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Analytical reconstruction of 3D curves from their stereo images is an important issue in computer vision. We
present an optimization framework for such a problem based on a nonuniform rational B-spline (NURBS)
curve model that converts reconstruction of a 3D curve into reconstruction of control points and weights of a
NURBS representation of the curve, accordingly bypassing the error-prone point-to-point correspondence
matching. Perspective invariance of NURBS curves and constraints deduced on stereo NURBS curves are em-
ployed to formulate the 3D curve reconstruction problem into a constrained nonlinear optimization. A parallel
rectification technique is then adopted to simplify the constraints, and the Levenberg—Marquardt algorithm is
applied to search for the optimal solution of the simplified problem. The results from our experiments show
that the proposed framework works stably in the presence of different data samplings, randomly posed noise,
and partial loss of data and is potentially suitable for real scenes. © 2005 Optical Society of America
OCIS codes: 000.3870, 100.2960, 100.3010, 100.3190, 150.5670, 150.6910.

1. INTRODUCTION

Traditional stereo reconstruction relies heavily on point-
to-point correspondences. From a pair of image points
captured in two different views, their corresponding point
in 3D space can be reconstructed by the triangulation
principle.1 However, finding point-to-point correspon-
dences in a stereo pair of images of a real scene has
proved very challenging, as the searching space for build-
ing such correspondences is extremely large and the
searching is usually affected by image inadequacies such
as noise, distortion, lighting variations, etc. Enormous ef-
forts have been devoted to the stereo correspondence
problem over the past three decades. Yet the problem is
still far from being solved (see Refs. 2 and 3 for recent sur-
veys) as a result of its intrinsic ill-posed nature. Moreover
point-based reconstruction ignores structural information
between sampling points on object surfaces, thereby rais-
ing difficulties in the postprocessing of reconstructed
points.

In order to avoid the problems with point-based ap-
proaches, researchers have applied high-level geometric
primitives to reconstruct 3D scenes. Among them, 2D
primitives such as surface patches‘ke are suitable for
scenes where object surfaces are smooth (with relatively
fewer discontinuities), while 1D primitives such as
lines™™® and curves!'™ complement in environments
where these 1D features constitute major information
cues. This paper addresses the case of 1D primitives.

The currently used 1D primitives in stereovision are
limited to straight lines,” % conics,'t!? and high-degree
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algebraic curves. From a pair of lines (conics) matched at
two different views, their corresponding space lines (con-
ics) can be constructed analytically by intersecting the
ray plane (surfaces) passing through these lines (conics).
The line (conic) primitives are more compact compared
with sparse points in images and yield more robust and
efficient matching and reconstruction when applied to ar-
tificial scenes where object geometry has the simple form
that can be well described by straight lines and conic seg-
ments. However, the line (conic) family cannot accommo-
date free-form curves that are manifest in our natural en-
vironment (e.g., the form of some biological objects) and
even in man-made scenes (e.g., edges of some handcrafts).
In order to reconstruct such more-complicated shapes by
stereovision, some researchers have employed high-
degree algebraic curves'! as primitives. However, deal-
ing with high-degree algebraic equations has proved
error-prone, making the methods difficult to be applied
practically, and the adopted high-degree algebraic curves
in those methods have been limited to planar representa-
tions. So the reconstruction of true 3D (space) curves in
free-form shape remains an open question.

On the other hand researchers have studied the issues
of matching curves in stereo images,ls_z1 and more gener-
ally from multi-views,”>?* where the shape of image
curves is considered to be arbitrary rather than confined
to a specific known form. As an image curve contains
more geometric and structural information than a point,
and there are fewer curves in an image than points,
matching of curves can be more robust and efficient. A re-
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cent paper”” has reported an impressive rate of correct
matching of image curves of up to 98% in natural scenes.
The research work on curve matching so far has certainly
advanced the state of the art of extracting information in
image curves captured in a 3D scene. At the same time a
gap arises between curve matching and reconstruction.
Since curves can be matched up in stereo images, the re-
construction of these curves seems a natural step to follow
as is done with matched points. Nevertheless, the current
methods based on simple primitives such as points, lines,
conics, and high-degree algebraic curves seemingly pro-
vide no satisfactory solutions to this problem.

