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Application in Visual Control System
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Abstract—In this paper, a new method is proposed to detect the
pose of an object with two cameras. First, the intrinsic parameters
of the cameras are self-calibrated with two pairs of parallel lines
that are orthogonal. Then, the poses of the cameras relative to the
parallel lines are deduced, and the rotational transformation be-
tween the two cameras is calculated. With the intrinsic parameters
and the relative pose of the two cameras, a method is proposed to
obtain the poses of a line, plane, and rigid object. Furthermore,
a new visual-control method is developed using a pose detection
rather than a three-dimensional reconstruction. Experiments are
conducted to verify the effectiveness of the proposed method.

Index Terms—Camera self-calibration, hand–eye system, pose
detection, ratio invariance, visual control.

I. INTRODUCTION

D ETECTING the pose of an object is needed in many ro-
botic tasks such as tracking and grasping. Pose detection

has been used in position-based visual servoing (PBVS) and
hybrid visual servoing (HVS) [1]. For example, Han et al. [2]
developed a method for door opening with a stereovision sys-
tem using some special marks. The marks consisted of some
rectangles where the intersection points between the main rec-
tangle and the small ones were selected as feature points. The
poses of the doorknob and the end effector were calculated from
the positions, measured with stereovision, of the feature points.
Malis et al. [3] proposed a 2.5-dimensional (2.5-D) visual-
servoing method that dealt with a position control in an image
space using extended image coordinates, and a pose control in
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a Cartesian space according to the pose obtained through three-
dimensional (3-D) reconstruction. Hespanha et al. [4] inves-
tigated the performances of three visual-servoing methods:
PBVS, HVS, and image-based visual servoing (IBVS) with un-
calibrated cameras. Although IBVS performed best in position
tracking, it is hard to be used for the pose control. Therefore, the
pose detection is important for tasks requiring pose adjustments
and control.

The pose-detection methods can be classified into different
categories as follows.

1) Using known knowledge of an object. For example,
Kragic et al. [5] estimated the pose and position of an
object according to its computer-aided design (CAD)
model and images. Sugimoto et al. [6] gave a method
to estimate the translation and rotation of a mobile robot
using line and intersection constraints at two views in
indoor scenes. The parameters of the stereovision system
were precalibrated. Yang et al. [7] developed a method
to measure the pose of symmetric objects, and gave
application examples in robot navigation.

2) Via 3-D reconstruction. Sato and Sato [8] proposed a
projection reconstruction method based on robot’s move-
ment offset and epipolar geometry at two views. They
calculated the direction of the object relative to the cam-
era mounted on a mobile robot. Pose detection using
3-D reconstruction can be found in many literatures
[2], [3]. With this method, the errors in positioning will
be introduced into the pose calculation.

3) Via estimation of image Jacobian matrix. This method
is widely used in uncalibrated visual servoing [9]–[15].
However, singularity in the image Jacobian matrix
presents stability problem in the pose estimation.
Schramm et al. [15] presented a method to improve the
stability through estimating the camera parameters and
the robot Jacobian matrix separately.

For applications in an indoor environment, the first type of
the above methods is more promising because of the avail-
able environment knowledge. Although the objects may have
limited features to be used for camera calibration, the envi-
ronment probably provides more. Therefore, the camera’s self-
calibration can be achieved using constraints in an environment.
3-D reconstruction suffers from correspondence problem es-
pecially when point matching is used. In this regard, line
matching would offer a better solution to the pose detection
than point matching. Yet, a direct 3-D reconstruction should be
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avoided in the pose detection to reduce the influence of posi-
tioning errors.

The pose of a line in the Cartesian space cannot be deter-
mined with one camera at a single view. To solve this problem,
one can either use multiple views for a single camera or use
two cameras instead. In either case, the intrinsic parameters of
the cameras need to be calibrated. In man-made environments,
there often exist parallel lines that can be employed to calibrate
cameras. In this regard, Carvalho et al. [16] presented a case of
camera calibration with the constraints existing in football field.
As known, the vanishing point contains the information of the
intrinsic parameters. Many references about camera calibration
of intrinsic parameters with vanishing points can be found
[17]–[19]. Bénallal and Meunier [17] proposed a method to
calibrate a camera with three orthogonal vanishing points.
Generally, it is not easy to find three orthogonal vanishing
points in an indoor environment. Guillou et al. [18] developed
a method using two orthogonal vanishing points in a single
image. However, the principal point of the camera was sup-
posed at the center of the image. Sometimes, this assumption
may not be valid. Lee et al. [19] gave a method using two
orthogonal vanishing points from image streams without the
assumption of a known principal point. The candidate space
of the principal point and focal length were derived from the
relation of multiple hemispheres. In [17]–[19], the intrinsic pa-
rameters of a camera consisted of the focus length and the prin-
cipal point. The difference between the horizontal and vertical
magnification was not considered. In addition, it is not easy to
find the vanishing points with satisfactory accuracy in a natural
image [20], [21].

In this paper, the self-calibration of a pair of cameras, in-
cluding the intrinsic parameters and the transformation between
the cameras, is achieved using a parallel line constraint. A new
method to detect the pose of an object with two cameras is pro-
posed. Throughout this paper, the term pose refers to orientation
only. A new visual-control method is presented using the pose
detection rather than 3-D reconstruction. Our method is easier
to implement than a traditional method like a position-based
one. With our method, the tedious calibration of the extrinsic
parameters of cameras is avoided and the position information
of the environment or metric information of the object is no
longer needed. The rest of the paper is organized as follows.
The camera model is introduced in Section II. Section III
investigates the self-calibration of the intrinsic parameters using
parallel lines. In Section IV, a new method for calibrating the
transformation between two cameras is developed based on
orthogonal parallels. The pose-detection methods for a line,
plane and rigid object are also presented. Section V proposes
a new hybrid visual-control scheme using the poses of the
object and end effector without 3-D reconstruction. Sensitivity
analyses are presented in Section VI. The experimental results
are given in Section VII. Finally, we conclude the paper in
Section VIII.

II. CAMERA MODEL

In this paper, we assume a pinhole camera model with lens
distortion negligible. If the lens distortion is noticeable, it can

Fig. 1. Parallels and their imaging lines.

be corrected in advance by a method we developed in a separate
work [24]. The four parameter model of a camera can be
given as
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where [u, v] are the coordinates of a point in an image, [u0, v0]
denote the image coordinates of the camera’s principal point,
[xc, yc, zc] are the coordinates of a point in the camera frame,
Min is the intrinsic parameters matrix, and [kx, ky] are the
magnification coefficients from the imaging plane coordinates
to the image coordinates.

