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Support Vector Networks in Adaptive
Friction Compensation

G. L. Wang, Y. F. Li, Senior Member, IEEE, and D. X. Bi

Abstract—This paper presents our research on how support
vector regression (SVR) and parametric adaptive learning, which
are normally used independently, can be exploited together to
benefit adaptive neural control. In the context of friction compen-
sation for servo-motion control systems, we present the notion of
support vector networks which play an essential role in combining
SVR and adaptive neural network (NN) in cooperation for friction
estimation. The analysis shows that the proposed support vector
network contributes not only to the performance improvement but
also to the practical usefulness in adaptive friction compensation.
Experimental results are reported to demonstrate the effectiveness
of the proposed approach.

Index Terms—Friction compensation, neural network (NN),
servo motion systems, support vector regression (SVR).

I. INTRODUCTION
A. Background and Motivations

EURAL NETWORK (NN) has been widely used in un-

known function approximation needed directly or indi-
rectly in designing adaptive controllers. Much work has been
conducted on broadening the class of the systems for which
adaptive neural control can be applied [1]. In these studies, the
Lyapunov stability theory plays a crucial role of performing the
learning rule design with the guaranteed stability and required
robustness. However, the approximation property of NNs is only
locally applicable and approximation errors always exist. These
give rise to instability which challenges the Lyapunov design
for adaptive neural control. Among various instability factors,
the effects of the architecture and initialization of NNs are sig-
nificant. First, the approximation accuracy is highly dependent
on the NN’s structures. In particular, an underdetermined NN
can deteriorate the approximation accuracy while an overde-
termined NN can lead to heavy computational burden. Second,
initializing NNs considerably affects the neural control perfor-
mance and even the stability of the closed-loop systems. Indeed,
the initial estimation errors in the NN weights inevitably result
in the transient performance limitation, which may make the
adaptive neural controller practically infeasible.
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As a linearly parameterized neural network (LPNN), the ra-
dial basis function (RBF) networks are a class of the most impor-
tant NN parameterizations commonly used in adaptive neural
control [2]. The construction of an RBF network relies heavily
on the conditions and the a priori knowledge for the studied sys-
tems which are in general unknown. An empirical choice often
leads to an over- or underdetermined NN structure. Therefore,
it is highly desirable to construct a well-conditioned structure
with a satisfactory initialization systematically.

Support vector regression (SVR) was developed in statistical
learning theory [3], [4]. From the viewpoint of function approx-
imation, the SVR is regarded as an LPNN, which can serve as
a powerful tool of reconstructing a function from sparsely ob-
served data. Of great interest is that SVRs are self-structured
without the curse of dimensionality even for a large number of
inputs. Additionally, SVR training can be performed by solving
a convex optimization problem without local minima solutions.
Via structural risk minimization, the generalizing capability of
SVR can be guaranteed without overfitting problems. These fea-
tures suggest that the SVR is a potential alternative for approx-
imating unknown functions in control system design.

In this paper, we present our studies on how SVR and para-
metric adaptive learning, which are normally used independently,
can be exploited together to create a parsimonious NN architec-
ture with satisfactory initialization, which will benefit the design
of adaptive NN-based control. We present the proposed approach
in the context of friction compensation for servo motion control
systems although the method has much wider potential applica-
tions. Experimental studies are conducted to demonstrate the ef-
fectiveness of the proposed approach.

B. Related Works

The construction of feedforward multilayer neural networks
(MNNs) is a well-discussed problem. Nonlinear optimization
algorithms are most straightforward approaches to MNN’s
training but suffer from the problem of local minima. Thus
various alternatives have been proposed to facilitate efficient
MNN’s training. Among these well-developed techniques,
additive (or constructive, or growing) methods [5] and subtrac-
tive (or destructive, or pruning) methods [6] are well-known
strategies which determine the NN’s structure through succes-
sive refining steps but along two different directions: adding
a new relevant neuron in a forward fashion or removing an
old irrelevant neuron in a backward fashion, respectively. It
has been shown that the combination of these two approaches
can offer more efficient solutions [7]. To avoid prior offline
learning phases, an online self-structuring MNN has been
proposed in the design of adaptive neural controller in [8], in
which a simple additive mechanism is introduced to achieve

1045-9227/$25.00 © 2007 IEEE



1210

the structural adaptation. Nevertheless, on one hand, the global
property of active neuron functions within the networks makes
the convergence of MNN learning slower; on the other hand,
the nonlinearity of MNNs makes the design of adaptive neural
control difficult and the results obtained more conservative.
The support vector networks proposed in this paper are LPNNSs,
which is complementary to the MNNSs in avoiding the short-
comings mentioned previously.

