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Learning Local Appearances With Sparse
Representation for Robust and Fast Visual Tracking

Tianxiang Bai, You-Fu Li, Senior Member, IEEE, and Xiaolong Zhou

Abstract—In this paper, we present a novel appearance model
using sparse representation and online dictionary learning tech-
niques for visual tracking. In our approach, the visual appearance
is represented by sparse representation, and the online dictionary
learning strategy is used to adapt the appearance variations dur-
ing tracking. We unify the sparse representation and online dic-
tionary learning by defining a sparsity consistency constraint that
facilitates the generative and discriminative capabilities of the
appearance model. An elastic-net constraint is enforced during
the dictionary learning stage to capture the characteristics of the
local appearances that are insensitive to partial occlusions. Hence,
the target appearance is effectively recovered from the corrup-
tions using the sparse coefficients with respect to the learned
sparse bases containing local appearances. In the proposed
method, the dictionary is undercomplete and can thus be effi-
ciently implemented for tracking. Moreover, we employ a median
absolute deviation based robust similarity metric to eliminate
the outliers and evaluate the likelihood between the observations
and the model. Finally, we integrate the proposed appearance
model with the particle filter framework to form a robust visual
tracking algorithm. Experiments on benchmark video sequences
show that the proposed appearance model outperforms the other
state-of-the-art approaches in tracking performance.

Index Terms—Appearance model, dictionary learning, sparse
representation, visual tracking.

I. INTRODUCTION

IN this paper, we address the visual tracking problem that
establishes the correspondences of a general object between

successive frames given its initial location in the first frame
and no other information. In this case, the appearance of the
target is the only available clue for tracking. This problem
becomes challenging, especially considering the appearance of
the target is nonstationary in the natural scenes, e.g., under-
going significant viewpoint, pose and illumination varying as
well as partial occlusions.

For years, numerous contributions addressed the appearance
representation and modeling problem for the aforementioned
challenges from many and diverse points of view, such as
manifold learning [1], subspace representation methods [2]

Manuscript received June 22, 2013; revised January 9, 2014, April 28, 2014,
and May 30, 2014; accepted June 10, 2014. Date of publication July 10, 2014;
date of current version March 13, 2015. This work was supported in part by
the Research Grants Council of Hong Kong under Project CityU 118613 and
in part by the National Natural Science Foundation of China under Grant
61273286. This paper was recommended by Associate Editor H. Qiao.

The authors are with the Department of Mechanical and Biomedical
Engineering, City University of Hong Kong, Hong Kong (e-mail:
tianxiangbai@gmail.com; meyfli@cityu.edu.hk; mexlz@hotmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2332279

discriminative method for classification [3], and kernel based
filter [4], etc. We have no intention to provide a survey of this
vast activity. Instead, we focus on one specific approach that
is highly effective and promising for dynamic visual appear-
ance representation in our prior work [6], [7]: the use of sparse
representation-based appearance model.

Our previous work [6], [7] and related research
[5], [10], [11] focus on the representation of the target
appearance, which can be formulated as two perspectives.
One is to represent the holistic target appearance as well as
the occlusion via finding a sparse linear combination over a
dictionary containing target and trivial templates [5]–[7], [37].
These methods, more or less, are extensions of recent study in
face recognition via sparse representation [8] that attempt to
recover the appearance from the corruptions with “cross-and-
bouquet” error correction model [9]. The main drawback of
these approaches is that their computational load is extensive,
since the dictionaries they used are normally over complete.
Our previous work [6], [7] can be classified into such holistic
approach and attempted to speed up the tracking efficiency
with structural sparsity imposed. Another approach is to
represent the target appearance with the local appearance
information that motivates this paper. These methods repre-
sent the target appearance, for example, by finding a sparse
linear combination of sub-image samples in the tracked
object region [10], by exploring the locality-constrained linear
coding (LLC) framework with small image patches inside the
target region [11], or by investigating the local image patches
with a histogram-based method [36]. Unlike the holistic
appearance representation methods that handle the occlusion
as a sparse noise component with overcomplete dictionaries,
these local appearance-based approaches exhibit comparative
robustness against occlusions and tend to be more efficient,
since the dictionaries they used are unnecessarily over
complete.

Distinct from our previous work [6], [7], in this paper,
we desire to address another fundamental problem: how to
design or train dictionaries for the sparse representation-based
model that can better model the dynamic visual appearance
and facilitate the tracking performance. Most commonly the
dictionaries are updated by a heuristic scheme that replaces
the least important template [5], or randomly selected tem-
plates [10] with the current tracking result. However, the
expressiveness of these template-based dictionaries is limited
as the target appearance can only be represented by the sub-
space spanned by the raw templates directly cropped from the
images, which makes it difficult to handle significant view
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Fig. 1. Proposed appearance model. In the appearance modeling phase, a
sparse dictionary is trained with observed samples online using the elastic-net
constraint. During the appearance representation phase, new (corrupted) obser-
vations are sparsely approximated with the trained sparse dictionary under the
sparsity consistency constraint.

or pose changes. Recently, the machine learning paradigm
for dictionaries design is rapidly gaining interest for visual
tracking. One direct benefit of exploiting the machine learning
techniques for designing dictionaries is that a finer adaptation
to the nonstationary appearance of the target becomes possi-
ble [13]. Integrating the incremental subspace learning scheme
for dictionary design [6], [7], [34] were proposed for robust
visual tracking, and obtained encouraging results on several
bench mark data sets. However, they are still not efficient for
online tracking tasks because of the use of overcomplete dic-
tionary. In [11], a specific dictionary learning scheme, referred
to as the k-selection, was developed for local appearance
modeling. Moreover, a nonnegative dictionary learning-based
algorithm [33], was proposed to solve the tracking problem.
It updates the templates in the dictionary by capturing the
distinctive aspects of the tracked object. More recently, a mul-
titask sparse representation scheme is used to learn a dictionary
with multiview features for tracking [29]. These dictionary
learning-based methods show significant enhanced tracking
accuracy and efficiency.