Assume that the camera frame is denoted as C, and the
workspace frame as W . The transformation from C to W is
known as the extrinsic parameters for the camera
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where [xw, yw, zw] are the coordinates of a point in the object
frame, and cMw is the extrinsic parameter matrix of the camera,
i.e., the transformation from the frame C to W . In cMw,

⇀
n

= [nx ny nz]T is the direction vector of the x axis,
⇀
o=

[ox oy oz]T is that of the y axis,
⇀
a= [ax ay az]T that of

the z axis for the frame W expressed in the frame C, and
⇀
p= [px py pz]T is the position vector.

III. SELF-CALIBRATION OF THE

INTRINSIC PARAMETERS

Here, a self-calibration method for the intrinsic model
with four parameters is studied using two planar groups
of orthogonal parallels, which are popular in the indoor
environment.

As shown in Fig. 1, a rectangle is formed with two groups of
orthogonal parallels, which is projected as a quadrangle on the
image plane of a camera. Assume that the four vertexes P1 to
P4 have the coordinates as [a, b, 0], [−a, b, 0], [−a,−b, 0], and
[a,−b, 0] in a Cartesian frame established at the quadrangle’s
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center, and [u1, v1], [u2, v2], [u3, v3], [u4, v4] in the image
space. Combining (1) and (2), we have [22]
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Applying the coordinates of the four points to (3), and
eliminating the unknown parameter zc, we obtain

u1m31a+ u1m32b+ u1m34 =m11a+m12b+m14 (4)

v1m31a+ v1m32b+ v1m34 =m21a+m22b+m24 (5)

−u2m31a+ u2m32b+ u2m34 = −m11a+m12b+m14 (6)

−v2m31a+ v2m32b+ v2m34 = −m21a+m22b+m24 (7)

−u3m31a− u3m32b+ u3m34 = −m11a−m12b+m14 (8)

−v3m31a− v3m32b+ v3m34 = −m21a−m22b+m24 (9)

u4m31a− u4m32b+ u4m34 =m11a−m12b+m14 (10)

v4m31a− v4m32b+ v4m34 =m21a−m22b+m24. (11)

Combining (4), (6), (8), (10), and (5), (7), (9), (11), respectively,
we can derive
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where m′
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If nz �= 0 and oz �= 0, then
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Changing the camera’s pose relative to the parallel lines,
many nonlinear equations as given in (15) can be generated.
With the temporary variables defined in (16), (17) can be
deduced from two equations, as shown in (15) [23]


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x
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x/k

2
y
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(ui1 + ui2 − uj1 − uj2)u0 + (vi1 + vi2 − vj1 − vj2)h3

− (vi1vi2 − vj1vj2)h2 = ui1ui2 − uj1uj2 (17)
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There are three unknown parameters in (17), u0, h2 and h3.
They can be resolved with three or more equations. Then, v0
is calculated with h2 and h3 according to the third formula
in (16). Submitting parameters u0, v0 and h2 into (15), we
have parameter kx. Finally, ky is computed from the second
formula in (16) with kx and h2. It can be found that at least four
equations, as shown in (15), are needed for the resolving of the
intrinsic parameters such as u0, v0, kx, and ky . In other words,
at least four views of the two groups of orthogonal parallels are
necessary to determine the four intrinsic parameters.

Discussions: If nz = 0, the optical axis of the camera is
perpendicular to the two parallel horizontal sides of the rec-
tangle. Therefore, the horizontal sides are also parallel lines
in the image space. In other words, there is no intersection
between the horizontal sides in the image space. In this case,
(15) is not satisfied because of the absence of the vanishing
point between the horizontal sides. Similarly, if oz = 0, there
does not exist a vanishing point in the image space between the
perpendicular sides. If nz = 0 and oz = 0, the optical axis of
the camera is perpendicular to the rectangle. There will be no
vanishing point in the image space. Therefore, it is a necessary
condition for the intrinsic parameter calibration based on paral-
lels that the camera’s optical axis must not be perpendicular to
the parallels.

To prevent (15) from being ill conditioned, the parallelism of
the parallels in the image space should be checked. The cosine
function of the angle between two lines in the image space can
be employed as the parallelism index, as given below

Fp = cos ∠(Li, Lj)

=
|(ui1−ui2)(uj1−uj2)+(vi1−vi2)(vj1−vj2)|√

(ui1−ui2)2+(vi1−vi2)2
√

(uj1−uj2)2+(vj1−vj2)2

(18)

where [ui1, vi1] and [ui2, vi2] are the image coordinates of two
points on a line Li, [uj1, vj1] and [uj2, vj2] are the image
coordinates of another two points on a line Lj , ∠(Li, Lj) is
the angle between the two lines Li and Lj in the image space,
Fp is the parallelism index between Li and Lj .

If Fp = 1, the imaging lines of the parallels are parallel.
The camera’s optical axis is perpendicular to the parallels. If
|Fp − 1| < ε, where ε is an infinitely small positive value, then
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the imaging lines of the parallels are almost parallel. In this
case, (15) is also ill conditioned. The smaller Fp is, the more
robust (15) will be. Therefore, in self-calibrating the camera’s
intrinsic parameters, (18) can be used to check if a pair of par-
allels is acceptable or not to form an equation as given in (15).

If [u0, v0] is known in advance, assuming kx = ky = k, then
k can be obtained with one view of two groups of parallels, as
given in (19) shown at the bottom of the page, where k is a pa-
rameter containing the focal length and the magnification factor
from the image size in millimeters to the imaging coordinates in
pixels. Generally, the magnification factor can be known from
the camera and the frame grabber manufacturer’s specifications.
The focal length can thus be calculated from k and the mag-
nification factor. In fact, the points [m′

11/m
′
31,m

′
21/m

′
31] and

[m′
12/m

′
32,m

′
22/m

′
32] are two vanishing points and the focal

length can be deduced using geometry from the two orthogonal
vanishing points in a single image [18].

If both kx and ky are taken as k, then (15) can be rewritten as

(uhvi−u0)(uvvi−u0)+(vhvi−v0)(vvvi−v0)+k2 =0 (20)

where uhvi = m′
11i/m

′
31i, uvvi = m′

12i/m
′
32i, vhvi =

m21i/m
′
31i, vvvi = m′

22i/m
′
32i, are the image coordinates

of the vanishing points.
Obviously, two groups of orthogonal parallels at one view

can only provide one equation as given in (20). If there are three
views or three groups of orthogonal parallels, we can deduce
from (20)


(uhv2+uvv2−uhv1−uvv1)u0+(vhv2+vvv2−vhv1−vvv1)v0
= uhv2uvv2−uhv1uvv1+vhv2vvv2−vhv1vvv1

(uhv3+uvv3−uhv2−uvv2)u0+(vhv3+vvv3−vhv2−vvv2)v0
= uhv3uvv3−uhv2uvv2+vhv3vvv3−vhv2vvv2.