An RBF network is a special MNN with a fixed hidden layer
consisting of RBFs. The construction of the RBF networks is re-
duced to the selection of the center and shape of basis functions,
which has triggered much research works grouped as supervised
and unsupervised training. The basic idea of the unsupervised
techniques is to choose the centers as the templates of the input
training data. One of these techniques is the clustering method,
such as k-means clustering [9] and vector quantization [10]. The
main drawback of these methods is the large number of the re-
sultant hidden centers which is known as the curse of dimen-
sionality. Alternatively, the supervised techniques select the op-
timal centers successively from the input training data based on
minimizing the network output errors in a forward or backward
fashion. The orthogonal least square (OLS) algorithm is a pow-
erful approach to the supervised training [11]. Recently, sup-
port vector machine (SVM) with the RBF kernel has been used
to construct the RBF network for classification, in which the
centers are trivially selected as the support vectors [12]. It has
been shown that the SVM-based training outperforms the clus-
tering methods. Compared with the OLS methods, the SVM-
based training targets at minimizing the bounds of not only the
training error but also generalization error and is thus superior
in maintaining better NN’s generalization level. This paper ex-
tends the use of the SVM-based training in three aspects. First,
the SVR-based training is used for unknown function approxi-
mation in control systems. Second, the constructed LPNNs are
no longer limited to the RBF networks via using available kernel
functions other than RBFs. Third, the SVM-based training is in-
corporated into parametric adaptive learning to enhance the per-
formance of adaptive neural control.

Friction compensation plays an important role in the con-
troller design for a servo motion system. Friction is often treated
as model uncertainty because it is a very complex nonlinear
phenomenon hard to be described analytically. There have been
extensive efforts on developing adaptive friction compensation
schemes, where parametric uncertainties are mainly dealt with
in a variety of empirical models [13]. Recently, NN parame-
terizations have aroused research interests in model-free adap-
tive friction compensation [14]-[18]. However, these studies
mainly focus on the adaptation and stability of adaptive com-
pensators without special considerations on the construction of
NNs. In [19], SVR parametrization has been developed for fric-
tion modeling. It has been shown that there is no need to seek
complex sensing techniques to collect the training data and thus
the SVR parametrization can be easily implemented for a servo
motion system such as a haptic display system [20]. The new
contribution of this paper is to present the notion of support
vector networks which play an essential role in combining SVR
parametrization and adaptive NN in cooperation for friction es-
timation. In addition, an analysis is presented to show how the
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proposed support vector networks can improve the performance
and enhance the practical usefulness in friction estimation.

This paper is organized as follows. First, our methodology
is outlined in Section II. Then, main results are presented in
Section III. Finally, the experimental results are reported to val-
idate our approach.

II. PROBLEM FORMULATION

Consider a 1-degree-of-freedom (1-DOF) planar robot ma-
nipulator described in the following standard form

Ij+F=r (D
with ¢ € R denoting the joint position, I > 0 being the inertia of
the link, F' representing the friction term, and 7 being the torque
supplied by the joint actuator. To focus on the uncertainty issue
of the friction effect, we assume that I is known. Let g4 be the
joint pose reference trajectory. The goal is to drive the system
to track the reference trajectory. Define the tracking error as
e = qq — q. It is convenient to introduce the filtered tracking
error as

r=2>e+é ()

where A > 0 is a design parameter. In terms of the filtered error
r, the dynamic system (1) can be rewritten as

It =I(Xe+da) + F —7 3)
which motivates the following approximation-based control
scheme [21]

7=k + I(\é + Gg) + F )

where k,. > 0 is another design parameter and F is the friction
estimator and plays the role of compensating the friction effect.
As such, the closed-loop system is asymptotically stable if F' is
exactly known or F=F.

However, F' is generally unknown or incompletely known.
The approximation-based scheme (4) yields the closed-loop fil-
tered tracking error system

It + kor = F 5)

where ' = F — F is the friction estimation error. Thus, the
friction estimator affects the performance.

In view of the fact that the system operates in a bounded
region, we trivially assume that [¢,w]? evolves in a compact
subset @ x Q C R? and (qq, Gq) € Qa X Qg with Q4 x Qg
being a connected subset of Q x Q. Let Q; = {w € Qlw > 0}
and Q_ = {w € Qw < 0} denote the positive- and nega-
tive-velocity regimes, and the subscripts “+” and “—” indicate
the related friction components, respectively.

In this paper, the friction is modeled as a function of the an-
gular velocity w = ¢ in the form of

F(w) = f4 (@) (@) + - (@) (w)

where py(w) = 1if w > 0; otherwise, p4(w) = 0 and
p—(w) = py(—w). In addition, f (w) and f_(w) are assumed
to be smooth functions over 2 and 2_, respectively.