In this paper, we focus on the design of the appearance
model. The philosophy behind the proposed appearance model
is to represent and model the appearance using sparse rep-
resentation and online dictionary learning. Fig. 1 shows an
overview of the proposed appearance model. Our first contri-
bution is the proposal of a novel appearance representation
method based on sparse representation with the “sparsity
consistency constraint” that can boost both generative and dis-
criminative power of the model. The second contribution is
the adoption of “elastic-net constraint” [14] with the online
dictionary learning scheme that allows us to train a sparse
undercomplete dictionary with local appearance information,
which are more robust against the occlusions. The integration
of the proposed robust similarity metric (RSM)-based obser-
vation model and particle filter framework for visual tracking
is the third contribution. We present empirical results on pub-
licly available benchmark video sequences, and show that the
proposed appearance model can lead to more robust and effi-
cient tracking than existing state-of-the-art algorithms in the
literature.

II. SPARSE REPRESENTATION OVER LEARNED LOCAL

APPEARANCE MODEL

A. Sparse Representation-Based Holistic Appearance Model

In the previous work, sparse representation is usually used
to obtain a sparse representation of the target appearance over
an overcomplete holistic dictionary [5]. Mathematically, given
a m-dimensional observed target appearance y ∈ R

m (ordered
lexicographically as a column vector) and a dictionary D ∈ R

m×n

including n columns. The sparse representation problem can be
formulated as the following �0-minimization problem:

min
a

‖a‖0 subject to y = Da (1)

where ||·||0 is the �0 norm, which counts the number of nonzero
entries in the coefficient vector a. In most of the existing
work, the dictionary D = [T E] is constructed by holis-
tic target template set T ∈ R

m×d and trivial template set
E ∈ R

m×m [5]–[7], where d is the number of target templates.
The target template set T is usually obtained or learned from
the holistic tracking results from previous time intervals. The
trivial template set E is an identity matrix that represents the
occlusions.

Given that solving the minimum �0 norm is NP-hard, a
common approximation method is to convert it into the fol-
lowing unconstrained, �1-regularized least square problem that
imposes sparse solutions for a [23]:

min
a

‖y − Da‖2
2 + ‖a‖1 (2)

where is a regularization parameter that balances the trade-
off between the reconstruction error and the sparsity, and ||·||1
is the �1 norm that sums up the absolute value of the entries.
This problem can be effectively and efficiently solved using
convex optimization [15]. Although no direct analytic link
exists between the value of the regularization parameter and
the corresponding sparse level ||a||0, the value of plays an
important role in the proposed approach. The role of will
be further explained in Section II-C.

B. From Holistic Sparsity to Local Sparsity

Distinct from the existing methods, we discard the holistic
sparse representation model with trivial template set and online
learn a local sparse dictionary instead. The sparse dictionary
can capture the characteristics of the local target appearance
and sparsely represent its appearance. In addition, we apply
the online dictionary learning algorithm to train the dictionary
rather than use the raw target templates [5] or Eigen tem-
plates [6], [7] in previous work. Given a collection of training
images Y = [y1, y2, . . . , yt], the dictionary learning problem
can be formulated as follows:

min
D,a

1

t

t∑

i=1

(
‖yi − Dai‖2

2 + ‖ai‖1

)
. (3)

This combinatorial and nonconvex optimization problem
can be solved using an iterative approach that consists of two
(convex) steps, namely, the sparse representation step on a
fixed D and the dictionary update step on a fixed a. Several
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Fig. 2. Illustration of the dictionary learning results. (a) Training samples.
(b) Learned sparse dictionary including the local face features (eyebrows,
eyes, noses, mouths, facial contours, and glasses). Negative values are blue,
positive values are red, and the zero values are represented in white. The
parameter γ is set to 0.55.

methods have been proposed to solve the optimization prob-
lem, such as the MOD [17], K-SVD algorithm [18], and online
dictionary learning [19]. Among these methods, the online
dictionary learning algorithm [19] is significantly faster than
other dictionary learning approaches. In addition, it is capable
of handling dynamic data that can update the dictionary with
new observed data and without storing the previous data.

Local feature extraction methods, such as sparse principal
component analysis (SPCA), can better model and represent
the appearance because they improve robustness against occlu-
sions [22]. From the synthesis perspective, SPCA aims to
construct a sparse basis, such that all the data have low
reconstruction errors when decomposed [23]. This formula-
tion is similar to the aforementioned online dictionary learning
algorithm. An investigation shows that they are equivalent
optimization problems by adding an elastic-net constraint to
each columns of the dictionary D [19]. Thus, the previous
dictionary learning problem becomes

min
D,a

1
t

∑t
i=1

(‖yi − Di‖2
2 + ‖ai‖1

)

subject to ∀j = 1, . . . , n,
∥∥dj

∥∥2
2 + γ

∥∥dj
∥∥

1 ≤ 1
(4)

where
∥∥dj

∥∥2
2+γ ∥∥dj

∥∥
1 ≤ 1 is the elastic-net constraint, and the

parameter γ controls the levels of sparsity of each column dj

in dictionary D. The elastic-net constraint is used because of
its capability to preserve highly correlated entries in the dictio-
nary that can better capture the local appearance of the target
with the grouping effect. As shown in Fig. 2, the proposed
method can learn the most discriminative, localized facial
features on the training set, such as eyebrows, eyes, noses,
mouths, facial contours, and glasses, while leaving the other
parts zero. These features have already been verified to be very
important for face recognition tasks by many face recognition
algorithms [22]. This learned locally concentrated sparse dic-
tionary is robust to occlusions because only a fraction of local
features is corrupted.

