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Abstract The popularly used DLT method sometimes fails
to give reliable camera parameter estimation. It is therefore
important to detect the unreliability and provide the corre-
sponding solutions. Based on a complete framework of in-
variance for six points, we construct two evaluation func-
tions to detect the unreliability. The two evaluation functions
do not involve any computations for the camera projective
matrix or optical center and thus are efficient to perform the
detection. Then, the guidelines corresponding to the differ-
ent detection results are presented. In particular, a filtering
RANSAC method to remove the detected unreliable points
is provided. The filtering RANSAC proves to be successful
in removing the unreliable points even if these points are of
a large proportion.

Keywords Bracket algebra · Invariant · Camera calibration

1 Introduction

Camera parameter estimation is a key problem in many
fields such as 3D reconstruction, augmented reality, visual
surveillance, and industrial photogrammetry. A very popu-
lar way to achieve the estimation is by the Direct-Linear-
Transformation (DLT) method which uses at least six pairs
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of space points and their image points (Abdel-Aziz and
Karara 1971; Slama 1980; Sutherland 1963; Hartley and
Zisserman 2000). The advantage of this method is that the
camera parameters can be determined linearly, making the
result accurate in general.

However, sometimes the expected accuracy of the esti-
mated camera parameters cannot be obtained by using either
an optimized DLT method or a non-optimized DLT method.
The accuracy of the camera parameters will severely affect
the implementation result of a subsequent vision task. For
example, the reconstructed shape of an object may be de-
formed, the virtual object and the real object cannot be co-
incident, or the measurement will have low accuracy. There-
fore, detecting the unreliability of space points and their im-
age points for camera parameter estimation and giving the
corresponding solutions are extremely important.

The cause for the unreliability can be traced to the fol-
lowing two cases:

(i) Camera and space points lie on a degenerate configura-
tion.

If a spatial configuration is degenerate mathemati-
cally but the noise from the measured image makes it
non-degenerate, any estimation under such configura-
tion would be useless (Weng et al. 1989). Notice that
by using the DLT method, many degenerate configura-
tions may occur. There are systematic analyses for these
degenerate configurations in Chap. 21 of (Hartley and
Zisserman 2000) as two cases: incidence case and non-
incidence case. In the incidence case, some of the space
points are collinear or coplanar, or they are collinear or
coplanar with the camera optical center, which can be
detected by checking the linearly dependent relations
among the space points or the image points. In the non-
incidence case, the space points and the camera optical
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center lie on a proper twisted cubic, on which no three
points are collinear and no four points are coplanar. It is
difficult to detect this non-incidence case. The method
of (Wu and Hu 2003) can detect this degenerate config-
uration. However, it requires estimation of the camera
optical center which is sensitive to noise. In (Wu and
Hu 2006), a robust method is presented but needs to fix
some point order such that using this method is not con-
venient. Determining the rank of the coefficient matrix
of the linear equations on the camera projective matrix
may also be a way to detect this non-incidence degen-
erate configuration. Unfortunately, as pointed out in the
discussion section of (Kahl and Henrion 2007), this is
a difficult task to preset a threshold to discriminate the
degeneracy from the non-degeneracy.

(ii) The space points and their image points are inconsistent
with a camera projective matrix due to large noise in
some of the image or space points, or due to mismatch-
ing between space and image points.

Mismatching and overlarge noise among the used
space points and their image points can occur in prac-
tice. If a vision task has been performed and is found to
be unsatisfactory, then people need to intervene to check
every step of their algorithm. This will involve checking
whether there is overlarge noise or mismatching of the
points. This checking is tedious. Automatically detect-
ing and removing these points can make a system more
usable and efficient. In (Förstner 1987), the author stud-
ied the influence of overlarge noise of the input data on
the reliability of a linear system, where the analysis is
dependent on the coordinate system under which the in-
put data are taken. RANSAC idea may remove the mis-
matching and overlarge noise of the points. However,
whether the initial samples are consistent with a cam-
era projective matrix or not, RANSAC would always
choose them to start the estimation. This will lead to un-
reliable estimation for camera parameters, in particular
when the inconsistent points are of a large proportion.

The above two reasons are the unreliability of using DLT
method. In this work, we develop the detection method for
the unreliability by two constructed evaluation functions.
Then, the corresponding solutions for the different detec-
tion results are provided. In particular, a filtering RANSAC
method is proposed to remove the points with overlarge
noise or mismatched. This filtering RANSAC method can
also prevent the remaining points from lying on a degenerate
configuration. The advantages of our methods include: (i) no
estimation of the camera projective matrix or optical center
in the detection is needed; (ii) the error distribution of mea-
surements on the space points or image points does not need
to be known; (iii) the detection is independent of the coor-
dinate system, which is simple and compact, requiring only
comparison of the values of the evaluation functions with

given thresholds; (iv) the initial samples with poor perfor-
mance are detected and filtered out in the proposed filtering
RANSAC before a general RANSAC method is employed.
Experiments performed show that the detection method is
efficient and the filtering RANSAC has a high success rate
in removing the unreliable points. Comparison between the
filtering RANSAC and the general RANSAC is also made,
showing the importance of the filtering.

These advantages are attributed to the two constructed
evaluation functions based on the invariant relationship of
six space points and their image points. Thanks to the unified
and complete framework of invariance on six points (Wu and
Hu 2005), the two evaluation functions are established for
identifying whether or not the camera and space points lie
on a twisted cubic degenerate configuration and whether or
not there is overlarge noise or mismatching among the used
points.

The organization of the paper is as follows. Some pre-
liminaries are listed in Sect. 2. The two evaluation functions
for six points are constructed in Sect. 3. Section 4 gives the
detection method of the unreliability for six or more than
six points and provides the corresponding solutions to the
different detection results. In Sect. 5, we report the experi-
ments, followed are conclusions in Sect. 6.

2 Preliminaries

In this paper, a bold capital letter denotes either a homoge-
neous 4-vector or a matrix, a bold small letter denotes a ho-
mogeneous 3-vector, a bracket “[ ]” denotes the determinant
of vectors in it.

There exist relations among determinants. One kind of
these relations are the following Grassmann-Plücker rela-
tions:

[a1a2a5][a3a4a5] − [a1a3a5][a2a4a5]
+ [a1a4a5][a2a3a5] = 0, (1)

[A1A2A5A6][A3A4A5A6] − [A1A3A5A6][A2A4A5A6]
+ [A1A4A5A6][A2A3A5A6] = 0 (2)

where (1) is with respect to homogeneous 3-vectors ai , i =
1..5 and (2) is with respect to homogeneous 4-vectors
Ai , i = 1..6. They are often used to simplify bracket com-
putations.