(6)
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Our methodology is outlined as follows. It consists of two
parts. The first part is to construct the SVRs of f4(w) (brevity
for fi(w) and f_(w)) based on training data sets Dy C Q,
that is

fr(w) = éioy (w) @)

where ¢+ € RV+, ¢, (w) € RV+, and Ny > 0 are the numbers
of the support vectors in D4, respectively. This will be done in
an offline fashion. With the previous notations, the friction effect
captured via the resultant SVRs is represented in the compact
form of

Fo(w) = & p(w) )

where $(w) = [¢ (w)ps (W), ¢ (W)p-(w)]" € RN, & =
e, ef]T € R¥,and N = Ny + N_. Let l(w) = F(w) —
Fiy(w). l(w) reflects the residual friction effect over €2 when
using Fi,(w) as an estimate of F'(w). The second part is to es-
timate [(w) via the online NN-based approximation under the
adaptive control framework. This NN inherits the structure of
the SVRs and is put in the form of

'UT (w)/
La() = Ha(w) = {,,I(w»

w € N
0o

w e N_

where ¥,q4 = [’f)i, @T]T is the estimate of the ideal NN weight

vector v, as

(10)

v}, = arg min

i R {sup |"’Zd"/’(w) - l(w)|} i
v, €ER wEN

As a new paradigm of friction reconstruction, F'(w) can be ap-
proximated by

F(w) = Fa(w) + haa(w) = (&, + 91, $(w)
which is referred to as the support vector network.

Indeed, the support vector network (11) incorporates SVR
with adaptive NN. The motivations behind this are highlighted
by the following remarks.

Remark 1: In addition to the offline SVR F,,(w), the sup-
port vector network involves online NN approximation .4 (w)
of the residual friction effect [(w) = F(w) — Fsy(w), which can
enhance the friction estimation ability, especially, when friction
varies. As a matter of fact, the friction behavior is often affected
by various factors such as temperature and humidity, and thus, it
usually changes with time. The term /(w) tends to be significant
and the adaptive effort [,q(w) becomes necessary to compensate
for it. In short, the adaptive NN complements the SVR with the
online learning ability in friction compensation.

Y

III. SUPPORT VECTOR NETWORK FOR ADAPTIVE
FRICTION COMPENSATION

A. Structure and Initialization

In what follows, we show how to construct and initialize a
support vector network, i.e., how to determine %(w) and &, .
The basic idea is to construct the approximation of f4 (w) from
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Fig. 1. Stribeck effect of static friction behavior.

observed data. The SVR-based method developed in [19] is suit-
able for this task. We briefly describe the SVR formulation in the
context of the friction model structure (6). For clarity, we omit
the subscripts “+” without confusion.

No assumptions are made on the shape of f(w) except that
it has the downward bend behavior in the low-velocity regime,
the so-called Stribeck effect as shown in Fig. 1, which has been
well studied in [22]. In particular, f(w) is assumed to be highly
nonlinear and much smooth in the low-velocity regime. Beyond
some cutoff critical velocity w., the Stribeck effect almost van-
ishes and f(w) is nearly linear in the high-velocity regime. We
assume that there is a ﬁnite amount of available training data
D = {(wj,Fj)lw; € Q}L,, where F; = f(w;) + v; for
each j, v; is the measurement error of the jth training point,
and M is the number of the training points. According to the
cutoff critical velocity w., we can subgroup the indices of the
training points as Iy = {i € Iylw; < w.}and I = Iy — I4,
where Iy = {1,2,..., M}. Motivated by the downward bend
behavior of the Stribeck effect, the straightforward selection of
w, 1s determined by

We =: wj,, i. = argmin | Fj|. (12)
J

Asin[19], f(w) is approximated underlying the training data

set D by

(13)

w]7

Z%

with K(-,-) being a kernel function defined over  x €. This
representation is motivated by seeking a solution of the fol-
lowing regularization problem:

min E C

F
JeFK 2 JEL

%(f >.7'-K

(14)

in a reproducing kernel Hilbert space (RKHS) Fx defined by
kernel K [23]. Here, (-, -) 7, denotes the scalar inner product of
Fi. |+|e is Vapnik’s e-insensitive norm defined as | F — f (w)|. =
max{0, |F — f(w)| — €}. In the context of the regularization
theory [24], the first term in (14) is viewed as a stabilizer that
reflects smoothing effort, while others totally describe the cost
of the training error. Cs are the parameters that make the trade-
offs between the training errors and the smoothing constraints.
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Each ¢; provides a degree of freedom associated with the error
tolerance control.

The regularization problem (14) can be transformed into the
following equivalent problem:

R P
min ZCIZ &+&) + 5L Dre (19
fEE* 2
JEL
subject to the constraints
fw))—Fj<ea+&, jel 1=1,2
Fj— f(wj) <ea+ &5, Jje; 1=1,2
§,& >0, J=12,... .M (16)
& and £ in (15) denote the slack vectors [¢1,&a, ..., En]T
and [£7,€5,...,&5,]7, respectively. This constrained op-

timal problem can be solved by the standard technique of
Lagrangian multipliers. As a result, the vector of the coeffi-
cients @ = [ay, s, ..., ay]7T is the solution of the following
quadratic program (QP) problem [19]:

M
mm— Z ajorK(wj, wy) ZQJF _1_26[2 ||
Jk 1 =1 jeI,
subject to a7
laj| < C, JEI; I1=1,2
M
> a; =0 (18)
=1

Remark 2: Compared with the standard SVR [3], our aug-
mented formulation (17) uses different regularization parame-
ters and the e-insensitive levels. The pairs (C1, €1) and (Cz, €2)
correspond to the smoothing efforts and the error-tolerances im-
posed on f (w) in the low- and high-velocity regimes, respec-
tively. The logic behind this is to impose varying constraints of
the smoothness and the error-tolerance on f(w) according to the
different complexities of friction forces in the low- and high-ve-
locity regimes.