(21)

Then, u0 and v0 are computed from (21). k can be resolved
from (19).

We can conclude that any three groups of orthogonal par-
allels with different poses are sufficient for the calibration of
a camera with a three intrinsic parameter model. The method
proposed by Bénallal and Meunier [17] is a special case, which
employs a cubic object to extract three orthogonal vanishing
points and deduce the intrinsic parameters for a camera.

IV. POSE DETECTION

A. Camera Pose Determination

Parallel lines often exist in indoor environments, such as
doors, windows, and tables. It is natural to select parallel lines
as reference. Consider the case of two groups of parallels, in
which there are at least two lines in each group, and each line
in a group is perpendicular to the lines in the other group. The
world frame W is assigned to describe the poses of the lines.
Its origin Ow can be selected at any place. Its x axis Xw is

Fig. 2. World frame of two groups of parallels.

Fig. 3. Camera frames assignment.

set to be parallel to the lines in one group and its y axis Yw

parallel to the lines in the other group. The frame assignment
is shown in Fig. 2. The coordinates of point Pi are represented
as [xwi, ywi, zwi] in the world frame. The four points P1 to P4

are arbitrarily selected on the two lines, i.e., two points for each
line, for further pose computation in the camera frame.

The origin of the camera frame is assigned at its optical
center. The z axis is taken as the direction of its optical axis
from the camera to the scene. The x axis is selected as the
horizontal direction of its imaging plane from left to right. Two
frames, C1 and C2, are given for cameras Ca1 and Ca2 in Fig. 3,
in which 1T2 and 1R2 are the translation and rotation from Oc1

to Oc2. 1H2, the transformation from C1 to C2, is expressed as
(22) with homogeneous transformation

1H2 =
[

1R2
1T2

0 1

]
. (22)

If 1M2 is employed to denote the extrinsic parameters ma-
trix from C1 to C2, then 1H2 is the homogeneous form of
matrix 1M2.

First, the pose of the parallels relative to the camera frame
C1 is considered. According to the orthogonal constraints in
rotation matrix, for a point P on line Lk, from (2), we have


1owxxc1k + 1owyyc1k + 1owzzc1k

= ywk + 1owx
1pwx + 1owy

1pwy + 1owz
1pwz

1awxxc1k + 1awyyc1k + 1awzzc1k

= zwk + 1awx
1pwx + 1awy

1pwy + 1awz
1pwz

(23)

where ywk is the coordinates of line Lk at the y axis, zwk is
that at the z axis in the frame W . The subscript k represents a
point on lineLk, subscript c1 represents the data in C1, subscript
w means the frame W , the combination of superscript 1 and

k =
√

− (m′
11/m

′
31 − u0) (m′

12/m
′
32 − u0) − (m′

21/m
′
31 − v0) (m′

22/m
′
32 − v0) (19)
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subscript w indicates the data of extrinsic parameters from
C1 to W .

Let{
1Ak = ywk + 1owx

1pwx + 1owy
1pwy + 1owz

1pwz
1Bk = zwk + 1awx

1pwx + 1awy
1pwy + 1awz

1pwz.
(24)

For any points in the two groups of lines, zc1k �= 0 are
satisfied. Therefore, (23) can be rewritten as

1owxx
′
1k + 1owyy

′
1k + 1owz

1awxx′1k + 1awyy′1k + 1awz
= 1Ck (25)

where 1Ck =1Ak/
1Bk, x′1k = xc1k/zc1k, and y′1k = yc1k/zc1k.

All points on the line Lk have the same coordinate yw =
ywk at the y axis and zw = zwk at the z axis. The extrinsic
parameters for any point on the line are also kept the same.
Therefore, it is easy to conclude from (24) that 1Ak, 1Bk, and
1Ck are constants for the lineLk. For two arbitrary points on the
line Lk, such as points Pi and Pj , (26) is obtained via applying
them to (25). Its simplified form is (27), which results from
its simplification using the orthogonal constraints of rotation
matrix in 1Mw

1owxx
′
1ki + 1owyy

′
1ki + 1owz

1awxx′1ki + 1awyy′1ki + 1awz

=
1owxx

′
1kj + 1owyy

′
1kj + 1owz

1awxx′1kj + 1awyy′1kj + 1awz
(26)

1nwx

(
y′1ki − y′1kj

)
+ 1nwy

(
x′1kj − x′1ki

)
+ 1nwz

(
x′1kiy

′
1kj − x′1kjy

′
1ki

)
= 0. (27)

Any two points on a line that is parallel to the x axis in the
frame W satisfy (27). Therefore, k equations can be obtained
for one camera from k parallel lines. According to the main
direction of the lines in the image space, one parameter in 1⇀

nw

can be removed from (27) with the reduction of a fraction. As a
general case, assume 1nwx �= 0. We have



MN = L

M =



x′11j − x′11i x′11iy

′
11j − x′11jy

′
11i

...
...

x′1kj − x′1ki x′1kiy
′
1kj − x′1kjy

′
1ki




N =
[

1n′wy
1n′wz

]

L =



y′11j − y′11i

...
y′1kj − y′1ki




(28)

where 1n′wy =1nwy/
1nwx and 1n′wz = 1nwz/

1nwx.
Notice that x′1hi, y

′
1hi, x

′
1hj , and y′1hj (h = 1, . . . , k) can be

obtained from (1) according to the imaging coordinates [u, v].
Therefore, N can be resolved with the least square method.

N = (MTM)−1L. (29)

Then, 1⇀
nw can be calculated with the constraint

‖1⇀
nw ‖ = 1.

Fig. 4. Pose-detection sketch map.

The vector 1⇀
ow can be obtained with a similar procedure.

With the orthogonal constraint, 1⇀
aw is obtained as

1⇀
aw=1⇀nw ×1⇀

ow. The pose of the frame W relative to the
frame C1 is represented as 1Rw = [1

⇀
nw

1⇀
ow

1⇀
ow]. 2Rw, i.e.,

the pose of the frame W relative to C2, can also be deduced with
a similar method. The relative pose from C1 to C2 is calculated
with rotation transformation, i.e.,1R2 = 1Rw(2Rw)−1.