Under a pinhole camera, a space point Mi is projected to
an image point mi by:

ximi = K(R, t)Mi , (3)
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where K is the 3 × 3 matrix of camera intrinsic parameters,
R a 3 × 3 rotation matrix, t a translation vector with 3 ele-
ments, and xi a nonzero scalar. If xi were zero, Mi could not
be projected to the image plane. If the optical center, denoted
as O, is not at infinity, its non-homogeneous coordinates are
Ô = −RT t. We assume that the camera optical center O and
the space points Mi are not at infinity throughout this paper.
The DLT method solves the camera parameters K,R, t by
solving for the matrix K(R, t) from the pairs Mi ↔ mi with
i ≥ 6.

Let the non-homogeneous coordinate of Mi be M̂i , so
Mi = (M̂T

i ,1)T . By (3) or (Carlsson 1995) we have:

xixj xk[mi ,mj ,mk]
= [ximi , xj mj , xkmk]
= det(K)[RM̂i + t,RM̂j + t,RM̂k + t]
= det(K)[M̂i + Rτ t,M̂j + Rτ t,M̂k + Rτ t]
= det(K)[M̂i − Ô,M̂j − Ô,M̂k − Ô]

= det(K)

[
M̂i , M̂j , M̂k, Ô
1, 1, 1, 1

]

= det(K)[Mi ,Mj ,Mk,O]. (4)

Then, [mi ,mj ,mk] = 0 if and only if [Mi ,Mj ,Mk,O] = 0.
Namely, mi ,mj ,mk are collinear if and only if Mi ,Mj ,

Mk,O are coplanar.
In the following, for the notational convenience, if no

ambiguity can be aroused, Mi , i = 1..6 will be simply de-
noted as 1,2,3,4,5,6, and the commas in the brackets will
be omitted.

There is a unique proper quadric cone with 1 as the vertex
and passing through 2,3,4,5,6 with no three collinear and
no four coplanar. Any point X is on this quadric cone if and
only if (Wu and Hu 2003):

[1246][1356]
[1236][1456] = [124X][135X]

[123X][145X] . (5)

This representation is not unique because a permutation
of 2,3,4,5,6 also results in a representation of the same
quadric cone.

There is a unique proper twisted cubic passing through
1,2,3,4,5,6 with no three collinear and no four coplanar.
Any point X is on this twisted cubic if and only if (Wu and
Hu 2003):
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[1246][1356]
[1236][1456] = [124X][135X]

[123X][145X] ,
[1246][2356]
[1236][2456] = [124X][235X]

[123X][245X] ,

and X is not on line 12 except 1,2.

(6)

This representation is not unique because a permutation of
1,2,3,4,5,6 also results in a representation of the same
twisted cubic.

We can see that each bracket in the first equation of (6)
has the point 1. So according to (5), its geometric mean-
ing is that 1,2,3,4,5,6,X lie on a quadric cone with 1 as
the vertex (Wu and Hu 2003). Similarly since each bracket
of the second equation of (6) has the point 2, this equation
means that 1,2,3,4,5,6,X lie on a quadric cone with 2 as
the vertex. These meanings are consistent with the theorem
in (Semple and Kneebone 1952) that a twisted cubic can be
the intersection of two quadrics.

3 Construction of Evaluation Functions for Six Points
from a Complete Framework of Invariance

In this section, for six space points we assume that no five of
them are coplanar and no three of them are collinear. Also
assume that the camera optical center is non-incident with
the space points. These assumptions are denoted by NC.

3.1 Invariance between Space Points and their Image
Points

Between six space points 1,2,3,4,5,6 and their image
points mi , i = 1..6, there exists an invariant relationship as
(Wu and Hu 2005; Carlsson 1995; Bayro-Corrochano and
Banarer 2002; Carlsson 1998; Quan 1995):

f1234;56

= [m3m4m5][m1m2m6][1235][1245][1346][2346]
+ [m3m4m6][m1m2m5][1236][1246][1345][2345]
+ [m2m3m5][m1m4m6][1245][1345][1236][2346]
+ [m2m3m6][m1m4m5][1246][1346][1235][2345]
− [m2m4m5][m1m3m6][1235][1345][1246][2346]
− [m2m4m6][m1m3m5][1236][1346][1245][2345]

= 0. (7)

This expression is symmetric with respect to (5,6) and sym-
metric with respect to (1,2,3,4). Thus it is denoted as
f1234;56. After a permutation of 1,2,3,4,5,6 and their cor-
responding image points in (7), the obtained equation called
a permuted equation is still an invariant relationship but not
independent of (7). Under the assumption NC, there is at
least one term in f1234;56 being nonzero. Dividing f1234;56

by this nonzero term gives an expression on cross ratios of
the image points and cross ratios of the space points. Thus,
the relationship is an invariant relationship, also called as
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invariance. For example, if the first term is nonzero, (7) be-
comes:

[m1m2m5][m3m4m6]
[m3m4m5][m1m2m6]I1 − [m1m3m5][m2m4m6]

[m3m4m5][m1m2m6]I2

+ [m1m4m5][m2m3m6]
[m3m4m5][m1m2m6]I3 + [m2m3m5][m1m4m6]

[m3m4m5][m1m2m6]I4

− [m2m4m5][m1m3m6]
[m3m4m5][m1m2m6]I5 + 1 = 0

where

I1 = [1345][2345][1236][1246]
[1235][1245][1346][2346] , I2 = [2345][1236]

[1235][2346] ,

I3 = [2345][1246]
[1245][2346] , I4 = [1345][1236]

[1235][1346] ,

I5 = [1345][1246]
[1245][1346]

are on cross ratios of space points, and their coefficients are
on cross ratios of the image points (Carlsson 1995, 1998;
Wu 2001).

When the space points and the camera optical center lie
on some specific configuration, these space points and their
image points still satisfy this relationship f1234;56. However,
the relationship cannot be a sufficient condition. The neces-
sary and sufficient conditions of two specific configurations
are given as follows.

Proposition 1 Let the quadric cone with 1 as the vertex and
through 2,3,4,5,6 be QC. Then, the camera optical center
O lies on QC if and only if:

g1,(25;34) = [m1m2m3][m1m4m5][1246][1356]
− [m1m2m4][m1m3m5][1236][1456] = 0, (8)

where the expression is denoted as g1,(25;34) because each
bracket contains 1 or m1 and because the expression is sym-
metric with respect to (2,5) or (3,4). After a permutation of
2,3,4,5,6 and their corresponding image points in (8), the
obtained equation is still an invariant relationship of O ly-
ing on the same quadric cone and still dependent on the one
before permutation.