Of special interest is the Karush—Kuhn—Tucker (KKT) con-
ditions satisfied at the solution e, thatis, for j € I;,1 = 1,2

Qa; (6[ + fj — Fj + f(wj)) = 07 Q; <0 (198.)
aj (@ +& +Fj—f(w) =0, ;>0 (19b)
(Cr—la;[)& =0 (Cr—|ay]) &5 =0. (19¢)

Note that the KKT conditions imply the sparsity of the SVR
parametrization. The training points which have nonzero coeffi-
cients o are the so-called support vectors, usually only a small
fraction of the training data set D. Indeed, nonzero o; can be
categorized as two groups. One consists of all the bounded ones,
|aj| = Ci; the other involves ones 0 < |a;| < C, which corre-
spond to the points at the boundary |F; — f(w;)| — ¢ = 0.

We summarize the procedure of constructlng an SVR
parametrization as follows:

Step 1) collecting the training data D = {(wj, Fj)}}L;;

Step 2) determining w., and then, collecting /1 and I5;

Step 3) specifying the kernel K and the pairs {(Cy, &) }7_;;

Step 4) solving the QP problem for a.
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With the computed & by implementing the previous SVR
training procedure, the SVR (13) is readily available for struc-
turing and initializing a support vector network. Let I, = {i €
Io|a; > 0} be the set of the support vector indices and Dy, =
{(wi,, Fi))lij € I}}, C D the support vector set, where N
is the number of the support vectors. Accordingly, the represen-
tation (13) can be rewritten as the support vector expansion (8)
with ¢; = a;; and ¢j(w) = K(w;;,w) forj =1,2,...,N.

At this stage, we make the following assumption and remark:

Assumption: The matrix [K (w;;,w;, )] for the support vector
set Dg, is strictly positive definite.

Remark 3: This assumption trivially holds for commonly
used kernels including the spline kernel in the sequel [19].

B. Adaptation and Stability

This part will show how to equip the support vector network
with the adaptation ability as well as the guaranteed stability. In
particular, substituting (11) into (4) yields the augmented con-
trol scheme

= ke + TG+ o) + (e, +900) ¥ (20)
which needs the adaptive rule for estimating the NN weights
9,4, while the closed-loop system meets the satisfactory sta-
bility requirement. The Lyapunov-based adaptive technique is
utilized to achieve this goal. First, the update rule of the NN and
its stability is conditionally developed. Then, we present an an-
alytical analysis which plays a twofold role. One is to clarify the
relationship between the transient performance and the design
parameters. The other is to identify the initial conditions which
guarantee the stability of the tracking control.

With the notation of the support vector network defined in
(11), the following approximation holds:

F(w) = (e +v3") $(w) + e(w),

where €(w) is the approximation error with the upper bound
le(w)] < em for some €, > 0. Accordingly, the friction es-
timation error F'(w) in (5) can be written as

F(w) = 05q9(w) + e(w),

where ¥,q = v¥; — ¥,q. To motivate the update rule of ¥V,q,
consider the following Lyapunov function candidate

we Q21

weN (22)

V= —Ir + —vadf‘ Dad (23)

where I' is some positive-definite matrix. If w is supposed to
evolve in Q for all ¢ > 0 (we will show later that this is true
if some initial conditions are necessarily met and the design
parameters are appropriately chosen), the time-derivative of V'
along the state subject to (5) is given by

V= [ﬁ’(w) — krr} r4+ 90 g
= — kol + ok, [’t/)( ) —F_l't;)ad} +re(w). (24)
To guarantee the stability of V', we employ the update rule

Daq = T [h(w)r — oaq] (25)
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where o > 0 is a constant. Indeed, using the update rule (25) in
(24) yields

V = — kr? — o||ad))® + aafdvi;d + e(w)r
k o . 2
< - 7”2 - 5||vad||2 2 vzl + e e, (26)

in which the last step is derived by using the inequality ab <
Ba®+ 57102 (3 > 0). Note that ||#,q]|2 < 79 4T 94, where
v > 0 is the smallest eigenvalue of I'. Let

. _ O« 2
po =min(k, I~ 0y) p1 = 5 [v5all* + k—egm 27)

Thus, we have
V < —poV + p1.

Hence

Vi <4 [V(O) - &] et >0, (28)

Po Po

This implies that r and v,4 are uniformly ultimately bounded.