The dictionary D ∈ R
m×n is typically overcomplete (m < n)

for image processing and visual tracking applications because
this redundant representation is generally suitable for repre-
senting a wider range of image variations such as image with
occlusions. However, the computational cost for training an

overcomplete dictionary is high, thus limiting its implemen-
tation for visual tracking. It has been shown that an object
under pose variations, shape deformations, and illumination
changes, individually or combined, sits on a low-dimensional
subspace [2]. In visual tracking, using an overcomplete dic-
tionary is unnecessary because the appearance of the target
object has a much narrower dynamical range of expressive-
ness than general images. Our previous work shows that the
undercomplete dictionary is effective to represent the target as
well as the background visual appearances [12]. In addition,
the trivial template set is discarded since the elastic-net con-
strained dictionary can handle the occlusion effectively. Thus,
considering both efficiency and effectiveness, the undercom-
plete dictionary (m > n) is used for the visual tracking task.
Moreover, we prefer that the training images and observed
samples should be centered by subtracting a time varying
mean in the sparse representation and dictionary learning.
This is because considering the mean is able to enhance the
generative capabilities of the model without sacrifice of the
discriminative power. A detail experimental verification will
be further presented in Section IV-B5. Given a data matrix
A = [I1, I2, ..., Ia] ∈ R

m×a and a new observed data matrix
B = [Ia+1, Ia+2, ..., Ia+b] ∈ R

m×b. Denoting ĪA and ĪB

are the sample mean of data matrix A and B, respectively.
As suggested in [2], the mean of the concatenation matrix
C = [A B] ∈ R

m×(a+b) can be updated by

ĪC = a

a + b
ĪA + b

a + b
ĪB. (5)

C. Sparsity Consistency Constraint

Given a well-trained dictionary D that can represent a class
of images (such as a variety of appearances regarding the
object of interest) that have a certain sparsity level, the dictio-
nary is assumed to be capable of representing the query image
within the same class with an identical level of sparseness.
The previous sparse representation and online dictionary learn-
ing scheme share the same �1-regularization parameter that
bridges the appearance modeling and representation stages. In
the proposed method, we use the LARS-Lasso algorithm [16]
to solve both the sparse representation (2) and dictionary
learning problems (4). Using an identical regularization param-
eter in sparse representation phase and dictionary learning
phase can satisfy the sparsity consistency constraint. The pro-
posed algorithm assumes the knowledge of sparsity, which is
manifested by the regularization parameter .

Moreover, the bad observed samples from the background
and occlusion are expected to facilitate a nonsparse representa-
tion with D. This argument is sensible because similar claims
were justified in recent studies on the role of sparse representa-
tion in image denoising [18], separation, and inpainting [21].
Imposing the sparsity consistency constraint incurs a higher
reconstruction error with bad observations and boosts the dis-
criminative power of the appearance model. This argument is
corroborated by the quantitative experimental results presented
in Section IV-B5.

Fig. 3 shows synthetic examples for recovering the cor-
rupted sample from the experiments. Adding Gaussian noise,
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Fig. 3. Synthetic examples for reconstruction. (a) Actual test samples. (b) Corrupted test samples. (c) Reconstruction using the proposed method with
sparsity consistency constraint and elastic-net constraint. (d) Reconstruction errors of the proposed method with sparsity consistency constraint and elastic-net
constraint. (e) Reconstruction using sparse representation without the “elastic-net constraint.” (f) Reconstruction errors using sparse representation without the
“elastic-net constraint.” (g) Reconstruction using PCA. (h) Reconstruction errors of PCA. (i) Reconstruction using SRTT. (j) Reconstruction errors using SRTT.
(k) Reconstruction using SRSE. (l) Reconstruction errors using SRSE. Negative values are blue, positive values, are red, and the zero values are represented
in white. χ is the root-mean-square error between the actual test samples and the reconstruction images.

salt and pepper noise, and a white patch to the test sam-
ple performs the synthetic experiments. The images restored
using sparse representation, with and without the elastic-net
constraint, PCA, sparse representation with trivial templates
(referred as SRTT) as in [5] and sparse representation with
sparse error term (referred as SRSE) in [30] are displayed
in Fig. 3(c), (e), (g), (i), and (k). The corresponding recon-
struction errors are visualized and quantified using the root-
mean-square error χ in Fig. 3(d), (f), (h), (j), and (l). The
sparse representation-based methods (proposed method with
and without the elastic-net constraint, SRTT, SRSE) demon-
strate closer reconstruction with the actual image than the
PCA-based least-squares restoration when random noise is
added (the first and second rows of Fig. 3). This finding
validates that sparse representation-based reconstruction is
robust against noise and is consistent with recent investiga-
tions on image denoising using sparse representation [20]. The
sparse representation without elastic-net constraint, SRTT, and
SRSE are slightly better than the proposed method because
the elastic-net constraint enforces the sparse property into
the bases, such that less information is retained. However,
the sparse representation without elastic-net constraint and the
PCA-based reconstruction exhibits degenerative performance
under gross corruption in the occluded case (the third row of
Fig. 3) because it attempts to approximate the occluded patch
with holistic features. The proposed method with the elastic-
net constraint recovers the test image effectively because it
relies on the local features that are insensitive to the gross
errors attributed to occlusion. The SRTT and SRSE recon-
struction can also reconstruct the original image well because
both of these methods use the trivial or Laplacian error term to
estimate the occlusion. However, these methods usually need
more computational time to achieve the reconstruction and
lack the consideration of discriminative capabilities.