Proof If no three points are collinear and no four points are
coplanar for 1,2,3,4,5,6,O, then according to (5), O lies
on QC if and only if

[1246][1356]
[1236][1456] = [124O][135O]

[123O][145O] . (9)

Moreover, by (4) we have

[124O][135O]
[123O][145O] = [m1m2m4][m1m3m5]

[m1m2m3][m1m4m5] .

It follows that we get

[1246][1356]
[1236][1456] = [m1m2m4][m1m3m5]

[m1m2m3][m1m4m5] . (10)

Expanding (10) gives g1,(25;34) = 0 of (8).
If there are three points collinear, this is contrary to the

assumption NC of this section. If there are four points copla-
nar, this is also contrary to NC. Because at this time, QC is
degenerate that consists of two planes or one plane. That QC
is a plane is contrary to NC that no five points are coplanar.
That QC consists of two planes is contrary to NC that the
optical center is non-incident with the space points. �

Similarly, by (4) and (6), we have the following proposi-
tion.

Proposition 2 The camera optical center O lies on the
proper twisted cubic determined by 1,2,3,4,5,6 if and only
if

⎧⎪⎪⎨
⎪⎪⎩

g1,(25;34) = [m1m2m3][m1m4m5][1246][1356]
− [m1m2m4][m1m3m5][1236][1456] = 0,

g2,(15;34) = [m1m2m3][m2m4m5][1246][2356]
− [m1m2m4][m2m3m5][1236][2456] = 0.

(11)

After a permutation of 1,2,3,4,5,6 and their correspond-
ing image points in (11), the obtained equation system is still
the invariant relationships of O lying on the same twisted
cubic and still dependent on the one before permutation.

Notice that in (6), there is another condition: O is not
on the line through 1 and 2. Here this additional condition
in (11) is unnecessary because we have assumed that O is
non-incident with the space points.

3.2 A Unified and Complete Framework of Invariance for
Six Points

We have a unified and complete framework of invariance for
six space points (Wu and Hu 2005). For self-containing, the
main outline is given as follows.

For the optical center O and five spatial points 1,2,3,

4,5, there is a Grassmann-Plücker relation of (2) as:

[1245][3O45] − [1345][2O45] + [2345][1O45] = 0.

From this equation and from (4), we have:

h123,45 = x3[1245][m3m4m5] − x2[1345][m2m4m5]
+ x1[2345][m1m4m5] = 0.
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Similarly from other five-group points of 1,2,3,4,5,6, we
obtain the corresponding equations:

h123,46 = 0, h124,35 = 0, h124,36 = 0,

h125,36 = 0, h126,35 = 0.

These equations are all linear with xi, i = 1..6. We do
not consider other equations hijk,mn = 0 because there
are at most such six equations independent: for six points
there are in total 18 equations of (3), from which after
eliminating 12 parameters of K(R, t), only 6 equations on
xi,mi ,1,2,3,4,5,6 are left to be independent. hijk,mn = 0
are the equations on xi,mi ,1,2,3,4,5,6 and so at most six
of them are independent.

Since the invariants are not related to the depths, we elim-
inate xi, i = 1..6 from the above six equations hijk,mn = 0.
During the eliminations, we obtain two equations on x1, x2:

x1([m1m4m5][m3m4m6][2345][1246]
− [m3m4m5][m1m4m6][1245][2346])

= x2([m2m4m5][m3m4m6][1345][1246]
− [m3m4m5][m2m4m6][1245][1346]), (12)

x1([m1m3m5][m3m4m6][2345][1236]
− [m3m4m5][m1m3m6][1235][2346])

= x2([m2m3m5][m3m4m6][1345][1236]
− [m3m4m5][m2m3m6][1235][1346]). (13)

Let the coefficients of x1, x2 in (12) be c1, c2, and the ones
in (13) be e1, e2. Because the depths x1, x2 cannot be zero,
we have c1 = 0 if and only if c2 = 0, also e1 = 0 if and
only if e2 = 0. Thus, there are only three cases: (i) c1 �= 0
and e1 �= 0; (ii) c1 = 0 but e1 �= 0, or c1 �= 0 but e1 = 0; (iii)
c1 = 0 and e1 = 0. For each case, continuously eliminate
x1, x2, the corresponding invariants can be established as:

(i) c1 �= 0 and e1 �= 0. At the time, also c2 �= 0 and e2 �= 0.
From (12) and (13), there is x1

x2
= c2

c1
= e2

e1
. It follows

that c2e1 − c1e2 = 0. Simplifying this equation by (1)
and (2), we obtain the invariant relation (7). This is the
general case.

(ii) c1 = 0 but e1 �= 0, or c1 �= 0 but e1 = 0. In this case, the
invariant is just c1 = 0 or e1 = 0. By Proposition 1, we
know the camera optical center and the space points lie
on a quadric cone configuration. This is called quadric
cone case.

(iii) c1 = 0 and e1 = 0. In this case, the invariants are just
c1 = 0 and e1 = 0. By Proposition 2, we know the cam-
era and the space points lie on a twisted cubic configu-
ration. This is called twisted cubic case.

Due to the above complete classification and due to con-
sidering all the independent equations hijk,mn = 0 of elim-
inating K(R, t) from (3), the invariants in these three cases
constitute a complete framework of invariance for six points.

3.3 Evaluation Function Construction

Each invariant in above complete framework just can be
used to identify type of the geometric information between
the camera and the scene. However, due to the non-uniform
noise of points, stability of a single invariant is much af-
fected by the point orders. It follows that we need to con-
struct evaluation functions that are independent of the point
orders. These constructions for the complete three cases are
respectively as follows.

Case I. The General Case

In this case, the camera optical center and the space points
are in the general position and the camera projective matrix
can be determined uniquely. The space points and the image
points satisfy (7) and all its permuted equations fijkl;pq = 0,
but do not satisfy any permuted equations gk,(ij ;pq) = 0 of
(8). The evaluation function is defined as:

Igeneral = 1

15

∑
ijkl;pq∈S

1

W 2
ijkl;pq

f 2
ijkl;pq,

where S is a set consisting of all the different combinations
of (ijkl;pq) from 1,2,3,4,5,6 with 15 elements in total.
Wijkl;pq is a weight to fijkl;pq given as follows. Let wn1 be
the absolute value of the product of space-point brackets in
the n-th term of fijkl;pq , and let wn2 be that of image-point
brackets in the n-th term of fijkl;pq . Then sort in ascending
order all wn1 with varying n and let the result be B1. Sort in
ascending order all wn2 with varying n and let the result be
B2. The weight Wijkl;pq is given as the product of the fourth
element of B1 and the fourth element of B2.