In what follows, we show that there exist some initial con-
ditions for [¢,w]T and appropriate design parameters k, > 0,
v > 0,and o > 0 such that [¢,w]” always remains in Q x
for all ¢ > 0. To do so, we define

B =sup {Blsup at) - o(6)] < 1 mplics (1)< @,
>0

B, =sup {B| sup |Gq(t) — w(t)] < B implies w(t) € QNt}.
>0

From (28), for all ¢ > 0, we have

()] < [—
< \/[% + 5 O] % + 1 0)

:=Ro [k, 0,7, 02a(0)] + |7(0)] -

(29)
For brevity, we write Ro[k;,o,7,0.a(0)] as Ry. From (2), we
get

t

(b)) < e(0)] + [ e jr()

< le(0)] + [Ro + [r(0)[] A7

<21e(0)] + [€(0)]| A™! + RoA™ ™. (30)
Also note that
le()] < |r(@)] + Ale(?)]
<2[Ro + |r(0)]] + Ale(0)]
<3Xle(0)| +2é(0)| + 2Rp. (3D
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Let B} = 2B, — B,A™! and BY, = 2
Bg > 0 and BY > 0, we can define

B, — 3ABy — Ry. For

= {4q(0) € Q|]qa(0) —
= {w € Q| |wa(0)

q(0)| < B} cQ

—w(0)|<B2cO. (32

To meet the constraints B > 0 and B, > 0, we should set the
design parameter A such that

B 2B
— <A ~ 33
5B, =" < 3B, 33)
and choose k) > 0 and v* > 0 such that
R(] [k:, ag, 7*7’l~)ad(0>] S 2Bw — 3)\Bq (34)

Then, given [¢(0),w(0)]7 € Qg x Q, with A satisfying (33), for
k. > k} and v > ~*, it can be easily verified that |e(t)| < B,
and |é(t)] < B, for all t > 0, thus [g,w]T always stays in
Q x Q.

At this stage, we summarize the previous discussions to guide
the friction compensator design as follows:

Step 1) determine A such that (33) holds;

Step 2) choose k;: and v* such that (34) holds;

Step 3) specify the design parameters k,. > k¥ and v > v*;

Step 4) identify the initial conditions Qg x Qg via (32).

As a consequence, the stability of the closed-loop system can
be characterized as follows.

Theorem: For given [qq4, wd]T € 9 x Q, if the controller (20)
determined based on steps 1)-3) is applied to the plant (1), and
[7(0),w(0)]T € Qg x €y defined by step4), then [q(t), w(t)]T €
Qx Qforallt > 0.

C. Discussions

This part will present an analysis that shows the advantages
of the proposed method. This focuses on the role for the SVR
to play in two aspects. First, the contribution to the performance
improvement will be examined. Second, the enhancement of the
practical usefulness will be highlighted.

Among various characteristics of tracking performance,
two most important criteria are considered here. One is
the steady-state tracking error defined by lim;, . |e(?)].
From (28), we see that lim; .., V() < plpal, thus
lim; o |7()] < 2p1(pol)~1 := R;. Furthermore, it
can be derived as done for (29) that

lim |e(t)] < tlim lr()| A1 < RyAL

t—o0o

(35)

Another criterion is the maximum tracking error, that is,
sup,;>q |e(t)], bounded by

sup le(t)] < 2]e(0)] + [¢(0)| A7 + RoA™"
t>0

(36)

which is inferred from (29). We can conclude from (35) and (36)
that the smaller R, and R; are, the better the tracking perfor-
mance is.
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Recalling the theorem, the initial conditions impose some
fundamental limitations on the practical implementation of
tracking control. Observing (34), we see that the smaller Ry is,
the more relaxed the initial conditions are.

It is evident that the low values of (€,,,, ¥4, 9aa(0)) can limit
the level of Ry and R, thus they can not only lead to a better
tracking performance but also increase the practical usefulness
without requiring large k., A\, and . As a consequence, the
high-gain control can be avoided to improve the performance
and to enhance the usefulness. The following observations argue
that the SVR plays a role in limiting the levels of the triple
(ém- V-2 (0)).

Observation 1: According to the universal approximation ca-
pability of SVR [25], the SVR can generate a well-conditioned
NN structure automatically whenever well-shaped training data
are available. Compared with other techniques for constructing
NN, the SVR-based training targets at minimizing the bounds
of not only the training error but also the generalization error
and is thus superior in practically limiting the level of €,,.

Observation 2: The mechanism of the SVR training can ef-
fectively limit the level of v}, = [viT ) 'uiT]T. To understand
this, in terms of [(w), we rewrite (21) as

Vg $(W) = U(w) — e(w). 37
Consider (37) over D, (again, the subscript “+” is omitted) and
put them in the compact form of
vTK=1-7 (38)
where K = [K(wijvwik )]’ L= [l(wi1)7 l(wiz)v s 7l(wiN)]T’
and T = [e(w;,), e(wi,), - - -, €(wiy )]T. It is followed from the
KKT conditions (19) that for (w;,, F;,) € Dy

‘3

|l (wij)| < ¢ + max {51152} ij € I} N Iy

Let « be the largest eigenvalue of K ~! in (38). Then, we have

lo*|| < & 22: 3 (el+max{fij7ffj})2+Nem

1=1 ;€N
(39)

Recall the implementation of the SVR training; the parameters
€8 are the design parameters chosen for the tolerance errors
which thus have limited values. The ¢;;s and 5;‘; s are the slack
terms which contribute to the cost minimized by SVR. There-
fore, the first term on the right-hand side of (39) can be limited.
According to Observation 1, the second term can also be at some
limited level. We can conclude that the SVR training can limit
the level of v* (or v%) thus v} ;.