D. Robust Similarity Metric

For visual tracking tasks, evaluating the similarities between
the observed sample and the appearance model is necessary.

Fig. 4. Outlier identification results of using standard deviation and MAD.
(a) Corrupted samples. (b) Reconstruction residuals (negative values are
blue, positive values are red, and the zero values are represented in white).
(c) Inferred outliers (indicated in black) with standard deviation. (d) Inferred
outliers (indicated in black) with MAD.

The proposed appearance model can recover the image from
corruptions and preserves the pixels in uncorrupted areas. The
residuals of the uncorrupted pixels are small, whereas the cor-
rupted pixels or outliers generate large positive or negative
residuals [Fig. 4(b)]. To identify and eliminate the corrupted
pixels, the residuals must be compared with the estimated
standard deviation σ̂ of the error scale [25]

σ̂ = 1.4826 MAD(r) (6)

where the MAD(r) = mediani(|ri − medianj(rj)|) func-
tion returns the median absolute deviation (MAD) of the
residual errors r = ∥∥yt − ŷt

∥∥. Estimating the standard devi-
ation using MAD is more robust than its original calculation

σ =
√

E[(r − E(r))2] that the distances from the mean are
squared. Thus, the large deviations attributed to the outliers
are weighted more heavily and can thus significantly affect
the value of the standard deviation. On the contrary, the mag-
nitude of the deviation in MAD is the absolute value, which
is irrelevant to a few outliers. With the estimated σ̂ , the stan-
dardized residuals |ri/σ̂ | are computed and used to define a
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weight vector w as follows:

wi =
{

1 if
∣∣ri/σ̂

∣∣ ≤ τ

0 otherwise
(7)

where ri is the reconstruction error that corresponds to the
ith pixel. The residuals can be inferred as outliers with high
probabilities in a Gaussian situation if they are larger than
3σ̂ . Therefore, the threshold τ is typically set as 3 in the
experiments. Fig. 4(c) and (d) shows the outlier identification
results when using standard deviation and MAD. In the first
case wherein Gaussian noise was added, the two methods yield
similar results because the noise is governed by a Gaussian dis-
tribution. However, in cases in which gross corruptions (salt
and pepper noise and occlusion) appear, the standard devia-
tion is affected by large residuals and thus fails to reject the
outliers. On the contrary, the proposed method can better iden-
tify the outliers because σ̂ is estimated using MAD, which is
robust against large residuals. Using the previously defined
weight vector w, the RSM is determined using the following
root-mean-square error that ignores the outliers:

RSM =
√∑

wir2
i∑

wi
. (8)

III. TRACKING ALGORITHM WITH PARTICLE FILTER

The proposed appearance model is embedded into a
Bayesian inference framework to form a robust tracking algo-
rithm. The model recursively updates the posterior distribution
p(xt|y1 : t) over the target state xt given all observations
y1 : t = {y1, y2, · · · , yt} until time t. By applying the Bayes’
theorem, the Bayes filter can be written as follows:

p(xt|y1 : t) ∝ p(yt|xt)

∫

xt−1

p(xt|xt−1)p(xt−1|y1 : t−1)dxt−1

(9)
where p(yt|xt) is the observation model, and p(xt|xt−1) is
the motion model. In the particle filter framework [26], the
posterior distribution p(xt|y1 : t) is recursively approximated
by a set of weighted samples. The observation model indi-
cates the likelihood between an observed target candidate and
the appearance model. Using the defined RSM in (8), the
observation model can be formulated as

p(yt|xt) = exp−ζ(RSM) (10)

where ζ denotes the weighting parameter, which is set to m
(dimension of the target appearance) in all experiments. The
motion model predicts the current state given the previous
state. In this paper, an affine image warping is used to model
the target motion between two consecutive frames. The state
vector xt = (xt, yt, ηt, st, βt, φt) at time t is formulated using
six parameters of affine transformation, where xt, yt denote
the x and y translation, and ηt, st, βt, φt represent the rota-
tion angle, scale, aspect ratio, and skew direction at time t,
respectively. Each parameter in xt is governed by a Gaussian
distribution around the previous state xt−1, and each parameter
is assumed to be mutually independent as follows:

p(xt|xt−1) = N(xt; xt−1, �) (11)

Algorithm 1 Proposed Tracking Algorithm
Input: The initial state of the target x0 =

(x0, y0, η0, s0, β0, φ0).
1: Initialization: Construct the initial dictionary D0 ∈ R

m×n

with n labeled target samples.
2: For t = n to N, where N is the total number of fames.
3: Generate P candidate samples yi at state xi

t based on the
affine motion model (11).