Error Analysis for the Added Weights Why do we take the
fourth elements of B1 and B2 when assigning the weight
Wijk;opq to fijkl;pq? The reason is given as follows. fijkl;pq

has six terms. Let F = ∑6
i=1 vi be a general function con-

taining six terms vi, i = 1..6. The error for vi is denoted
as ei . In practice the obtained function value is the value
of Fe = ∑6

i=1(vi + ei). Without loss of generality, we as-
sume |vi + ei | ≤ |v4 + e4| ≤ |v5 + e5| ≤ |v6 + e6|, i = 1..3,
namely the |v4 + e4| term is the fourth element of the list
|vi + ei | after being ordered ascendingly. Since for our case
of fijkl;pq , the values of vi are much bigger than the errors
ei , from |vi + ei | ≤ |v4 + e4| ≤ |v5 + e5| ≤ |v6 + e6| there is
still |vi | ≤ |v4| ≤ |v5| ≤ |v6|. We assign the weight v4 + e4

to Fe and then have the weight function Fe

v4+e4
. The error for
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the weight function is the value of | Fe

v4+e4
− F

v4
|, denoted as

ER. We expand ER in a Taylor series to order 1 and obtain:

ER ≈
∣∣∣∣e1 + e2 + e3 + e5 + e6

v4

− (v1 + v2 + v3 + v5 + v6)e4

v2
4

∣∣∣∣. (14)

For some parameters, if the value of F is zero, then we have
v4 = −(v1 +v2 +v3 +v5 +v6). Substitute v4 = −(v1 +v2 +
v3 +v5 +v6) into (14), we obtain: ER ≈ |e1+e2+e3+e4+e5+e6||v4| .

Since |v4| is much bigger than the errors ei,ER is small and
thus for the zero F , the weight function Fe

v4+e4
is stable to

noise ei . Clearly, the bigger the denominator, the smaller
the error ER. However, for some parameters, the values of
F should not be zero, the bigger weight is not the better
choice. Assume we assigned the term |v6 + e6| of having
the maximal absolute value in the list |vi + ei |, i = 1..6 to
Fe. Then, | Fe

v6+e6
| ≤ | Fe

v4+e4
|. Therefore, the weight function

by v6 + e6 is more close to zero than the weight function
by v4 + e4. This means that the ability to discriminate be-
tween the zero values of F and the nonzero values of F by
| Fe

v6+e6
| is poor. Thus, taking the fourth element as the weight

is a sensible tradeoff between the stability to noise and the
discriminability from zero to nonzero.

Case II. The Quadric Cone Case

In this case, the camera optical center and the space points
lie on a quadric cone and the camera projective matrix can
be determined uniquely. Let the vertex of the quadric cone
be 1, then the space points and their image points satisfy (8)
and all its permuted equations g1,(ij ;pq) = 0. The evaluation
function is defined as:

I1,cone = 1

15

∑
(ij ;pq)∈S

1

W 2
1,(ij ;pq)

g2
1,(ij ;pq),

where S = {(23;45), (24;35), (25;34), (23;46), (24;36),
(26;34), (23;56), (25;36), (26;35), (24;56), (25;46), (26;
45), (34;56), (35;46), (36;45)} has 15 elements, and
W1,(ij ;pq) is a weight to g1,(ij ;pq) given as the mean of the
absolute values of the two terms in g1,(ij ;pq).

Error Analysis for the Added Weights W1,(ij ;pq) is taken as
the mean of the absolute values of the two terms in g1,(ij ;pq).
The reason is as follows. Let F = v1 + v2 be a general
function containing two terms v1, v2. The error for vi is de-
noted as ei . In practice the obtained function value is the
value of Fe = (v1 + e1) + (v2 + e2). We assign the weight
|v1+e1|+|v2+e2|

2 to Fe and then have Fe

(|v1+e1|+|v2+e2|)/2 . If
for some parameters v1 + v2 = 0, then the error of the
weight function is ER = |e1+e2|

(|v1+e1|+|v2+e2|)/2 . For our case of

g1,(ij ;pq), the values of vi is much bigger than the errors
ei . Thus, ER ≈ 0. If for some parameters the value of F

is nonzero, the values of the weight function are within the
scope:

[
Fe

max(|v1 + e1|, |v2 + e2|) ,
F e

min(|v1 + e1|, |v2 + e2|)
]

≈
[ |v1 + v2|

max(|v1|, |v2|) ,
|v1 + v2|

min(|v1|, |v2|)
]
.

Case III. The Twisted Cubic Case

In this case, the camera optical center and the space points
lie on a twisted cubic and the camera projective matrix can-
not be determined uniquely. Equation (11) and all their per-
muted equations gk,(ij ;pq) = 0 are satisfied by the space
points and their image points. The evaluation function is de-
fined as:

Itc = 1

6
(I1,cone + I2,cone + I3,cone + I4,cone

+ I5,cone + I6,cone),

where Ii,cone is the evaluation function of the quadric cone
case with i being the cone vertex.

In each above case, the constructed weights are al-
ways nonzero under NC. As we consider all the different
fijkl;pq = 0, gk,(ij ;pq) = 0 from all different point orders,
the evaluation functions are independent of the point orders,
which makes them robust to noise. Taking square of fijkl;pq

and g1,(ij ;pq) instead of their absolute values also makes
the evaluation functions with higher discriminative ability.
Coble studied the invariants of points between spaces of
different dimensions (Coble 1922). Then, Buchanan inter-
preted the invariants of six points from 2D space and 3D
space in an easy readable way (Buchanan 1992). The invari-
ants are obtained by using six basic Joubert invariants, of
which each Joubert invariant has five terms. Here for easy
implementation, we use the invariant (7).

4 Unreliable Point Detection and Solutions

In practice, more than six space points and their image
points are often used to estimate camera parameters by DLT.
Based on the evaluation functions in Sect. 3, this section
gives algorithms to detect the unreliability of N ≥ 6 points
and then provides the corresponding solutions.

The unreliability of N ≥ 6 space points and their im-
age points for camera parameter estimation is caused by the
two cases: (u-i) degenerate configuration; (u-ii) mismatch-
ing or overlarge noise, as given in the introduction sec-
tion. For these two cases, neither an optimized DLT method
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nor a non-optimized DLT method can give satisfactory re-
sults. The constructed Itc can be used to detect case (u-i)
and the constructed Igeneral can be used to detect case (u-
ii). The function Ii,cone serves as the basis for establishing
Itc. The quadric cone configuration is not degenerate for
computing the camera parameters. Moreover, the space and
image points of this configuration also satisfy the function
Igeneral = 0. Thus, in the following we do not care about the
quadric cone case, and just use Itc and Igeneral to detect the
two cases of (u-i) and (u-ii).

The detection on the unreliability of six points is given by
the following Algorithm 1. Then, the algorithm is extended
to more than six points by Algorithm 2. Following Algo-
rithm 2 are the corresponding solution methods, of which
one is the filtering RANSAC Algorithm 3.