Actually 3D reconstruction from matched curves ap-
pears nontrivial in real scenes. If we adopt image points
as the primitives for reconstruction, we still have to find
point-to-point correspondences on the image curves at dif-
ferent views. Even though the point-to-point correspon-
dence matching is simpler when carried out on image
curves (in Ref. 25 it was done over image sequences), it
remains an error-prone problem that degrades the recon-
struction quality. First, because points forming an image
curve are projections of 3D points sparsely sampled on the
corresponding 3D curve (an image curve is therefore a
projection of a sampling on the original curve), and be-
cause two image curves that signify the same 3D curve at
two different views are not necessarily the same sam-
pling, the task becomes rather challenging to retrieve in
two image curves the exact corresponding points cast
from the same physical points in 3D space, even if the im-
age curves are extracted free of image inadequacies. Sec-
ond in practice, noise introduced in images might disturb
the extracted image curves from their proper locations.
Such noise and some other image inadequacies like self-
occlusions and lighting variations might cause miscap-
ture of some parts of a 3D curve in its corresponding 2D
image curves, unpredictably undermining the point-to-
point correspondence-matching process.

The line (conic) based methods suffer similarly the cor-
respondence problem in reconstructing 3D free-form
curves. To establish line (conic) segment correspondences
on a pair of image curves at two views, one must decom-
pose each image curve into a set of connected line (conic)
segments with one segment on one curve uniquely corre-
sponding to another segment on the other curve. Such de-
composition is rather difficult because it implies that the
joint points of the line (conic) segments on one image
curve must be the correspondences of the joint points on
the other curve. The process of establishing such joint-to-
joint correspondences is the same as building point-to-
point correspondences on image curves. Therefore, it has
been claimed that line-based methods are not suitable for
reconstruction of curved objects,15 nor are conics intrinsi-
cally.

To overcome the drawbacks of reconstruction methods
based on the simple primitives, attempts have been made
in reconstructing a 3D free-form curve as a whole from its
stereo projections (image curves) where B-spline, a para-
metric representation of shapes, was applied in the curve
modeling.?® The results demonstrated the possibility of
using spline representation to reconstruct 3D free-form
curves in stereovision. However, the camera model in that
work was assumed to be affine rather than perspective,
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limiting its application range. Furthermore, the image
B-spline curves were constructed using standard least-
squares ﬁt:ting27 with natural chord parameterization, re-
sulting in difference between the two parameterizations
of a stereo pair of corresponding image curves and
thereby inducing errors in the final 3D reconstruction.
These weaknesses theoretically degrade the applicability
of the approach to stereovision.

The aim of this paper is to apply the approach to a more
general case: the perspective camera. To this end, nonuni-
form rational B-spline (NURBS) is adopted as the under-
lying curve model. As it is perspective-invariant, this
model makes it possible to accommodate the perspective
camera model in the stereo reconstruction scheme.?® The
problem with data parameterization of curves is tackled
by formulating the scheme of 3D curve reconstruction
from its stereo projections (image curves) into an optimi-
zation framework where both the intrinsic parameters of
NURBS curves (see Subsection 2.A) and data parameter-
izations are optimized. The iterative algorithm of the op-
timization automatically leads to the NURBS representa-
tions for image curves on the optimal sampling
parameters for data points of these image curves. The 3D
NURBS curve can then be formed by reconstructing its
control points and the corresponding weights from the ob-
tained control points and weights of the 2D NURBS
curves. NURBS is a superset of B-spline, therefore inher-
iting all the good properties of B-spline and yet providing
more flexibility in representing complex shapes.