4: For each yi, i = 1:P
5: Perform sparse representation (2) to approximate each

sample.
6: Eliminate the outliers using (6) and (7), and calculate

likelihood using (10) based on the RSM (8).
7: End for.
8: Obtain the current state x̂t using MAP, and store the

tracking result yt.
9: Update the Dt with the tracking result using the online

sparse dictionary learning scheme (5).
10: End for.
Output: The current state x̂t at each frame.

where � = (ψx, ψy, ψη, ψ s, ψβ,ψφ) is the covariance
matrix. The current state is then estimated by Maximum a
Posteriori (MAP), which associates with the highest likelihood
under the observation model. The proposed tracking algorithm
is summarized in Algorithm 1.

IV. EXPERIMENTS

A. Implementation

In this section, experiments are presented to demonstrate
the efficiency and effectiveness of the proposed tracking algo-
rithm. The proposed tracker is implemented using MATLAB
on a 3 GHz machine with 2 GB RAM. For the online
dictionary learning scheme, an undercomplete dictionary com-
prising 36 basis vectors is used. Each observed target sample
is resized to a 32 × 32 patch. The parameters of the pro-
posed method are fixed for all of the experiments, except
for the covariance matrix � of the motion model in (10).
The variances ψx and ψy are set between 2 and 5 in antic-
ipation of the x, y translation. ψη,ψ s, ψβ , and ψφ are
normally set to a range of 0.001 to 0.05 to predict the vari-
ations of the rotation angle, scale, aspect ratio, and skew
direction. The regularization parameter is set to = 0.04.
The parameter γ is set to 0.55, such that each basis vec-
tor has approximately 25% nonzero entries. The choice of

and γ will be discussed in Sections IV-B3 and IV-B4.
The dictionary is updated every five frames to balance the
computational efficiency and effectiveness of the appearance
modeling.

A total of ten publicly available benchmark video
sequences1 are used to evaluate the performance of the pro-
posed tracker. Random noises are manually added into the

1These video sequences are available at http://www.cs.toronto.
edu/∼dross/ivt/, http://cv.snu.ac.kr/research/∼vtd/, http://vision.ucsd.edu/∼
bbabenko/project_miltrack.shtml and http://www.cvg.cs.rdg.ac.uk/PETS2001.
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TABLE I
AVERAGED TRACKING LOCATION ERROR (PIXEL)

TABLE II
TRACKING FAILURE RATE

David and Football sequences to evaluate tracking perfor-
mance against strong random disturbance. For comparison, we
evaluate the proposed tracker using three of the latest sparse
representation-based trackers, namely, the �1 tracker [5], the
SSRT [6], and the MTT [29] as well as four other state-of-the-
art trackers, namely, FragTrack [27], IVT [2], MILTrack [3],
and VTD [28]. The source or binary codes of the trackers can
be obtained from their respective project websites or authors.
All the reference trackers are implemented using the parameter
settings given in their respective papers or their default initial-
ization. Given that SSRT, IVT, the �1 tracker, VTD, MTT,
and the proposed tracker are Monte Carlo sampling-based

methods, they all use 600 samples to track an object for fair
comparison. The proposed algorithm runs at approximately
0.16 s per frame without code optimization; whereas the
SSRT, �1 tracker and MTT with a 12 × 15 resized sampling
patch run at approximately 1.6 s, 2 s, and 2∼3 s to process
one frame, respectively. The proposed tracker is significantly
more efficient than the other two sparse representation-based
trackers.

B. Quantitative Evaluation

1) Comparison of Tracking Algorithms: The perfor-
mances of the proposed tracker and reference trackers are
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Fig. 5. Frame-by-frame comparison of the tracking location error. The tracking location error measures the Euclidean distance between the center of the
tracking result and the ground truth in terms of pixel.

TABLE III
STATISTICAL TEST RESULTS FOR THE PROPOSED TRACKER AGAINST THE FRAGTRACK, MILTRACK, IVT, �1 TRACKER, SSRT, AND

THE PROPOSED TRACKER WITHOUT THE ROBUST SIMILARITY METRIC

quantitatively evaluated in terms of the tracking location error
and the tracking failure rate. The tracking location error mea-
sures the Euclidean distance between the center of the tracking
result and the ground truth. The tracking location error is
an effective metric for tracking accuracy evaluation when
the candidate algorithms can track the target throughout the
whole sequence. However, the tracking location error met-
ric may yield an incorrect performance evaluation when the
trackers completely lose the target. Thus, a failure rate met-
ric, which indicates the percentage of frames in which the
location error was less than 20% of the diagonal length of
the rectangle enclosing the target, is also presented. A good
tracker should achieve low values in both the tracking loca-
tion error metric and the failure rate metric. The ground truth
of the David, Sylvester, Occluded Face, Occluded Face2, and
Dudek data sets are reported by [2] and [3]. For the other
five video clips, the ground truth is manually labeled for
quantitative comparison. For the probabilistic trackers, all the

quantitative results are averaged over 25 runs. The quantita-
tive results are summarized in Tables I and II and are shown
in Fig. 5. The proposed tracker outperforms the other nine
competitors in terms of the averaged tracking location error
metric in all of the video sequences, except for the Occluded
Face, David and Sylvester sequence. The proposed method
also has the lowest failure rate in most of the test data sets.
Considering the overall performance, the proposed tracker
only has an averaged tracking location error of five pixels
and a 5% failure rate, which are far lower than those of
other trackers in all 10 video sequences that contain thousands
of frames.