Observation 3: Motivated by Observation 2, we simply set
0,4(0) = 0. Consequently, v,q4(0) = v}, which can be put at a
limited level as addressed in Observation 2.

Remark 4: Of special interest is the fact that with a parsimo-
nious structure ¥(w) as well as a satisfactory initialization €5
offered by SVR the support vector network can guarantee the
well-shaped transient behavior and augment the practical feasi-
bility of the design of the adaptive neural control.
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Fig. 2. Schematic diagram of experimental test bed.

IV. EXPERIMENTAL STUDY

The proposed support vector network was experimentally
implemented on a force display device designed in our labora-
tory. In this paper, we focus on the free-space motion control
for tracking a reference trajectory without involving force
interaction with the environment. Fig. 2 is a schematic diagram
of our test bed. This device is a typical planar 1-DOF rotational
link with a vertical joint connected to a direct current (dc)
motor through a gearbox with a ratio of 1:80. The moment
of inertial of the link is I = 2.438 x 1072 kg-m?. The joint
angular displacement is measured by an optical encoder with a
resolution of 500 pulses per revolution. The armature current
of the motor is measured via a Hall sensor. With the known
torque constant 19.5 N-m/A, the applied torque is acquired
experimentally through measuring the armature current. These
two measured signals are fed into an incremental sensor inter-
face and an analog-to-digital (A/D) converter on an dSPACE
(PS1103 PPC) controller board, respectively. The control signal
is generated through an digital-to-analog (D/A) converter on
the dSPACE card and is amplified by a power amplifier module.
A PC PIII/860 MHz is used as the host computer for signal
processing and control.

Two tracking tasks of interest are performed here: nonunidi-
rectional and unidirectional positioning. The corresponding ref-
erence trajectories to be tracked are shown in Fig. 3. To under-
stand the improvement in trajectory tracking performance due to
the use of support vector networks, the following two scenarios
for compensating the friction are studied for each tracking task:
1) with only the SVR and 2) with the proposed support vector
network. Performance comparisons are made between the con-
trol schemes associated with these two scenarios. Two aspects
are evaluated. The first one is the efficiency of the SVR training
in structuring and initializing a support vector network, while
the second is the effectiveness of the adaptive capability of the
support vector network.

The experimental implementation is presented as follows.

A. SVR Versus Tustin Friction Model

We followed the SVR learning procedure described at the end
of Section III-A to perform the SVR construction.

First, as done in [19], the training data were collected. We
selected 54 training samples over the positive- and negative-
velocity regime, respectively. Next, based on the algorithm in
(12), the cutoff critical values w.s were determined. Thus, I;s
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TABLE 1
TRAINING DATA AND TRAINING/MODELING RESULTS

velocity | training data | SVR Training Tustin friction model
regime [we] [L/T2] SV (N/M) (fe, fsy fuw,ws)

positive | 0.781 44/10 5/54(9.3%) (0.0122,0.0179, 0.0002, 0.2)

negative | 1.221 49/5 4/54(7.4%) (—0.0144, —0.0199, —0.0011, 0.4)

=) —
g 8
£ 3
P o
I o=
[0] >
S =
® 31
a kel
n [
S >
time [sec]
(b)

0.2

velocity [rad/sec]

displacement [rad]

0 5 10 15 20 25 30 35 40
time [sec]

Fig. 3. Reference trajectories: solid line—angular displacement; dashed
line—angular velocity. (a) Nonunidirectional movement. (b) Unidirectional
movement.

are well defined. The results are listed in Table I, in which the
notation |I;| denotes the numbers of the elements in I;.
In our experimental studies, the spline kernel

1 .
K(wy,ws) =14 wiws + §|w1 — wy| min(wy, wy)?

+émmwhmf (40)
was used in the SVR training. It was experimentally observed
that this spline kernel is preferable to other kernel functions due
to the lower complexity and the better generalization capability
of the resultant SVR [20]. We take (C'1, 1) = (100, 0.0003) and
(C2,€2) = (1,0.00065). These selections are mainly guided by
the a priori knowledge of the static friction behavior as men-
tioned in Remark 2. These testing parameters were validated by
means of the cross-validation technique.

Last, owning to the small size of our training data set, the
corresponding QP problem was solved by a conventional QP
solver using Matlab. The resulting SVR and the distribution of
the support vector points are plotted in Fig. 4. The support vector
numbers are listed in Table I. It is evident that the representations
of the SVR is quite sparse.