B. Pose Detection for an Object

1) Pose Detection for a Line: Any two points can be se-
lected as features from a line Lk in the images of the two
cameras. Here, the feature matching of the points for the two
cameras is not necessary. As shown in Fig. 4, P11 and P12 are
two feature points selected from a line for camera Ca1; P21 and
P22 are for camera Ca2. The vector formed by P11 and P12

is denoted as 1
⇀

Lp12 and 2
⇀

Lp12 in C1 and C2 separately. The

position vector of a point Pi is represented as
⇀

P c1i and
⇀

P c2i

in C1 and C2. 1
⇀

P c2i is the representation of
⇀

P c2i in C1.
⇀

P c1i

and
⇀

P c2i can be calculated from (1) according to the imaging
coordinates of Pi in C1 and C2, as given in the following:{ ⇀

P c1i = [xc1i/zc1i yc1i/zc1i 1]T = M−1
in1[u1i v1i 1]T

⇀

P c2i = [xc2i/zc2i yc2i/zc2i 1]T = M−1
in2[u2i v2i 1]T

(30)

where Min1 is the intrinsic parameter matrix of camera Ca1

and Min2 is that of camera Ca2, [u1i, v1i] and [u2i, v2i] are the
imaging coordinates of Pi in C1 and C2.

The three vectors, 1
⇀

Lp12, 1
⇀

P c11, and 1
⇀

P c12, are linearly
correlated as they form a vector triangle in a plane. Therefore∣∣∣∣∣∣

P11x P12x
1L12x

P11y P12y
1L12y

P11z P12z
1L12z

∣∣∣∣∣∣ = 0 (31)

where 1
⇀

P c11=
⇀

P c11= [P11x P11y P11z]T, 1
⇀

P c12=
⇀

P c12=

[P12x P12y P12z]T, and 1
⇀

Lp12= [1L12x
1L12y

1L12z]T.

The evaluations of 1
⇀

P c11 and 1
⇀

P c12 are given in expres-
sion (30).

Equation (31) can be rewritten as

(P11yP12z − P12yP11z)1L12x + (P12xP11z − P11xP12z)1L12y

+(P11xP12y − P12xP11y)1L12z = 0. (32)
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On the other hand,1
⇀

P c2i is transformed from
⇀

P c2i with rotation
transformation 1R2

1
⇀

P c2i = 1R2

⇀

P c2i

=


 1n2xxc2i/zc2i + 1o2xyc2i/zc2i + 1a2x

1n2yxc2i/zc2i + 1o2yyc2i/zc2i + 1a2y
1n2zxc2i/zc2i + 1o2zyc2i/zc2i + 1a2z




=


 1P2ix

1P2iy
1P2iz


 . (33)

In the same way, the following can be deduced with three

linear correlation vectors, 1
⇀

Lp12, 1
⇀

P c21, and 1
⇀

P c22:(
1P21y

1P22z − 1P22y
1P21z

)
1L12x

+
(
1P22x

1P21z − 1P21x
1P22z

)
1L12y

+
(
1P21x

1P22y − 1P22x
1P21y

)
1L12z = 0. (34)

From (32) and (34), 1
⇀

Lp12 can be determined through the

constraint ‖1
⇀

Lp12 ‖ = 1. Then, 2
⇀

Lp12 becomes

2
⇀

Lp12=
(
1R2

)−1 1
⇀

Lp12 (35)

2) Pose Detections for a Plane and Rigid Object: For a
plane, at least three points are selected for its norm detection.
Any two points among them form a vector, whose pose can be
determined as described above. There are only two independent
vectors among the three vectors formed with the three points.
With the poses of the independent vectors, the pose of the plane
norm can be obtained with vector product.

Furthermore, the pose detection based on vector measure-
ment can be extended to pose determination for a rigid object.
For example, the pose of a cuboid can be detected from three
vectors of the edges with the above method. The details are
omitted here.

V. NEW VISUAL CONTROL SCHEME BASED

ON POSE ESTIMATION

A. System Configuration

A task for an industrial robot to approach an object with a
desired pose for its end effector is considered here. The system
configuration for the task is sketched in Fig. 5. Suppose that the
object is rigid with parallel line edges. No further information
about it is known. The two cameras, with frames C1 and C2,
are located where the object and the end effector are all in their
field of view. The axes of frame C1 are parallel to the axes of
frame Wr, the world frame of the robot. That is, when the end
effector is moved in the direction of x axis of the frame Wr, the
image coordinates of the end effector vary only in the horizontal
direction. When the end effector is moved in the direction of
z axis of the frame Wr, its image coordinates vary only in
the vertical direction. In addition, E and Wo represent the end-
effector frame and the object frame.

Fig. 5. Configuration of visual control for a manipulator to approach an object
based on the pose detection.

B. Control Strategy

In frame C1, the poses of the sidelines of the rectangle surface
of the object are detected with the method in Section IV-B.
Then, the norm of the surface is calculated using vector product
of the two neighbor sidelines. Now, 1Ro, the pose of the frame
Wo expressed in C1, is obtained. 1Red, the desired pose of the
end effector in C1, is determined from 1Ro. rRem, the currently
measured pose of the end effector in Wr, can be given from the
robot’s controller.

Assume that the pose of frame Wr is 1Rr in the frame C1.
Frame Wr is selected as the reference. Assume that the pose
adjustment is rRea in the frame Wr. Based on frame Wr, (36)
is deduced from frame transforms. Then, rRea is obtained as
given in (37)

(
1Rr

)−1 1Red = rRea
rRem (36)

rRea =
(
1Rr

)−1 1Red (rRem)−1 . (37)

In fact, rRea is the pose error between the desired and
measured poses. It can be represented as a rotation around an
axis r

⇀

f with an angle rθ, as expressed in (38). kθ
rθ is employed

as the actual angle adjustment value in one control step for the
pose control. The actual pose adjustment control value in one
control step is computed in (39)

rRea = Rot(r
⇀

f , rθ) (38)

rRec = Rot(r
⇀

f , kθ
rθ), 0 < kθ < 1 (39)

where rRec is the actual pose adjustment control value in one
control step, kθ is the factor of pose adjustment.

To decouple the pose and position adjustments, the posi-
tion of the end effector is assumed to be fixed during the
pose adjustment. The position and pose of the end effector
in frame Wr can be computed via the kinematics combined
with the measured values of the joint angles of the industrial
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robot. Suppose that the measured position and pose of the end
effector is

rHem =
[

rRem
rTem

0 1

]
. (40)

The translation to compensate for the offset caused by pose
adjustment is

rTe1 = −rRec
rTem. (41)

At the beginning of the approaching task, the distance be-
tween the end effector and the object is unknown. Therefore,
the translation to approach the object can be evaluated with the
constant step length along the direction from the end effector to
the object.

rTe2 = ks

(
1Rr

)−1 1
⇀

P ′
oe, 0 < ks < 1 (42)

where 1
⇀

P ′
oe is the unit vector of

⇀

Poe in frame C1.
⇀

Poe is a vector
from the origin of the frame E to the origin of the frame Wo,
which can be measured with the method in Section IV-B. ks is
the position step factor at the beginning of the task.