Let ε1, ε2 be two given thresholds.

Algorithm 1
Input: the coordinates of six pairs of space and image

points, where the points satisfy NC.
Output: whether or not the input data are reliable for cam-

era parameter estimation.

Step 1. Determine whether Itc < ε1 on the input data. If yes,
then output: the space points and the camera optical
center lie on a degenerate configuration, and the in-
put data are unreliable; Otherwise, do Step 2.

Step 2. Determine whether Igeneral < ε2 on the input data.
If yes, then output: the input data are reliable; Oth-
erwise, output: some space points or some image
points have large noise or are mismatched, with the
result that they are unreliable.

Remark 1 If the used six space points and their image points
do not satisfy NC, the degeneracy is in the incidence case
as mentioned in the introduction section. This degeneracy
can be detected easily by detecting the linearly dependent
relations among these points.

A six-point group means a set consisting of six space
points and their image points.

Algorithm 2
Input: the coordinates of N (≥ 6) space points and their

image points.
Output: one of the following for camera parameter esti-

mation

(i) all the space points and the camera lie on a degenerate
configuration and the input data are unreliable;

(ii) all the input data are in the general position but unreli-
able;

(iii) all the input data are reliable;
(iv) some of the input data are reliable and some are not.

Step 1. Construct a set G consisting of six-point groups:
From all pairs of the space points and their im-
age points, choose five pairs that satisfy NC. De-
note these five space points as 1,2,3,4,5 and com-
bine them with the remaining space points Mi .
We put the combinations satisfying NC into a set
G = {{1,2,3,4,5,Mi} | i = 1..N1}. If all the space
points appear in G, do the next step. Otherwise,
choose another five space points and repeat the
process. The obtained new set of six-point groups
and the original G is united into another new set.
The result is still denoted as G. Until all the space
points are considered, do the next step.

Step 2. For each six-point group in G, compute its values of
Itc and Igeneral. If for all groups, Itc < ε1, then output
(i); Otherwise if for all groups, Igeneral > ε2, then
output (ii); Otherwise if for all groups, Igeneral < ε2,
then output (iii); Otherwise, output (iv).

Remark 2 Itc = 0 is the necessary and sufficient condition
that six space points and camera optical center lie on a
twisted cubic degenerate configuration. Igeneral = 0 is a nec-
essary condition that six space points and their image points
are consistent. Therefore, the outputs (i), (ii), (iv) of Algo-
rithm 2 can be fully trusted. For the output (iii) of Algo-
rithm 2, it can be further enhanced by a general RANSAC
method as pointed out below.

According to the different outputs from Algorithm 2, we
take different actions. If the output is (i), we need to adjust
the camera position; if the output is (ii), we re-match the
space points and the image points or re-extract the image
points or the space points; if the output is (iii), we estimate
the camera parameters by the following general RANSAC
from Algorithm 3; if the output is (iv), we estimate the cam-
era parameters by the following filtering RANSAC from Al-
gorithm 3.

Let ε3 be another given threshold.

Algorithm 3
Input: the coordinates of N (≥ 6) space points and their

image points.
Output: the camera parameters.

Step 1. Construct a set G consisting of six-point groups as
Step 1 of Algorithm 2.

Step 2. Remove the unreliable six-point groups in G by Al-
gorithm 1.

Step 3. Score each pair of space and image points (Mk,mk)

in G by considering each six-point group spgi in G

respectively:

(i) For each spgi , compute a camera projec-
tive matrix Pi and find its corresponding in-
lier set isi . A pair (Mk,mk) is an inlier if
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d(mk,PiMk) < ε3. Then, compute another
camera projective matrix P′

i by all pairs in
spgi ∪ isi .

(ii) Put all spgi ∪ isi from different i together and
count the times that each (Mk,mk) appears.
The result is the score of (Mk,mk). Let stk be
the set consisting of the subscripts for different
spgi ∪ isi when (Mk,mk) appears. If two pairs
(Mkj

,mkj
), j = 1,2 have the same score, or-

der them by using Skj
= {d(mkj

,P′
i0

Mkj
) |

i0 ∈ stkj
}. The sum of mean and standard devi-

ation of Skj
is denoted as mskj

. The pair with
smaller mskj

has a higher score.

Step 4. Take the six pairs of space and image points with
the highest six scores not on a degenerate configu-
ration, where Itc is again used to detect the degen-
eracy. Then from these six pairs and their inliers,
compute the camera parameters and output the re-
sults.

Algorithm 3 is a RANSAC to estimate camera parame-
ters which can deal with the image points and space points
containing overlarge noise, mismatched pairs, or in a degen-
erate configuration. Step 2 filters out the unreliable six-point
groups by using Itc, Igeneral through Algorithm 1. Step 4
chooses the six-point group with the highest score which
is not on a degenerate configuration detected by Itc. We call
this algorithm a filtering RANSAC method (FRM). The al-
gorithm without the filtering in Step 2 and without the detec-
tion by Itc in Step 4 is called a general RANSAC method
(GRM). As previously pointed out, if the output of Algo-
rithm 2 is (iii), we use GRM and if the output of Algorithm 2
is (iv), we use FRM. We have compared FRM and GRM
in experiments showing that FRM has much higher success
rate than GRM if image points and space points containing
overlarge noise, mismatched pairs, or in a degenerate con-
figuration. Therefore, it is necessary and important to filter
these points out before applying the general RANSAC. It
should be noticed that the computational cost by FRM is
higher.

Remark 3 Another general way of RANSAC is to score
each six-point group by the number of its inliers, then to use
the group with the highest score and its inliers together for
computing the camera projective matrix. However we find
that this method almost fails in removing the mismatched
pair or the pair with overlarge noise.

Learning the Thresholds How to choose the values of the
thresholds ε1, ε2, ε3? We learn them from extensive data. All
the ε1, ε2, ε3 are the thresholds to discriminate two groups
of values of a function: the group denoted as GR1 whose
values should be zero and the group denoted as GR2 whose

values should be nonzero. Due to noise, the values in GR1

become nonzero but are close to zero. Let the functions for
the three thresholds be unified as FUN. Then, from the val-
ues of FUN on many data, we make clustering by k-means
method (Duda et al. 2000). k is not set as 2 since the nonzero
values of FUN are looser. While, we round all the values of
FUN and the number of these different results is taken as k.
These different results by rounding the values of FUN are
just as the initial cluster centers. After obtaining k clusters,
we are to find GR1 and GR2. For ε1, ε2, the obtained clus-
ter with the smallest values among all the k clusters is taken
as GR1 and the remaining clusters are combined into one as
GR2. For ε3, because the corresponding FUN is sensitive to
noise, the half clusters of the k clusters with smaller values
are combined into GR1 and another half with larger values
are combined into GR2. Lastly, take the maximum value of
GR1 and the minimum value of GR2. Then, the threshold is
set as a value between them.

