLL translocations specify a distinct gene expression
profile that distinguishes a unique leukaemia, Nature Genetics 30 (2002).

[45] J. Khan, et al., Classification and diagnostic prediction of cancers using gene
expression profiling and artificial neural networks, Nature Medicine 7 (6)
(2001).
About the Author—ZHIZHENG LIANG graduated from the Department of Automation at TianJin University of Technology and Education in 1999. He received his M.Sc. from
the Department of Automation in Shandong University in 2001 and his Ph.D. in pattern analysis and intelligent systems from Shanghai Jiaotong University, (China) in 2005.
Then he was a postdoctoral researcher at Shenzhen Graduate School in Harbin Institute of Technology. And then he was a research fellow at City University of Hong Kong.
Now he works at School of Computer Science and Technology, China University of Mining and Technology. His current interests include image processing, pattern
recognition and machine learning.
About the Author—Y.F. LI (SM’01) received the Ph.D. degree in robotics from the Department of Engineering Science, University of Oxford, Oxford, UK, in 1993. From 1993
to 1995, he was a Postdoctoral Research Associate in the AI and Robotics Research Group, Department of Computer Science, University of Wales, Aberystwyth, UK. In 1995,
he joined the City University of Hong Kong, Kowloon, Hong Kong, where currently he is an associate professor in the Department of Manufacturing Engineering and
Engineering Management. His research interests include robotics, machine vision, robot sensing, and sensor-based control. Dr. Li is an associate editor of the IEEE
Transactions on Automation Science and Engineering.

http://citeseer.ist.psu.edu/ke03robust.html
http://citeseer.ist.psu.edu/ke03robust.html
http://www.ics.uci.edu/mlearn/MLRepository.html
http://images.ee.umist.ac.uk/danny/database.html

	A regularization framework for robust dimensionality reduction with applications to image reconstruction and feature extraction
	Introduction
	PCA, LDA, MMC and regularized MMC
	PCA
	Classical LDA
	MMC and regularized MMC

	The regularization framework of discriminant analysis
	The regularization framework
	The selection of regularization operators

	Links to linear projection techniques
	Experimental results
	Experiments on handwritten numerical characters
	Experiments on UCI data sets
	Experiments on face images
	Experiments on gene expression data

	Conclusions and further directions
	Acknowledgments
	References