The distance moved by the end effector can be computed
with the position of the end effector, which is read from the
position controller of the robot. Assume that the end effector is
moved in the direction of vector

⇀

Poe. After the end effector is
moved at least two steps, the distance from the end effector to
the object can be estimated with the cross ratio invariance. Then




(di−1
em +di

em)/di
em

(di−1
em +di

em+di
ed1)/(di

em+di
ed1)

= (ri−1
e1 + ri

e1)/ri
e1

(ri−1
e1 + ri

e1+ ri
de1)/(ri

e1+ ri
de1)

(di−1
em +di

em)/di
em

(di−1
em +di

em+di
ed2)/(di

em+di
ed2)

= (ri−1
e2 + ri

e2)/ri
e2

(ri−1
e2 + ri

e2+ ri
de2)/(ri

e2+ ri
de2)
(43)

where di
ed1 is the estimated distance between the target and tool

points using the camera Ca1 at the ith sampling, di
ed2 is the

estimated distance via camera Ca2, ri
de1 is the image distance

between the target and tool points in camera Ca1 at the ith
sampling step, ri

de2 is the image distance in camera Ca2, di
em is

the distance of the end effector moved between i− 1th and ith
sampling, ri

e1 and ri
e2 are the image distances of the end effector

moved in the image spaces of cameras Ca1 and Ca2 between
i− 1th and ith sampling, ri

e1 and ri
e2 are corresponding to

di
em(i > 2)




ri
e1 =

√(
ui

e1 − ui−1
e1

)2 +
(
vi

e1 − vi−1
e1

)2

ri
de1 =

√(
ud1 − ui

e1)2 + (vd1 − vi
e1

)2

ri
e2 =

√(
ui

e2 − ui−1
e2

)2 +
(
vi

e2 − vi−1
e2

)2

ri
de2 =

√(
ud2 − ui

e2

)2 +
(
vd2 − vi

e2

)2

(44)

where [ud1, vd1] and [ud2, vd2] are the image coordinates of the
object in cameras Ca1 and Ca2, [ui

e1, v
i
e1] and [ui

e2, v
i
e2] are the

image coordinates of the end effector in cameras Ca1 and Ca2

at ith sampling.

If ri
e1 is zero, di

ed1 cannot be estimated from (43). It is
the same for di

ed2 if ri
e2 is zero. If only one image distance

is nonzero, ri
e1 or ri

e2, then the only distance di
ed1 or di

ed2

estimated from (43) is taken as the distance di
ed. If both image

distances are nonzero, then the average of di
ed1 and di

ed2 is
taken as the distance di

ed. If both image distances are zero, then
the distance di

ed is zero. This means that the end effector has
reached the target. di

ed is the estimated distance between the
target and tool points at the ith sampling.

With the errors di
ed and the vector 1

⇀

Poe, the errors eied
between the target and tool points are expressed as (45), and
the approaching control law with the proportional integral
differential (PID) algorithm is given in (46) as follows:

[ eixed eiyed eized ]T = di
ed

(
1Rr

)−1 1
⇀

P ′
eo (45)

rTe2 =


∆xi

ce

∆yi
ce

∆zi
ce




= Kp


 eixed

eiyed

eized


+Ki




i∑
j=1

eixed

i∑
j=1

eiyed

i∑
j=1

eized



+Kd


 eixed − ei−1

xed

eiyed − ei−1
yed

eized − ei−1
zed




(46)

where ∆xi
ce is the adjustment value of the end effector in the

direction of x axis, ∆yi
ce is that in the direction of y axis, ∆zi

ce

is that in the direction of z axis in frame Wr, and Kp, Ki, and
Kd are PID gain matrices.

The adjustments to control the end effector to approach the
object are formed as (47) in frame Wr, the world frame of
the robot

rHec =
[

rRec
rTe1 + rTe2

0 1

]
(47)

where rHec is the actual adjustment control value in one
control step.

VI. SENSITIVITY ANALYSIS

A. Errors in Line Pose Detection

In the parameters of a line, there exists at least one pa-
rameter of nonzero value. Without losing generality, suppose
1L12z �= 0. Considering P11z = P12z = 1, we can deduce from
(32) and (34)




(P11y − P12y)Lx + (P12x − P11x)Ly

= P12xP11y − P11xP12y(
1P21y

1P22z−1P22y
1P21z

)
Lx+

(
1P22x

1P21z−1P21x
1P22z

)
Ly

=1P22x
1P21y − 1P21x

1P22y

(48)

where Lx = 1L12x/
1L12z and Ly = 1L12y/

1L12z .
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The solution of Lx and Ly can be expressed as

{
Lx = (a3b2 − a2b3)/(a1b2 − a2b1)
Ly = (a1b3 − a3b1)/(a1b2 − a2b1)

(49)

where




a1 = P11y − P12y

a2 = P12x − P11x

a3 = P12xP11y − P11xP12y

b1 = 1P21y
1P22z − 1P22y

1P21z

b2 = 1P22x
1P21z − 1P21x

1P22z

b3 = 1P22x
1P21y − 1P21x

1P22y.

(50)

From (49), the differences ∆Lx and ∆Ly can be derived
as in (51). The derivatives ∂Lx/∂ak, ∂Lx/∂bk, ∂Ly/∂ak, and
∂Ly/∂bk are given in (52). For ∂ak/∂uij and ∂bk/∂uij , most
terms are zero. To simplify the discussion, a special case is
considered that the relative poses between two cameras are
unit matrices. In such a case, 1P11z = 1P12z = 1. The nonzero
terms for ∂ak/∂uij and ∂bk/∂uij are given in (53), while the
other terms are zero




∆Lx =
2∑

i=1

2∑
j=1

3∑
k=1

(
∂Lx

∂ak

∂ak

∂uij
+ ∂Lx

∂bk

∂bk

∂uij

)
∆uij

+
2∑

i=1

2∑
j=1

3∑
k=1

(
∂Lx

∂ak

∂ak

∂vij
+ ∂Lx

∂bk

∂bk

∂vij

)
∆vij

∆Ly =
2∑

i=1

2∑
j=1

3∑
k=1

(
∂Ly

∂ak

∂ak

∂uij
+ ∂Ly

∂bk

∂bk

∂uij

)
∆uij

+
2∑

i=1

2∑
j=1

3∑
k=1

(
∂Ly

∂ak

∂ak

∂vij
+ ∂Ly

∂bk

∂bk

∂vij

)
∆vij

(51)