The flow chart of the proposed methods in this section
can be summarized as Fig. 1.

5 Experiments

The thresholds (ε1, ε2, ε3) are learned as (1.1,1,3.8) by the
k-means. We used them below unless otherwise stated. The
notations K,R, t are as in (3).

5.1 Simulations

The stabilities of Algorithms 1, 2, 3 were tested. The details
are reported in this subsection. Since the space points and
their image points are in a relative position, the noise in the
space points can be regarded as having been transferred to
the image points. Thus, we only consider noise on the image
points in the following simulations.

Testing the stability of Algorithm 1 is equivalent to test-
ing the stability of the evaluation functions Itc and Igeneral.
Extensive experiments performed show that the evaluation
functions Itc and Igeneral are very stable. Six samples are
shown below, whose data are denoted as Di, i = 1..6 with
image sizes not greater than 1000 × 1000 pixels.

The world coordinate system was taken as the camera
coordinate system and the simulated camera intrinsic para-
meter matrix was taken as:

K =
⎛
⎝1000 0 512

0 900 384
0 0 1

⎞
⎠ .

Different seven-point groups of space points 1,2,3,4,5,

6,7 were generated, where 1,2,3,4,5,6,O do not lie on
a twisted cubic, but 1,2,3,4,5,7,O do lie. By K and these
space points, different views were produced.
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Fig. 1 Flow chart of the
detections and the
corresponding solutions

Gaussian noise with 0 mean and standard deviation rang-
ing from 0 to 2 pixels was directly added to each image
point. Then in each view, the following values were com-
puted:

inv1 : the value of Itc on 1,2,3,4,5,7,mi , i = 1..5,m7;
inv2 : the value of Itc on 1,2,3,4,5,6,mi , i = 1..6;
inv3 : the value of Igeneral on 1,2,3,4,5,6,mi , i = 1..6;
inv4 : the value of Igeneral on 1,2,3,4,5,6,mi , i = 1..5,

m6 + (30,20,0)T ;
inv5 : the value of Igeneral on 1,2,3,4,5,6,mi , i = 1..5,

m6 + (70,80,0)T .

Under each noise level, we performed 100 runs, and the
averaged results are shown in Table 1. We can see that
each invi is stable. Also inv1 is indeed quite small, which
is consistent with that 1,2,3,4,5,7,O lie on a twisted
cubic. While inv2 is not, which is consistent with that
1,2,3,4,5,6,O do not lie on a twisted cubic. The threshold
ε1 is 1.1 and there are always inv1 < 1.1, inv2 > 1.1. More-
over, we see that inv3 is small, whereas inv4, inv5 are not.
ε2 is 1, there are always inv3 < 1, inv4 > 1, inv5 > 1 except
only inv4 in D1. If we take ε2 as 0.38, the discriminations
are all successful. The variances of the computations were
also calculated showing that all of them are smaller than 0.1
and only one is 0.12 for inv1, inv2, inv3, the variances for
inv4 are all smaller than 3.1, and the variances for inv5 are
all smaller than 5.1. In all of the extensive experiments, we
find using ε2 = 1 failed at only one time as shown in inv4 of
D1.

Algorithms 2, 3 have been tested too. Repeated experi-
ments show similar results. One experimental sample is pre-
sented below.

Ten space points 1,2,3,4,5,6,7,8,9,10, of which
1,2,3,4,5,6 and the camera optical center O lie on a
twisted cubic but other space points do not, were generated
and then projected onto the simulated image plane by the
camera parameters:

K =
⎛
⎝1000 0.8 512

0 900 384
0 0 1

⎞
⎠ ,

R =
⎛
⎝0.9330 −0.3536 0.0670

0.3536 0.8660 −0.3536
0.0670 0.3536 0.9330

⎞
⎠ ,

t =
⎛
⎝ −0.9330

−0.3536
−20.0670

⎞
⎠ .

The image size is 500 × 500 pixels. Gaussian noise with
0 mean and standard deviation ranging from 0 to 2 pixels
was directly added to each image point. Then the following
disturbances were added:

(i) m10 is disturbed by (30, 20);
(ii) m10 is disturbed by (70, 80);

(iii) m9 is disturbed by (30, 20) and m10 is disturbed by (40,
30);
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Table 1 The invi values under different noise levels (pixel)

Noise level 0 0.5 1.0 1.5 2.0

D1 inv1 0.0000 0.0003 0.0011 0.0026 0.0047

inv2 2.4098 2.4102 2.4102 2.4098 2.4108

inv3 0.0000 0.0136 0.0437 0.1057 0.1592

inv4 0.3927 0.4091 0.4343 0.4893 0.5642

inv5 13.1137 13.1235 13.0734 12.8677 12.9511

D2 inv1 0.0000 0.0005 0.0018 0.0044 0.0065

inv2 2.7224 2.7231 2.7196 2.7176 2.7129

inv3 0.0000 0.0120 0.0411 0.0826 0.1688

inv4 7.4103 7.4677 7.4015 7.1962 7.6928

inv5 36.8287 36.9302 36.7053 36.1357 37.1052

D3 inv1 0.0000 0.0021 0.0073 0.0200 0.0582

inv2 2.9356 2.9359 2.9351 2.9351 2.9384

inv3 0.0000 0.0054 0.0172 0.0580 0.0996

inv4 9.6281 9.5428 9.6578 9.8161 9.3806

inv5 90.6676 90.5046 90.7381 90.6296 90.4451

D4 inv1 0.0000 0.0001 0.0005 0.0014 0.0018

inv2 2.6865 2.6867 2.6865 2.6865 2.6881

inv3 0.0000 0.0221 0.0973 0.1663 0.3795

inv4 5.2267 5.2556 5.4291 5.4783 6.2405

inv5 6.3549 6.4018 6.6079 6.7081 7.6497

D5 inv1 0.0000 0.0003 0.0009 0.0019 0.0045

inv2 1.6501 1.6504 1.6517 1.6488 1.6523

inv3 0.0000 0.0014 0.0068 0.0124 0.0304

inv4 1.1369 1.1285 1.1380 1.1032 1.2051

inv5 11.2435 11.2339 11.3106 11.1331 11.4879

D6 inv1 0.0000 0.0004 0.0014 0.0037 0.0056

inv2 2.3361 2.3362 2.3356 2.3363 2.3350

inv3 0.0000 0.0242 0.0977 0.2313 0.3575

inv4 2.8085 2.7908 2.8073 3.1459 2.8030

inv5 8.9641 8.8869 8.9528 9.1748 8.9284

(iv) m9 is disturbed by (30, 20) and m10 is disturbed by (70,
80);

(v) m9 is disturbed by (60, 50) and m10 is disturbed by (70,
80).