A standard, statistical, one-sided hypothesis test [6] is also
conducted to evaluate the superior performance of the pro-
posed tracker further. In this test, the null hypothesis H0
indicates that the proposed tracker is not superior to the ref-
erence tracker. The alternative hypothesis H1 indicates that
the proposed tracker is significantly better than the others.
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The sample performance differences at the jth repetition can
be calculated as follows:


j = Cj
REF − Cj

SRLT (12)

where Cj
REF and Cj

SRLT denote the quantified performance of
the reference trackers and the proposed sparse representation-
based local appearance tracker, respectively. Cj represents the
mean location error or the failure rate in run j. The hypothesis
test is based on the sample mean of the above differences


 = 1

J

J∑

j=1


j (13)

and its standard error

δ
 =
√√√√ 1

J2

J∑

j=1

(

j −


)2
. (14)

The null hypothesis H0 is rejected if the test statistic 

/
δ


exceeds a threshold μα that represents a point on the stan-
dard Gaussian distribution, which corresponds to the upper-tail
probability of α. The performance of the proposed tracker is
significantly superior to the reference tracker if the test statistic
is larger than μα = 1.65 (α = 0.05). The results of the hypoth-
esis testing on location error and failure rate with respect to
different video sequences and all experiments are reported in
Table III. The N/A marker indicates that the test is not applica-
ble as the standard error δ
 becomes zero. Such cases usually
stem from comparisons in which both the competitors produce
0% failure rates in all experiments (both 
j and 
 are 0) or
from comparisons that involve FragTrack, which yield consis-
tent results against the proposed tracker and have 0% failure
rates in all repetitions (
j = 
). The alternative hypothesis
H1 is accepted by the majority of comparisons that use the
reference tracker for different test video sequences and for
overall performance.

2) Effect of the Robust Similarity Metric: The RSM is
important for the improvement of tracking performance as
shown in Tables I and II, in which the Proposed Tracker*
denotes the proposed method without the robust similar-
ity metric. The tracking location error and failure rate are
reduced when the target is significantly affected by illumi-
nations and occlusion (Singer, Occluded Face, and Occluded
Face2 sequences) when the RSM is used. Although the per-
formance of the proposed method without the RSM yields
comparative tracking performance in the David and Football
sequences, the tracking failure rate increases significantly
when strong random noise is added. These experimental results
show that the use of the RSM helps because it can effec-
tively eliminate the outliers and keep the informative pixels
for tracking.

We also conduct experiments with the proposed method on
replacing the MAD-based RSM by SRTT [5] and SRSE [30]
inferring to further evaluate the effectiveness of the robust
similarity metric. The comparison experiment results (Fig. 6)
show that the MAD-based method outperforms the others. The
SRTT and SRSE inferring have comparative performance in
the Faceocc2 and David† dataset, but fail to track the target

Fig. 6. Performance comparison of the proposed algorithm with SRTT,
SRSE, and the proposed MAD-based robust similarity metric.

Fig. 7. Tracking location errors with varying parameter .

in the other two sequences. The different tracking results are
probably due to the proposed sparsity consistency constraint.
The sparsity consistency constraint unifies the dictionary learn-
ing and representation stages and enhances the generative and
discriminative capabilities of the proposed method. The SRTT
and SRSE, on the other hand, are not able to achieve the con-
straint because the trivial templates in SRTT and the Laplacian
noise term affect the sparsity of the solutions.

3) Impact of the Sparsity Consistency Constraint: In this
experiment, the proposed sparsity consistency constraint facil-
itates the tracking performance. The proposed algorithm is
tested on the David, Faceocc2, Trellis, Car, and David†
sequences that involves a wide range of challenges. Fig. 7
shows the tracking results with different values of the param-
eter . When the value of is moderate ( = 0.03 – 0.05),
the proposed model has better tracking accuracy than those
without the sparsity consistency constraint ( = 0). However,
the averaged tracking location error increases significantly if
the value of becomes large ( > 0.06). Therefore, the
parameter is set to 0.04 in all the experiments.

4) Effect of the Elastic-Net Constraint: In this experiment,
we assess how the elastic-net constraint contributes to the
robustness of the tracker against significant occlusion. We per-
form experiments on calculating the reconstruction error the
tracking result of David sequence with regarding to varying
value of gamma. The results in Fig. 8(a) shows that larger
value of γ leads to larger reconstruction error because a
larger γ yields more sparse loadings in each basis vector.
We also assess how the elastic-net constraint contributes to
the robustness of the tracker against significant occlusion. The
tracking experiments are conducted on the Faceocc2 sequence,
with various values of the parameter γ . The averaged track-
ing location error curve for several values of γ is plotted
in Fig. 8(b). In Fig. 8(b), the tracking performance improves
when the value of γ increases. This finding validates the fact
that adding the elastic-net constraint improves the robustness
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Fig. 8. Performance analysis with varying parameter γ . (a) Reconstruction
error with regarding to varying γ . (b) Tracking location error with regarding
to varying γ for the Faceocc2 dataset.

Fig. 9. Performance comparison of the proposed algorithm with �1
tracker dictionary, LSST dictionary, and the proposed elastic-net constrained
dictionary.

of the tracker against occlusion. However, the tracking loca-
tion error rises gradually if the value of γ becomes extremely
large (γ > 0.55). The tracking location error gradually rises
because sparser basis vectors are unlikely to be affected by
occlusions. However, a larger proportion of zero entries in the
basis vectors results in more information loss, thus degener-
ating the generative capabilities of the appearance model. In
this paper, the parameter γ is set to 0.55 in all the experiments
for a fair trade off.