∂Lx

∂a1
= −Lxb2

a1b2−a2b1
, ∂Lx

∂a2
= −Lyb2

a1b2−a2b1
∂Lx

∂a3
= b2

a1b2−a2b1
, ∂Lx

∂b1
= Lxa2

a1b2−a2b1
∂Lx

∂b2
= Lya2

a1b2−a2b1
, ∂Lx

∂b3
= −a2

a1b2−a2b1
∂Ly

∂a1
= Lxb1

a1b2−a2b1
,

∂Ly

∂a2
= Lyb1

a1b2−a2b1
∂Ly

∂a3
= −b1

a1b2−a2b1
,

∂Ly

∂b1
= −Lxa1

a1b2−a2b1
∂Ly

∂b2
= −Lya1

a1b2−a2b1
,

∂Ly

∂b3
= a1

a1b2−a2b1

(52)




∂a1
∂v11

= 1
ky1
, ∂a1

∂v12
=− 1

ky1
, ∂a2

∂u11
=− 1

kx1
, ∂a2

∂u12
= 1

kx1

∂a3
∂u11

=−P12y

kx1
, ∂a3

∂u12
= P11y

kx1
, ∂a3

∂v11
= P12x

ky1
, ∂a3

∂v12
=−P11x

ky1
∂b1
∂v21

= 1
ky2
, ∂b1

∂v22
=− 1

ky2
, ∂b2

∂u21
=− 1

kx2
, ∂b2

∂u22
= 1

kx2

∂b3
∂u21

=−
1P22y

kx2
, ∂b3

∂u22
=

1P21y

kx2
, ∂b3

∂v21
=

1P22x

ky2
, ∂b3

∂v22
=− 1P21x

ky2
.

(53)

Applying formulas (52) and (53) to (51), then ∆Lx and ∆Ly

are obtained in (54), shown at the bottom of the page.
Generally, the parameters kx and ky are very close to each

other. For the two cameras, kx1, ky1, kx2, and ky2 are taken as
k to obtain approximate values of ∆Lx and ∆Ly . [See (55),

shown at the bottom of the page.] The line pose 1
⇀

Lp12 can be
determined with Lx and Ly as



1L12x = Lx/
√
L2

x + L2
y + 1

1L12y = Ly/
√
L2

x + L2
y + 1

1L12z = 1/
√
L2

x + L2
y + 1.

(56)

Therefore, the errors in line pose caused by ∆Lx and ∆Ly are
given as



dL12x =

[(
1 + L2

y

)
∆Lx − LxLy∆Ly

]
/
(
L2

x + L2
y + 1

)3/2

dL12y =
[(

1 + L2
x

)
∆Ly − LxLy∆Lx

]
/
(
L2

x + L2
y + 1

)3/2

dL12z =−(Lx∆Lx + Ly∆Ly)/
(
L2

x + L2
y + 1

)3/2

(57)




∆Lx = 1
a1b2−a2b1

[
−Lxb2

(
∆v11−∆v12

ky1

)
+Lxa2

(
∆v21−∆v22

ky2

)
−Lyb2

(
∆u12−∆u11

kx1

)
+Lya2

(
∆u22−∆u21

kx2

)
+b2

(
P11y∆u12−P12y∆u11

kx1

)
− a2

(
1P21y∆u22−1P22y∆u21

kx2

)
+ b2

(
P12x∆v11−P11x∆v12

ky1

)
− a2

(
1P22x∆v21−1P21x∆v22

ky2

)]
∆Ly = 1

a1b2−a2b1

[
Lxb1

(
∆v11−∆v12

ky1

)
−Lxa1

(
∆v21−∆v22

ky2

)
+Lyb1

(
∆u12−∆u11

kx1

)
−Lya1

(
∆u22−∆u21

kx2

)
−b1

(
P11y∆u12−P12y∆u11

kx1

)
+ a1

(
1P21y∆u22−1P22y∆u21

kx2

)
− b1

(
P12x∆v11−P11x∆v12

ky1

)
+ a1

(
1P22x∆v21−1P21x∆v22

ky2

)]
(54)




∆Lx ≈ 1
(a1b2−a2b1)k

[
(Ly − P12y)b2∆u11 + (P11y − Ly)b2∆u12 +

(
1P22y − Ly

)
a2∆u21 +

(
Ly − 1P21y

)
a2∆u22

+(P12x − Lx)b2∆v11 + (Lx − P11x)b2∆v12 +
(
Lx − 1P22x

)
a2∆v21 +

(
1P21x − Lx

)
a2∆v22

]
∆Ly ≈ 1

(a1b2−a2b1)k

[
(P12y − Ly)b1∆u11 + (Ly − P11y)b1∆u12 +

(
Ly − 1P22y

)
a1∆u21 +

(
1P21y − Ly

)
a1∆u22

+(Lx − P12x)b1∆v11 + (P11x − Lx)b1∆v12 +
(
1P22x − Lx

)
a1∆v21 +

(
Lx −1P21x

)
a1∆v22

]
(55)
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where dL12x, dL12y , and dL12z are the errors in the line pose.
Discussion:
Case 1: ∆u11 = ∆u12 = ∆u21 = ∆u22 = ∆v11 = ∆v12 =

∆v21 = ∆v21 = euv . From formula (55), the errors
∆Lx and ∆Ly are computed as given in (58).
When euv = 1 and k = 1000, the errors are about
0.001. {

∆Lx ≈ euv/k
∆Ly ≈ euv/k

(58)

Case 2: ∆u11 = −∆u12 = eu, ∆u21 = −∆u22 = −eu,
∆v11 = −∆v12 = ev , ∆v21 = −∆v22 = −ev .
This is an extreme case that the errors in the feature
points in the image space are opposite in directions.
In this case, the errors ∆Lx and ∆Ly will reach the
maximum values



∆Lx ≈ 1
(a1b2 − a2b1)k
× [2Ly(a2 + b2)eu − (P12y + P11y)b2eu

−
(
1P22y + 1P21y

)
a2eu + (P12x + P11x)b2ev

−2Lx(a2 + b2)ev +
(
1P21x + 1P22x

)
a2ev

]
∆Ly ≈ 1

(a1b2 − a2b1)k
× [−2Ly(a1 + b1)eu + (P12y + P11y)b1eu

+
(
1P22y + 1P21y

)
a1eu + −(P12x + P11x)b1ev

+ 2Lx(a1 + b1)ev −
(
1P21x + 1P22x

)
a1ev

]
.
(59)