The remainder of this paper is organized as follows.
Section 2 introduces the NURBS curve model. The per-
spective invariance of NURBS curves is reinterpreted in
an algebraic manner compatible with the algebraic form
of camera geometry. The constraints on the pair of 2D pro-
jected curves of a 3D NURBS curve are deduced. Based on
the perspective invariance and the deducted constraints,
in Section 3 an optimization framework is established in
order to obtain the optimal NURBS estimation of 2D im-
age curves that represent projections of a 3D curve. The
simplification of the optimization formalism and the
derivative-driven iterative solution to the problem are
discussed. The formulas to compute the 3D control points
and corresponding weights from 2D NURBS curves are
presented. Experimental results and their quantitative
analysis are described in Section 4, followed by conclu-
sions in Section 5.

2. NONUNIFORM RATIONAL B-SPLINE
CURVE MODEL

The primary goal of the research presented in this paper
is to reconstruct 3D free-form curves from their stereo im-
ages. For modeling free-form curves, NURBS (B-spline is
included in the NURBS family) methods have played an
important role in computer-aided design and computer
graphics because of the many properties of NURBS supe-
rior to other shape representations.28 In computer vision,
the strengths of NURBS have also been recognized in ap-
plications on shape recognition, tracking, and
me1tching.15’29’30 For the work on 3D curve reconstruction
in our research, NURBS offers particular advantages
summarized as follows:
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1. A unified curve representation: NURBS can accu-
rately express both free-form and simple algebraic
curves,’! accordingly reducing the representational load
in the vision system and enlarging the application range
of NURBS-based approaches. Moreover NURBS is ca-
pable of modeling curves in both 2D and 3D, which is im-
portant in our stereo reconstruction system where both
3D and 2D curves are involved.

2. Smoothness and continuity: A NURBS curve can be
treated as a single unit with actually a smooth concatena-
tion of curve segments, which offers better smoothness
and continuity than polygonal and piecewise-conic repre-
sentations. Such a property permits analytical computa-
tion of curve derivatives everywhere, providing a poten-
tial to apply derivative-based operations to curves, e.g.,
the iterative optimization for 3D reconstruction given in
Section 3 of this paper.

3. Geometric invariance: A NURBS curve remains
NURBS under rigid, affine, or perspective transforma-
tion. This allows NURBS to be a universal representation
in different coordinate frames—such as world reference
frame, object frame, camera frame, and image frame—in
which an object geometry often needs to be transformed
from one to another in vision applications. Indeed, such
invariance inspired us to employ NURBS as the curve
representation in our scheme for 3D reconstruction from
image curves that will be reported below.

A. Definition of the NURBS Curve

Originated from the rational Bezier equation, the NURBS
curve is a generalized extension of B-spline that has the
form of vector-valued, piecewise, rational polynomial
functions:

C)=> WiVB; ,(t) > W;B; ,(t). (1)

i=0 1=0

Here W; is the weight of the ith control point V;, and
{B;x(t),i=0,1,... m} are the normalized B-spline basis
functions of degree % defined recursively as

B =1 ifuist$ui+1
(¢t ,
io(®) =0 otherwise

t-u; Uiske1— L
— B )+

B;x(t) =
Uitk — U;

B p-1(). (2)
Ujirk+1 — Ujs1

In Eqgs. (2) u; are so-called knots forming a knot vector
U={ug,u1,..., Upsrs1}, and ¢ denotes the independent
variable for the basis functions.

The curve defined in Eq. (1) can be rewritten in the fol-
lowing equivalent form for the sake of simplicity:

C(t) = 2 ViR, 4(t),

i=0

R () =WB,(t) /| 2 WB,t), (3)
J=0

where {R;;(¢),i=0,1,... m} are termed rational basis
functions.
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The NURBS form in Eq. (3) is similar to that of
B-spline, except that the rational basis functions R, ;(t)
take the place of B-spline basis functions B, (¢). The ra-
tional basis functions are generalizations of nonrational
B-spline basis functions, inheriting entirely the analytical
properties of B-spline such as differentiability, locality,
partition of unity, etc. Furthermore, such generalizations
yield more flexibility in modeling shapes, which not only
provides more options to shape designers but results in
some further important properties of the NURBS on its
own, e.g., the perspective invariance of NURBS curves (as
explained in Subsection 2.B).