In addition, we perform experiments to evaluate the elastic-
net constrained dictionary by keeping the RSM and varying
the dictionary. We use the dictionary with raw target tem-
plates trivial templates in [5] and dictionary learned with the
sparse error term [30] to replace the proposed dictionary. Four
representative data sets (Trellis, Faceocc2, Car, and David†)
that covers challenges of pose and illumination variations,
heavy occlusions, background cluttering, and high-level ran-
dom noise are used in these experiments. As we can observe in
Fig. 9, the proposed method with elastic-net constrained dic-
tionary achieves the best results. The �1 tracker dictionary [5]
provides unsatisfied results because it uses the raw templates
that cannot represents the significant appearance variations and
ambiguities caused by different poses and background clut-
tering (Trellis, Car, and David†). The LSST dictionary [30]
yields better results than the �1 tracker dictionary because it is
able to incrementally learn the target appearances. However, it
fails in the Trellis dataset because of lacking of discriminative
capability.

5) Generative and Discriminative Capabilities of the
Proposed Appearance Model: To demonstrate the generative
and discriminative capabilities of the proposed appearance
model, the image patches from the target and background
region are extracted in the David sequence. All the image
patches are resized to 32 × 32 pixels. The conventional sub-
space analysis-based appearance model, incremental PCA [2],

Fig. 10. Performance analysis of the proposed appearance model with differ-
ent constraints and updated means. (a) Generative power. (b) Discriminative
power.

is used for comparison. For the proposed appearance model,
an undercomplete dictionary comprising 36 basis vectors is
used. Less than ten basis vectors are selected to represent
the appearance if the regularization parameter is set to
0.04. The proposed appearance model is tested without the
elastic-net constraint to investigate the impact of sparsity con-
sistency constraint independently. In addition, we also test
the proposed appearance model without updated mean. The
incremental PCA algorithm retains the top ten eigenvectors
for fair comparison. In these experiments, the first 36 image
patches from the target region are used to initialize the pro-
posed appearance model and the subspace-based appearance
model. For the remaining frames and the tracker, the dictionary
and PCA bases are updated every five frames. The reconstruc-
tion error and discriminative score in [11] are used to quantify
the generative and discriminative capabilities of the appearance
models, respectively. The discriminative score is defined as
follows:

D(X) = ∣∣E(X+)− E(X−)
∣∣ (15)

where X+ and X− indicate the set of target and background
image patches, and E(X) is the reconstruction error. As shown
in Fig. 10(a), the reconstruction error curves produced by the
proposed appearance model with and without the elastic-net
constraint are lower than that produced by the incremental
PCA-based appearance model. Although the appearance model
with the elastic-net constraint has a larger averaged recon-
struction error (0.0628) than the appearance model without
the constraint (0.0407), the former still has stronger genera-
tive power than the incremental PCA-based appearance model,
with a mean error of 0.0776. As shown in Fig. 10(b), the dis-
criminative score obtained from the incremental PCA-based
appearance model is lower than the discriminative score from
the proposed model. The proposed appearance model incurred
averaged discriminative scores of 0.1541 and 0.1442 with
and without the elastic-net constraint, respectively; whereas
the incremental PCA-based appearance model yields a lower
averaged discriminative score of 0.0795. In addition, the pro-
posed appearance model without the updated mean leads to a
larger reconstruction error 0.0701. Moreover, the discrimina-
tive scores of the proposed method with and without updated
mean are similar. These findings verify that the proposed
appearance model with the sparsity consistency constraint and
updated mean improves generative power and discriminative
capability. On the other hand, enforcing the elastic-net con-
straint in the model slightly increases the reconstruction error.
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Fig. 11. Performance analysis of the proposed appearance model with varying
dictionary size. (a) Generative power. (b) Discriminative power.

However, the constraint improves discriminative capability and
robustness against occlusions, making the model more suitable
for tracking.

The generative and discriminative powers of the proposed
appearance model are also evaluated with varying dictionary
size, and the results are shown in Fig. 11. The reconstruc-
tion errors decrease slightly as the dictionary size grows,
which verifies the argument that using an undercomplete dic-
tionary is sufficient for visual tracking. Another reason for
using an undercomplete dictionary is that the discriminative
power of the model drops significantly if more basis vectors
are included in the dictionary because adding more basis vec-
tors contributes to the generative power of the target and the
background representations. In this paper, the number of basis
vectors is empirically determined and is set to 36 in all the
experiments.

C. Qualitative Evaluation

1) Tracking Under Heavy Occlusions: The tracking per-
formance against heavy occlusions is tested using the
Occluded Face, Occluded Face2, PETS2001, and Dudek video
sequences. The targets in the Occluded Face and Occluded
Face2 sequences undergo long durations of occlusion numer-
ous times. The second clip has more challenging occlusions
and large pose variations. The proposed tracker robustly
tracked the face in the two sequences because the algorithm
learns the local features for appearance representation, which
is insensitive to occlusions. However, other methods can only
roughly track the face and are not as accurate as the pro-
posed tracker. In Fig. 12(a) and (b), MILTrack, MTT, and VTD
are distracted by the book after a long duration of occlusion
in frames 73, 217, and 614 of the Occluded Face sequence.
The �1 tracker and DLSRVT are sensitive to pose variations
and fails to locate the target from frame 594 and 171 of the
Occluded Face2 sequence, respectively. The PETS2001 and
Dudek sequences [Fig. 12(c) and (d)] are examples of how
the proposed tracker outperforms the conventional tracking
algorithms when the target is temporarily subjected to severe
and full occlusions. Aside from occlusions, the two sequences
also have the challenges such as nonrigid appearance varia-
tions, background cluttering, and pose changes. The proposed
sparse representation-based local appearance model enables
the proposed tracker to handle the occlusions and to distin-
guish the target from the cluttered background. FragTrack,
MILTrack, and DLSRVT have unsatisfied performances in

the two data sets, and the �1 tracker loses the target in the
Dudek sequence when it encounters rapid motion. The IVT,
LSST, and MTT tracker drift away from the target because
of the occlusion caused by the bicyclist in the PETS2001
sequence.