The precision in calibrating the intrinsic parameters of the
two cameras is quite satisfactory. For example, for camera Ca1,
we have kx1 = 2499.9, ky1 = 2364.1, u01 = 367.4, v01 =
285.2 and for Camera Ca2, we have kx2 = 2478.1, ky2 =
2352.6, u02 = 374.1, v02 = 261.5. The feature points extracted
from the line are [52, 247] and [221, 194] in camera Ca1,
and [400, 242] and [566, 186] in camera Ca2. According
to formula (50), the temporary variables are computed as
a1 = 0.0224, a2 = 0.0676, a3 = −0.0039, b1 = 0.0238, b2 =
0.0670, and b3 = −0.0003. The solution of Lx and Ly are
computed according to (49), the results are Lx = 2.2518 and
Ly = −0.8048. The obtained line pose is 1L12x = 0.8688,
1L12y = −0.3105, and 1L12z = 0.3858. If the errors in feature
points are limited to 0.1 pixel, the errors calculated from (59)
are ∆Lx = 0.3064 and ∆Ly = −0.1053. The maximum errors
in a line pose will be dL12x = 0.0180, dL12x = −0.0048, and
dL12x = −0.0445. With the Hough transform and least square
method, the accuracy of feature points in line can be improved
further. Then, the errors in the line pose estimation will be
reduced proportionally.

B. Errors in Estimated Distance

Equation (43) on cross ratio invariance can be rewritten as(
di−1
em + di

em

)(
di
em+ di

ed1

)(
ri−1
e1 + ri

e1+ ri
de1

)
ri
e1

−
(
di−1
em + di

em+ di
ed1

)
di
em

(
ri−1
e1 + ri

e1

)(
ri
e1+ ri

de1

)
=0. (60)

Let F denote the left side of (60). The derivatives of F with
respect to the six variables are

∂F

∂di
ed1

= di−1
em r

i
e1r

i−1
e1 + di−1

em r
i
e1r

i
e1

+ di−1
em r

i
e1r

i
de1 − di

emr
i−1
e1 r

i
de1 (61)

∂F

∂ri
e1

= di−1
em d

i
ed1(r

i−1
e1 + 2ri

e1 + ri
de1) (62)

∂F

∂ri−1
e1

= di−1
em d

i
ed1r

i
e1 − di−1

em d
i
emr

i
de1

− di
emd

i
emr

i
de1 − di

ed1d
i
emr

i
de1 (63)

∂F

∂ri
de1

= di−1
em d

i
ed1r

i
e1 − di−1

em d
i
emr

i−1
e1

− di
emd

i
emr

i−1
e1 − di

ed1d
i
emr

i−1
e1 (64)

∂F

∂di−1
em

= di
ed1r

i
e1r

i−1
e1 + di

ed1r
i
e1r

i
e1

+ di
ed1r

i
e1r

i
de1 − di

emr
i
de1r

i−1
e1 (65)

∂F

∂di
em

= − (di−1
em + 2di

em + di
ed1)r

i−1
e1 r

i
de1. (66)

The estimated distance di
ed1 is the function of the other

variables di
em, di−1

em , ri
e1, ri−1

e1 , and ri
de1. The difference

∆di
ed1 is

∆di
ed1 =

∂di
ed1

∂di
em

∆di
em +

∂di
ed1

∂di−1
em

∆di−1
em +

∂di
ed1

∂ri
e1

∆ri
e1

+
∂di

ed1

∂ri−1
e1

∆ri−1
e1 +

∂di
ed1

∂ri
de1

∆ri
de1

= −
(
∂F

∂di
em

∆di
em +

∂F

∂di−1
em

∆di−1
em +

∂F

∂ri
e1

∆ri
e1

+
∂F

∂ri−1
e1

∆ri−1
e1 +

∂F

∂ri
de1

∆ri
de1

)/
∂F

∂di
ed1

. (67)

Consider the case that ri−1
e1 = ri

e1 � ri
de1 and di−1

em =
di
em � di

ed1. Applying formulas (61)–(66) to (67), then ∆di
ed1

can be approximately expressed as

∆di
ed1 ≈ di

ed1(
ri
e1 + ri−1

e1

)
ri
e1

×
[ (

3/di
ed1 + 1/di

em

)
ri
e1r

i
de1∆d

i
em

−
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2ri

e1/d
i
em + ri
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i
em − ri
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i
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× ri

e1∆d
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(
3ri
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∆ri
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−
(
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i
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)
× ∆ri−1

e1 + 2
(
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)
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i
de1

]
. (68)
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Fig. 6. Scenes of experiment. (a) Scene of experiment at start and (b) scene of experiment in the end.

If the terms ri
e1 and 1/di

ed1 in the numerator of (68) is
neglected, then (68) becomes

∆di
ed1

di
ed1

≈ ri
de1(

ri
e1 + ri−1

e1

) (
∆ri−1

e1

ri−1
e1

− ∆ri
e1

ri
e1

)
. (69)

Equation (69) indicates that the main sources of errors in
estimating the distance with cross ratio invariance are the errors
in ri

e1 and ri−1
e1 . The relative error in the estimated distance

is proportional to the difference between the relative errors
∆ri−1

e1 /r
i−1
e1 and ∆ri

e1/r
i
e1, with a gain of ri

de1/(r
i
e1 + ri−1

e1 ).
For example, when ri−1

e1 = ri
e1 = 5 and ri

de1 = 50 pixels, the
relative error ∆di

ed1/d
i
ed1 is five times the error ∆ri−1

e1 /r
i−1
e1 −

∆ri
e1/r

i
e1. Therefore, reducing ri

de1 or increasing ri
e1 or ri−1

e1

can reduce the relative error ∆di
ed1/d

i
ed1.

In general, the distance estimated with cross ratio invariance
is still a rough one. When it is used for control purpose, it
is better to be combined with an image-based visual-control
method to form an integrated system, or to add a limit unit in
the robot controller to confine the step size in the visual control.

VII. EXPERIMENT AND RESULTS

A. Experiment 1

The experiment system is shown in Fig. 5. The end effector
was mounted with a colored rectangle as the tool. The white
rectangle is the object to approach. The end effector approaches
the object’s center along the opposite direction of the surface
normal of the planar object. Two cameras were placed near the
base of the industrial robot UP6, whose intrinsic parameters
Min1 and Min2 were calibrated using the method proposed in
Section III. The relative pose 1R2 is computed with the method
in Section IV.

The task was to move the end point of the tool to the center
of the object. In the experiment, the control algorithm adopted
was a proportional control law, i.e., with the gains Ki and Kd

in formula (46) set to zero. The factor in formula (39) was
assigned as kθ = 0.4. The position step factor in formula (42)

at the beginning of the approaching was set to ks = 25 mm. The
proportional gains were initially determined by simulation and
finally tuned empirically in experiments and were set as

Kp =


 0.3 0 0

0 0.5 0
0 0 0.5


 . (70)

The experiment was conducted using the method in
Section V. Two scenes of the experiment are shown in Fig. 6.
The scene of the tool and the object, denoted by a color
rectangle and a white rectangle, respectively, at the start of the
experiment is given in Fig. 6(a). Fig. 6(b) shows the scene at
the end. It can be seen that the tool reached the desired position
and pose well.