Under each noise level and each disturbance, we performed
100 runs of Algorithms 2, 3, and calculated the number of
the runs that failed to remove the above disturbed pairs or
that made the remaining space points and O lie on a degen-
erate configuration. The results are shown in Table 2. Ta-
ble 2 demonstrates that the FRM is much more stable than

the GRM and the success rate of the FRM is higher than that
of the GRM.

5.2 Experiments with Real Data

5.2.1 Experiment on a Grid Object

The used images were taken by a NIKON COOLPIX990
camera. A sample image of a calibration object with size
1024 × 768 pixels is shown in Fig. 2. Canny edge detector
was used to extract the lines of the image and then their in-
tersection points were calculated to get the image points. We
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set up the world coordinate system in the grid and matched
the space points with the image points. We obtained 108
matching pairs.

Applying Algorithm 2 to these 108 pairs, we obtained the
conclusion that the input data are reliable for camera para-
meter estimation. Then we estimated the camera parameters
from these 108 pairs, with the results given below:

Fig. 2 An image of a calibration grid

K =
⎛
⎝2049.8128 −2.7983 523.9202

0 2050.5605 394.1385
0 0 1

⎞
⎠ ,

R =
⎛
⎝ 0.7784 −0.6272 0.0270

−0.2648 −0.3671 −0.8917
0.5692 0.6870 −0.4518

⎞
⎠ ,

t =
⎛
⎝−0.7503

4.8624
30.7296

⎞
⎠ .

Furthermore, from the 108 pairs we combined 125 six-
point groups and calculated the corresponding values of
Igeneral and Itc. The values of Igeneral are shown in Fig. 3a
demonstrating that each group is consistent with a projective
matrix. The values of Itc are shown in Fig. 3b demonstrating
that there exist groups whose space points and the camera lie
on a degenerate configuration.

We chose the group with the minimal value of Itc and the
group with the maximal value of Itc, and denoted them as
Gmin,Gmax respectively. The values of Itc from Gmin and

Fig. 3 The values of the
evaluation function a Igeneral;
b Itc

Table 2 The failure rate

Noise level(pixel) 0 0.5 1.0 1.5 2.0

Disturbance (i) FRM 0 0 0 0 2

GRM 0 3 4 2 4

Disturbance (ii) FRM 0 0 0 0 0

GRM 0 5 3 3 3

Disturbance (iii) FRM 0 0 0 2 0

GRM 0 3 9 12 7

Disturbance (iv) FRM 0 0 0 0 2

GRM 0 5 15 7 16

Disturbance (v) FRM 0 0 0 0 3

GRM 0 10 8 17 12
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Fig. 4 Six image points,
denoted in white color, a from
the group with the minimal
value of Itc; b from the group
with the maximal value of Itc

(a) (b)

Gmax are 0.0380 and 3.0997 respectively. We show the im-
age points from Gmin in Fig. 4a and the image points from
Gmax in Fig. 4b. For both of these two groups, no four space
points are coplanar and no three image points are collinear.

We calibrated the camera parameters from Gmin, with the
results:

K1 =
⎛
⎝980.4078 26.8782 430.9372

0 870.5114 541.8497
0 0 1

⎞
⎠ ,

R1 =
⎛
⎝−0.6666 0.7454 0.0062

−0.0205 −0.0266 0.9994
0.7451 0.6661 0.0330

⎞
⎠ ,

t1 =
⎛
⎝ −1.0457

−1.5375
−18.0317

⎞
⎠ .

Also, we calibrated the camera parameters from Gmax, with
the results:

K2 =
⎛
⎝2140.9987 −2.1069 570.3262

0 2138.6413 452.6338
0 0 1

⎞
⎠ ,

R2 =
⎛
⎝ 0.7668 −0.6409 0.0358

−0.2772 −0.3808 −0.8822
0.5790 0.6665 −0.4696

⎞
⎠ ,

t2 =
⎛
⎝−1.4424

3.9693
32.1664

⎞
⎠ .

These estimations are evaluated by comparing them with the
above K,R, t:

K1 − K =
⎛
⎝−1069.4050 29.6765 −92.9830

0 −1180.0491 147.7112
0 0 0

⎞
⎠ ,

K2 − K =
⎛
⎝91.1859 0.6914 46.4060

0 88.0809 58.4953
0 0 0

⎞
⎠ ,

R1 − R =
⎛
⎝−1.4450 1.3725 −0.0208

0.2443 0.3405 1.8911
0.1759 −0.0208 0.4848

⎞
⎠ ,

R2 − R =
⎛
⎝−0.0116 −0.0137 0.0087

−0.0123 −0.0137 0.0095
0.0098 −0.0205 −0.0178

⎞
⎠ ,

T1 − T =
⎛
⎝ −0.2954

−6.3999
−48.7613

⎞
⎠ , T2 − T =

⎛
⎝−0.6922

−0.8931
1.4368

⎞
⎠ .

We observe that the estimation from Gmax is much better
than the estimation from Gmin.

The test results for Algorithms 2, 3 are reported below.
Among the 108 pairs of the space points and their im-

age points, we deliberately mismatched 12, 22, 36, 54 pairs
by matching the space points with their projected next im-
age points. Then for each of these cases, Algorithm 2 was
applied and we obtained the conclusion (iv) of the output.
So FRM of Algorithm 3 was applied following. For all the
cases with 12, 22, 36, 54 mismatched pairs, all of the mis-
matched pairs were removed successfully by FRM and none
of the true matched pairs was removed. The calibration re-
sults after removing the mismatched pairs for these cases are
respectively:

K =
⎛
⎝2051.7 −2.7 521.0

0 2052.6 394.5
0 0 1

⎞
⎠ ,

R =
⎛
⎝ 0.7793 −0.6261 0.0263

−0.2648 −0.3671 −0.8917
0.5680 0.6879 −0.4519

⎞
⎠ ,

t =
⎛
⎝−0.7066

4.8568
30.7588

⎞
⎠ ,
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Fig. 5 Two images of a real
scene

K =
⎛
⎝2052.4 −2.3 522.6

0 2053.7 395.8
0 0 1

⎞
⎠ ,

R =
⎛
⎝ 0.7788 −0.6267 0.0269

−0.2650 −0.3676 −0.8914
0.5686 0.6871 −0.4524

⎞
⎠ ,

t =
⎛
⎝−0.7322

4.8382
30.7746

⎞
⎠ ,

K =
⎛
⎝2049.4 −2.7 524.9

0 2051.2 387.6
0 0 1

⎞
⎠ ,

R =
⎛
⎝ 0.7782 −0.6275 0.0271

−0.2635 −0.3654 −0.8928
0.5701 0.6876 −0.4497

⎞
⎠ ,

t =
⎛
⎝−0.7650

4.9617
30.7124

⎞
⎠ ,

K =
⎛
⎝2057.3 −2.4 523.4

0 2059.5 391.4
0 0 1

⎞
⎠ ,

R =
⎛
⎝ 0.7786 −0.6270 0.0270

−0.2645 −0.3668 −0.8919
0.5691 0.6872 −0.4515

⎞
⎠ ,

t =
⎛
⎝−0.7421

4.9037
30.8510

⎞
⎠ .