2) Tracking Under Significant Pose and Illumination
Variations: The David, Trellis, Sylvester, and Singer
sequences are used to evaluate the performance of the pro-
posed tracker under severe pose and illumination variations. In
the David data set [Fig. 12(e)], the proposed tracker success-
fully tracks the face of the person during the whole sequence.
The �1 tracker, MTT, and VTD lose the target from the frame
113 to 171. However, the VTD algorithm resumed tracking
the target after the person turned his head to face the front
(frame 296). MILTrack and DLSRVT can roughly locate the
target, but tracking results are less accurate.

The Trellis data set [Fig. 12(f)] provides a challenging
scenario in which the person undergoes a combination of
significant illumination and poses variations as well as back-
ground cluttering. The experimental results show that only
the proposed tracker can track the target throughout the
whole video. The proposed method is robust because the
appearance model has a rich generative power to represent
appearance variations and a strong discriminative capability
to prevent visual drifts caused by the cluttered background.
However, VTD, LSST, DLSRVT, and MILTrack drift from
the target at an early stage. The IVT fails to track the
target because of drastic pose and illumination changes in
frame 327.

The Sylvester sequence [Fig. 12(g)] has challenging light-
ing, scale, and pose changes. The VTD, SSRT, MTT,
DLSRVT, and the proposed tracker perform well in this clip,
but the IVT, LSST, and �1 tracker fail in frame 579, 694,
and 940, respectively. FragTrack and MILTrack are also capa-
ble of tracking the animal doll, but yield large tracking errors.
Fig. 12(h) shows the tracking results from the Singer sequence.
The proposed tracker can stably track the singer even with dra-
matic lighting variations onstage. The IVT, VTD, and SSRT
algorithms are vulnerable to failure after the illumination
changes frames 130, 160, and 273.

3) Tracking Under Background Cluttering: In the Football
and Car sequences, the goal is to track the football player
and the car that are moving against similar backgrounds. In
Fig. 12(i), VTD and the proposed tracker are capable of track-
ing the player correctly. However, the VTD algorithm has
a slightly larger location error in the tracking experiments
(frames 163, 256, and 292). The proposed tracker works well
in such a challenging background cluttering scenario because
it uses an appearance model that has strong generative and
discriminative powers. On the other hand, the IVT, MTT, and
SSRT are distracted by the similar helmets of other players
and the ambiguous background after frame 292. In the Car
sequence [Fig. 12(j)], MILTrack and VTD are gradually dis-
tracted by the background, and fail to track the car after frame
81 and 179, respectively. The DLSRVT and �1 tracker also
start to drift from the car in the 237th and 295th frame, respec-
tively. The proposed tracker and MTT successfully and stably
track the car in the whole sequence.
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Fig. 12. Screen shots of the comparison of tracking results. (a) Occluded Face. (b) Occluded Face2. (c) PETS2001. (d) Dudek. (e) David. (f) Trellis.
(g) Sylvester. (h) Singer. (i) Football. (j) Car. (k) David †. and (l) Football‡. The results of the proposed tracker, FragTrack, MILTrack, IVT, VTD, �1 Tracker,
SSRT, MTT, LSST, and DLSRVT are indicated by the red, cyan, orange, green, blue, magenta, yellow, white, pink, and gold boxes, respectively.

4) Tracking Under Severe Random Noise: The tracking
results are shown in Fig. 12(k) and (l), which include severe
random noise (salt and pepper and Gaussian noises). The

proposed method tracked the face accurately and robustly in
the David† sequence, although disturbances from the com-
bined random noise and pose and illumination variations
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occurred. Notably, the other algorithms (i.e., IVT and SSRT),
which can successfully handle the same sequence without
noise, failed in this corrupted case. The proposed tracker
can track the helmet throughout the football‡ sequence suc-
cessfully. VTD and LSST drifted into the background when
random noise was present in the sequence.

V. CONCLUSION

An appearance model that uses sparse representation with
an online sparse dictionary learning scheme has been pre-
sented. Instead of commonly used subspace representations,
the sparse representation scheme with a sparsity constraint,
which has richer descriptive capability and stronger discrimi-
native power, is used for appearance representation. The target
appearance is modeled using an online dictionary learning
approach with an elastic-net constraint that induces sparsity in
the dictionary. The online learned sparse dictionary is robust
to the occlusions because it models the target appearance with
local features. Furthermore, using an undercomplete dictio-
nary is sufficient for visual tracking tasks, thereby facilitating
a more efficient implementation compared with other sparse
representation-based algorithms. Moreover, an RSM has been
presented to evaluate the similarities between the observed
sample and the learned appearance model. An affine parti-
cle filter is integrated with the proposed appearance model to
form a robust visual tracking algorithm. The proposed tracker
is compared with seven state-of-the-art trackers using ten
challenging benchmark video sequences to validate the robust-
ness. The qualitative and quantitative results indicate that the
proposed tracker is more accurate than the reference trackers.
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