Some experimental results are given in Fig. 7. Fig. 7(a)
shows the trajectory of the end effector in the experiment. The
three steps at the beginning were controlled using a constant
step length with formula (39), (42), and (47). Then, the mo-
tions of the end effector were controlled according to formula
(39), (46), and (47). The end effector was moved toward the
object. Fig. 7(b) gives the desired and reached orientations of
the end effector in the experiment. It is seen that the orientation
of the end effector changed smoothly and achieved the desired
one finally. The components in the estimated result are given
in Fig. 7(c). There existed variations in the estimation because
of noise disturbance. Fig. 7(d) shows the distances between
the tool and the object in Cartesian and the image space. The
distance in the image space was calculated with the image
coordinates of the tool and the object. The distance in the
Cartesian space was estimated with (43) and (44) according to
cross ratio invariance. The distance varied considerably due to
the sensitivity to noise. Besides the noise, the trajectory of the
end effector, which was not a line, also had a strong influence
on the accuracy of the estimated distance. In our experiment,
to reduce the aforementioned effect, the estimated distance was
filtered with a low-pass filter before it was used to control the
end effector. Also the step size for each visual-control sampling
was limited to 25 mm or less.
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Fig. 7. Experimental results. (a) Trajectory of end effector, (b) graphs of Euler angles, (c) estimated direction results from the end effector to object, and
(d) distances between the tool and object in Cartesian and the image space.

B. Experiment 2

The purpose of this experiment was to compare our pose-
based visual-control method with a traditional position-based
method. In this experiment, the tool was a bar instead of the rec-
tangle in the last experiment. Different from Section V-B, the
poses here were just the pointing direction of the tool and the
normal of the planar object. Assume that the pointing direction
of the tool was 1 ⇀

a em in frame C1, the normal of the planar ob-
ject was 1 ⇀

a r in frame C1. The rotation angle 1θ and axis 1
⇀

f in
frame C1 were computed via (71). Then, the desired pose 1Red

was determined with (72). Applying formula (72) to (37), the
pose adjustment can be determined with formulas (38) and (39)


1

⇀

f= 1⇀
a em ×1⇀

a r

1θ = arccos
(

1⇀
a em ·1⇀

a r

) (71)

1Red = Rot(1
⇀

f ,1θ). (72)

An experiment for object approaching was conducted with
our pose-based visual-control method. Similar to the experi-
ment in Section VII-A, the estimated distance was filtered with
a low-pass filter before it was used to control the end effector.
The step size for each visual-control step was limited to 25 mm.

Next, the position-based visual-control method as described
in [2] was used in the comparison experiment. The positions of
the tool and target were calculated via stereovision. The poses
of the tool and target were obtained via 3-D reconstruction [2]
in the comparison experiment. The positions and poses of the
tool and target were calculated in each control step. The step
size for each visual-control step was also limited to 25 mm.

To compare our pose-based method with the position-based
one, the results are plotted in Fig. 8. The trajectories of the end
effector are shown in Fig. 8(a). Fig. 8(b) displays the actual
tool directions in the robot frame. Fig. 8(c) shows the distances
between the tool and the object in the Cartesian space and
the image space. It is seen that the estimated distance with
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Fig. 8. Results with pose-based and position-based methods. (a) Trajectories of end effector, (b) directions of tool, and (c) estimated distances.

cross ratio invariance has a higher precision in the end stage
than other stages. This is consistent with the error analysis in
Section V-B. The scenes of experiments in the end stage with
pose-based and position-based visual-control method are given
in Fig. 9.

It can be seen from Figs. 8 and 9 that the pose-based
visual-control method has similar effectiveness to the position-
based one. However, the pose-based visual-control method
proposed in this paper is much easier to implement than the
position-based one. It avoids the tedious calibration of the
extrinsic parameters of cameras and does not need any posi-
tion information of the environment or metric information of
the object.

It is observed that in some pose-detection experiments, the
pose of a line could not be obtained with the method in
Section IV-B1. The reason was that the two equations, (32) and
(34), were linearly correlated. With the active pose adjustment
of the cameras, this problem could be solved as the two equa-
tions will then become noncorrelated.

VIII. CONCLUSION

In this paper, a method for self-calibration of the intrinsic
parameters of a camera is investigated using groups of parallel
lines, which are orthogonal. If the image coordinates of the lens
center are known, and there is no difference between the mag-
nification coefficients in the horizontal and vertical direction
from the imaging plane coordinates to the image coordinates,
then the magnification coefficient k can be self-calibrated with
one view of two orthogonal groups of parallel lines. If there
are three intrinsic parameters, one view of three groups or three
views of two groups of parallel lines in orthogonal are necessary
for the intrinsic parameter self-calibration. For a four-parameter
model, four views of two groups of parallel lines in orthogonal
are needed. The analytic solutions for the self-calibration are
presented.

With the intrinsic parameters of a camera, the poses of the
camera relative to two orthogonal groups of parallel lines are
deduced. For two cameras, their relative pose is computed
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Fig. 9. Scenes of experiments in the end stage. (a) Scene with pose-based method and (b) scene with position-based method.

from their poses relative to the parallel lines. With the intrin-
sic parameters and transformation between the two cameras,
methods are proposed for calculating the poses of a line, plane,
and rigid object. Compared with stereo vision, our method does
not need correspondence matching for feature points, which
is a main source of errors in 3-D reconstruction. Rather, line
matching is performed and the poses are computed via selecting
arbitrary two points on a line. As line matching is more robust
than point matching, our method offers a more robust approach
for visual control.

A new visual-control method is developed using the pose de-
tection rather than 3-D reconstruction. This avoids the tedious
calibration of the extrinsic parameters of cameras and does not
need any position information of the environment or metric
knowledge about the object. An approaching task is performed
with our pose-based visual control to show the application of
the method. The object’s pose and the orientation of the vector
from the tool to the object are estimated with the methods
presented in this paper. In approaching the object, the distance
between the tool and the object is estimated with cross ratio
invariance. The experimental results verified the effectiveness
of the proposed methods.

The main features of our methods include automatic cali-
bration of the camera intrinsic parameters based on parallel
lines only without requiring metric knowledge of the target
or environment, robust determination of the transformation
between the two cameras using line matching rather than point
matching, and an easily implementable visual-control method
based on the pose detection rather than 3-D reconstruction.
The developed method will be useful for autonomous systems
including mobile manipulators, humanoid robots.
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