On the other hand, by GRM of Algorithm 3, only for the
cases with 12, 22 mismatched pairs, all of the mismatched
pairs were removed. At the time, we obtained the same cal-
ibration results from the FRM and GRM. For the case with
36 mismatched pairs by GRM, 99 pairs were removed and
solving for the camera projective matrix from the remaining

pairs gave zero solution of the camera projective matrix. For
the case with 54 mismatched pairs, 8 pairs were mistakenly
removed by GRM and from the remaining data the calibra-
tion result is not better than that by FRM.

We did not mismatch but disturbed the above 12, 22, 36,
54 image points by noise (8,6). For the cases with 12, 22
disturbed image points, we had the same results as above.
For the case with 36 disturbed image points, still 99 pairs
were removed and the obtained solution of the camera pro-
jective matrix was still zero by GRM; by FRM only 14 pairs
were mis-removed. For the case with 54 disturbed image
points, just the 54 disturbed image points were removed by
FRM, whereas 72 image points were removed by GRM. If
we disturbed image points by larger noise than (8,6), all
of the pairs can be successfully removed by both FRM and
GRM.

These results show the efficiency of Algorithms 2, 3.
They also demonstrate the importance and necessity of the
developed filtering method by the evaluation functions in
Algorithm 3.

5.2.2 Experiment on Real Scenes

We also performed experiment from images of a real scene.
The used two images were captured by a KODA 6490 cam-
era and are shown in Fig. 5, where mi , i = 1..6 in each are
from the same six space points. The sizes of the images are
2304×1728 pixels. The world coordinate system was set up
as: the line through the space points of m1,m2 is the X-axis,
the line of the edge of the tabletop perpendicular to the X-
axis is the Y -axis, and the line perpendicular to the tabletop
is the Z-axis.

For each view, from mi , i = 1..6 and their space points,
we computed the value of Itc. The result for the left image is
0.4103, while that for the right image is 1.6308. The value
0.4103 is smaller than the threshold 1.1. So, the output of Al-
gorithm 1 for the left image is that the space points and their
image points are unreliable. To the right image, Step 2 of
Algorithm 1 was continually applied and the obtained value
of Igeneral is 0.0084 lower than the threshold 1. Therefore
lastly, the output of Algorithm 1 for the right image is that
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Fig. 6 Reconstruction results,
where the points in red are from
the left image of Fig. 5 and the
points in blue are from the right
image of Fig. 5:
a Reconstructions of two
vertical lines; b Reconstructions
of the upper edge of a basket

the space points and their image points are reliable for the
camera parameter estimation.

To verify whether the detections are valid or not, we es-
timated the camera parameters and used them to perform
reconstruction. The camera parameters estimated from the
left image are:

K1 =
⎛
⎝3609.4854 −553.1948 826.7216

0 2993.1786 −1000.7742
0 0 1

⎞
⎠ ,

R1 =
⎛
⎝ 0.9253 −0.3632 −0.1093

−0.0857 0.0807 −0.9931
0.3695 0.9282 0.0436

⎞
⎠ ,

T1 =
⎛
⎝ 15.1853

106.8644
123.0356

⎞
⎠ ,

P1 =
(

3599.3259 −573.2380 185.8930 94948.6774
−610.3517 −670.0271 −2939.7460 191761.5251

0.3601 0.9048 0.0425 119.9262

)
.

The estimations for camera parameters from the right image
are:

K2 =
⎛
⎝1926.4461 −111.5432 1576.3127

0 1719.4163 1076.0902
0 0 1

⎞
⎠ ,

R2 =
⎛
⎝ 0.2894 −0.8771 −0.3834

−0.8304 −0.0309 −0.5562
0.4760 0.4794 −0.7373

⎞
⎠ ,

T2 =
⎛
⎝ 9.9875

18.1978
53.1970

⎞
⎠ ,

P2 =
(

1380.0008 −916.9166 −1811.6972 99581.3631
−902.1840 455.8733 −1724.1366 87234.2112

0.4690 0.4723 −0.7265 52.4157

)
.

From K1, we see that the principal point is at (826.7216,
−1000.7742), which is outside the image region and thus
is unreasonable. Two vertical lines and the upper edge of a
basket from each view were also reconstructed by the cor-
responding camera parameters estimated. The images of the
two vertical lines are shown as L1,L2 and the basket im-
ages are also denoted in Fig. 5. Back projecting the points
on L1,L2 in each view to the world X–Y plane by the cor-
responding camera projective matrix estimated above and
back projecting the image points on the upper edge of the
basket image in each view to the world plane Z = 6.8 by the
corresponding camera projective matrix estimated above,
we obtained their reconstructions, where 6.8 is the prior
known height of the basket under the same unit as the space
points of mi , i = 1..6. The reconstruction results are demon-
strated in Fig. 6, where the points in red are the reconstruc-
tions from the left image of Fig. 5 by P1, and the points in
blue are the reconstructions from the right image of Fig. 5
by P2. In Fig. 6a, we can see that the two lines reconstructed
from the left image of Fig. 5 are clearly not vertical. In
Fig. 6b, we plot the ground truth of the center of the bas-
ket upper edge as point C. We observe that C is very close
to the center of the edge reconstructed from the right image
of Fig. 5 but far away from that reconstructed from the left
image of Fig. 5.

This experiment validates Algorithm 1. The detected un-
reliable space points and image points indeed fail to give
good estimation for the camera parameters, which adversely
affect the subsequent shape reconstruction. Algorithm 1 is
the basis of all algorithms and its validity also ensures the
validities of Algorithms 2 and 3.

6 Conclusions

That DLT method may give unreliable estimations for cam-
era parameters confuses people long time. We give the de-
tection method for the unreliability and provide the solutions
of the detection results. The detection method is based on
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two evaluation functions constructed in a complete frame-
work of invariance for six points. Not involving camera op-
tical center or projective matrix and independent of point
orders, these two evaluation functions make the detection
method stable and flexible. In the solutions for the detec-
tion results, a filtering RANAC is proposed to filter the de-
tected unreliable points before a general RANSAC is ap-
plied. The filtering is important and necessary for a success-
ful RANSAC.
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