Tustin model is one of the often used friction models for con-
trol design purpose [16]. It can be represented in the form of (6)
with fi (w) (f(w) for brevity) described by

r@) = 1o+ (0= e (= (1)) + g

s

(a)

friction [N.m]

0.011 : : :
0

(b)

-0.012

-0.014

-0.016

-0.018

friction [N.m]

-0.02
-0.022 . : -
-15 -1 0.5 0
velocity [rad/sec]
Fig. 4. SVR parameterizations and support vector distribution: solid
circle—support vector points; dotted line—tolerant error margin.

(a) Positive-velocity regime. (b) Negative-velocity regime.

where f. is the level of the Coulomb friction force, f, is the
level of the static friction force, ws is the Stribeck velocity,
and f, is the viscous coefficient. We estimate the parameters
(fe, fs» fw,ws) using the same data as in the SVR training. This
was implemented by minimizing the mean square errors of the
friction force prediction, using a nonlinear search technique.
The estimated values are listed in Table I. The predicted fric-
tion force by the Tustin model is shown in Fig. 5. As expected,
the training points fit the model well.

To evaluate the predicting capabilities of the Tustin model and
the SVR, we collected another 34 testing samples, in which six
samples are out of the range of the corresponding training data
set, over both the positive- and negative-velocity regimes. Fig. 6
compares the SVR with the Tustin model. Two performance in-
dices, the root-mean-square (rms) error and the maximum abso-
lute error, are used to quantify the friction predicting capability.



1216

0.017 8
0.016

0.015

friction [N.m]

0.014

0.013

0.012
0

(b)

-0.012 T T T

-0.014

-0.016

friction [N.m]

-0.018

-0.02

-0.022

-1.5 -1
velocity [rad/sec]

-0.5 0

Fig. 5. Friction force prediction by model: circle—training points; solid
line—Tustin model. (a) Positive-velocity regime. (b) Negative-velocity regime.

Table II lists the calculated results. It can be seen that both the
rms errors and the maximum absolute errors of the friction force
prediction by the SVR at the testing points are less than those by
the friction model. Based on these observations, we argue that
the SVR has the friction prediction confidence at a level similar
to that by the Tustin friction model and it outperforms the con-
ventional model-based approach.

B. Tracking Control Results

The controllers associated with two aforementioned sce-
narios can be represented in a unified form

7= Iig +kpe+kaé+ F .
) (0 (111

The component (I) is the inertia compensation term depending
only on the reference trajectory. The component (II) is a typical
proportional—derivative (PD) feedback control with k, = k, A
and kg = k, + I'X. The component (III) is the friction estimator
depending on which scenarios are being considered.

To stress the performance improvement due to the friction
estimator, the same PD control scheme is used for both sce-
narios. The first scenario employs the SVR defined in Table I
to capture the friction force. The second scenario uses a support
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Fig. 6. SVR versus Tustin model: triangle—testing points; solid
line—SVR; dotted—dashed line—Tustin model. (a) Positive-velocity regime.
(b) Negative-velocity regime.

TABLE II
COMPARISON OF FRICTION PREDICTION: TUSTIN MODEL VERSUS SVR

velocity | root mean square x10% maximum x10%
regime Tustin model SVR Tustin model SVR
positive 4.1187 3.5592 10.0000 8.1392
negative 3.5096 3.0726 9.4271 6.6364
TABLE IIT
DESIGN PARAMETERS FOR TRACKING CONTROLLER
task Byq By A kr vy o
non-unidirectional | 0.3491 | 1.6442 | 2.8 | 0.7 | 0.3 | 1.0
unidirectional 0.9186 | 1.9514 | 1.2 | 0.5 | 0.3 | 1.0

vector network as a friction estimator. The design parameters
were determined based on the guidelines described at the end of
Section III-B.

For our system, Q@ = {q € R||q| < 27/3} and Q = {w €
R|jw| < 2.0933} are of special interest. For the first tracking
task, it is calculated based on the reference trajectory shown in
Fig. 3(a) that B, = 0.3491 and B,, = 1.6442. Following (33),
A should satisfy 2.3549 < A < 3.1399. In our studies, we set
A = 2.8. This leads to Bg = 0.111, which defines the upper
bound of the initial condition. It follows from (34) that the upper
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TABLE 1V
PERFORMANCE IMPROVEMENT BY USING SUPPORT VECTOR NETWORK

task AMOITEME2 x 100% | MARLMAX2  100%
non-unidirectional 22.57 33.98
unidirectional 40.53 39.77

0.01 (a)
<) : T
g
T 0.005 e Db
=]
@ 0
=) : " : : :
E = N = N N
%_0005 P ....... ........ .
g : : : : :
had 1
O'010 10 20 30 40 50 60
time [sec]
(b)
= 0.01 r .
9] :
5
) W
(o)) :
C :
= :
S :
© : : : : :
- 1 1 1 1 1 1
_0'010 10 20 30 40 50 60
time [sec]
(c)
5 I RVIS
= L vax |

error measure [rad]

2

index of scenario

Fig. 7. Tracking errors for nonunidirectional positioning task: (a) with SVR
parametrization, (b) with support vector network, and (c) the performance mea-
sure.

bound R, is specified as 0.3560, which plays an important role
in guiding the choices of the remaining design parameters. We
set k. = 0.7. The matrix I’ = [v;;] € R®*Y in the update rule
(25) for 9,4 € R? is chosen as a diagonal matrix with all the
diagonal elements as y;; = 0.3 (¢ = 1,2,...,9). In addition,
we simply set ¢ = 1. Repeat the same design procedure based
on the reference trajectory shown in Fig. 3(b) for the second
tracking task. A list of the design parameters for both tracking
tasks are given in Table III.

To highlight the friction compensation effects, the initial
conditions ¢(0) and ¢(0) are set to zeros for both scenarios. In
addition, 9,q(0) = O for the second scenario. The measures

rms; = fOT le(p)|dp/T and MAX; = max;c[o, 7 |e(t)| are
used to evaluate the tracking performance of the ith scenario,
1 = 1,2. Here, T > 0 denotes the terminal time. Fig. 7 shows
the tracking error results for the first tracking task. The results
in Fig. 7(a) and (b) together imply that the support-vector-net-
work-based friction compensation can reduce the tracking error
significantly. Fig. 7(c) compares the tracking performance in
terms of two measures. The second row in Table IV gives
the percentage improvements of both performance criteria
by the support vector network, which demonstrates that the

—_ (a)
€ 004 . , ; . . .
Z
_5 0.02
T
E op
3 5
o —0.02 : ‘
Rl : :
6 | I 1 1 1 I 1
k= 0 040 10 20 30 40 50 60
time [sec]
= b
E 0.04 . . (. ) . . .
z T
§ 002
T
E O
g
2 -0.02} - ;
K] :
'§ _0'040 10 20 30 40 50 60
time [sec]
(c)
£ 0.08 ;
=) :
g 0.06F i 4
z
E 0.04F - o e I L P -
5 :
g 0.02} B R T Tt | L T PRTY R TRTRTSY PR TP -
o] : :
c y . . )
_(\l O 1 1 1
0 10 20 30 40 50 60
time [sec]

Fig. 8. Friction estimates for nonunidirectional positioning task: (a) with SVR
parametrization, (b) with support vector network, and (c) I norm of ,q.

support-vector-network-based friction compensator can con-
siderably improve the tracking accuracy. In short, the support
vector network shows more satisfactory performance than the
SVR in friction compensation.

To show the effectiveness of the adaptive NN in friction esti-
mation, the friction estimates of the two scenarios are compared
and shown in Fig. 8. Fig. 8(a) and (b) gives the outputs of the
friction estimator F', which indicates the major role of the adap-
tive NN in capturing the residual friction effects. The bounded-
ness of the NN weight estimate 9,4 is shown in Fig. 8(c). From
these observations, we can conclude that the adaptive NN can
substantially improve the tracking performance.

As for the first tracking task, Figs. 9 and 10 give the experi-
mental results for the second tracking task. Again, these results
confirm the effectiveness of using the support vector network in
tracking performance improvement. The percentage improve-
ments by the support vector network are summarized in the third
row of Table IV.

Remark 5: 1t should be noted that the percentage improve-
ment, especially of the rms measure by the support vector net-
work in the second tracking task, is more significant than that in
the first. This is mainly because there are three velocity reversals
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Fig. 10. Friction estimates for unidirectional positioning task: (a) with SVR
parametrization, (b) with support vector network, and (c) {> norm of ¥,4.

in the reference velocity trajectory for the first tracking task. In
this paper, the dynamic friction behavior around zero velocity is
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not accounted for in the friction model structure (6) and larger
tracking errors are produced at the velocity reversals. Accurate
tracking at extremely low velocity would require more sophisti-
cated friction model structure that can account for the dynamic
friction effect of velocity reversals. This is out of the scope of
this work, but will be investigated in our future studies.

V. CONCLUSION

This paper presents the notion of support vector networks, a
new paradigm for combining SVR with neural adaptive mech-
anism, in the context of friction compensation for servo motion
control systems. This paper extends our previous work [19] in
two aspects. The first one is to develop an enhanced adaptive
friction compensator, while the second is an analysis that shows
the improved performance and practical usefulness due to SVR.
The proposed method was experimentally implemented on a
force display device in our laboratory.

Compared with other NN’s construction techniques, the SVR
training is characterized by only a few parameters and is thus su-
perior in setting up a parsimonious NN structure which can offer
the guaranteed NN reconstruction capability as well as the re-
quired computational efficiency for adaptive NN-based control.
In addition, the SVR straightforwardly provides satisfactory ini-
tialization of the NN weights which leads to the well-shaped
transient behavior and thus augments the practical feasibility of
the adaptive neural controllers. In short, the proposed support
vector networks can effectively avoid the shortcomings due to
the unsatisfactory architecture or initialization of NNs in adap-
tive neural control. Our methodology is presented on a servo
motion system, but it can be applied to a much wider range of
applications.
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