In this work, we choose cubic NURBS models (k£=3) for
two reasons: 1. Cubic NURBS is the one capable of repre-
senting nonplanar space curves with the least degree, 2.
Cubic NURBS curves are C? continuous, meaning that
the first-order and the second-order derivative vector for
every point on the curves can be computed analytically,
accordingly allowing us to apply derivative-based opera-
tion on these curves.

Once the type of NURBS is fixed, a NURBS curve is de-
termined only by its control points and weights. Therefore
we call control points and weights the intrinsic param-
eters of a NURBS curve, distinguishing them from pa-
rameter ¢ in parametric equations (1) and (3), which is as-
signed to a point on the curve in order to calculate its
coordinate values. Hereafter we use both C(#) and
C{V;},{W;},t) to denote a NURBS curve at our conve-
nience. The latter expression is used when the intrinsic
parameters are involved.

B. Geometric Invariance of NURBS Curve
Among many fascinating properties of NURBS represen-
tation, geometric invariance forms the core of our recon-
struction framework. Geometric invariance allows a
NURBS curve to preserve the form of NURBS under a
certain geometric transformation, e.g., rigid, affine, or
perspective. Reference 30 has presented an algebraic
proof of affine invariance and a geometric interpretation
of perspective invariance of a NURBS curve in which the
perspective transformation is defined as a pure central
projection. To organize these invariant properties into a
unified representational framework, we reinterpret the
perspective invariance of NURBS curve in an algebraic
manner, complying with the algebraic form of camera ge-
ometry and stereo reconstruction.’

First let us review the affine invariance of NURBS
curves using the theorem presented in Ref. 30.

Theorem 1: Affine invariance

Suppose Ax +t4 represents an affine transformation for
a point x; the affine image of a NURBS curve C(¢) is a
new NURBS curve C’(¢) of the form

C'(t)= 2 ViR4(t),

Vi=AV;+t,, (4)

where A denotes a linear transformation matrix and t4
represents a translation vector. (See proof in Ref. 30.)
Theorem 1 says that affine transforming a NURBS curve
can be achieved by affine transforming its control
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points—the transformed curve C’(¢) is a NURBS curve
with new control points V| that are affine images of the
original control points V;.

Having included rigid (Euclidean) transformation, af-
fine transformation is a mapping concerning linear opera-
tions in the same dimensionality. Such transformation is
often used to model image transformations, e.g., the
transformation from camera retina to image plane, or to
model object transformation in 3D between a world coor-
dinate frame and an object-centered coordinate frame.
However, in some special cases, e.g., when the camera
lens is far away from the object and the object is nearly
parallel to the camera retina, the affine transformation
can be used to approximate a 3D — 2D perspective projec-
tion with acceptable accuracy.?63? In those scenarios, the
affine camera model often simplifies the computation in-
volved in certain tasks such as the work demonstrated in
B-spline-based curve reconstruction.”®

Since NURBS is invariant under affine transformation
and central projection,®® the projection of a 3D NURBS
curve must be a 2D NURBS curve, assuming the camera
is a pinhole that consists of a central projection and sev-
eral affine transformations’ where the nonlinear distor-
tion is ignored. This fact can be interpreted in an alge-
braic manner complying with the algebraic framework of
camera geometry. Let T(-) denote such a perspective pro-
jection of a pinhole camera, X=[X Y Z]T denote the coor-
dinate vector of a 3D point, x=[x y]” denote the coordi-
nate vector of its image, and let the projection be

expressed as
T
X Hx
TX)=x=S 1= T, 11 (5)

3

where T;, Ty, T3 are 1X4 vectors constituting the per-
spective projection matrix of T(-), and [x 1]7 and
[X 177 are homogenous coordinates of x and X.

Now we review the perspective invariance of NURBS
curves.

Theorem 2: Perspective invariance

Let e(¢) denote the projected curve of a space NURBS
curve C({V;},{W;},#) under perspective projection T7'(-);
then c¢(¢) can be expressed in the form

ct)= 2 wviBii(t) | D wBi (), (6)

i=0 =0

where v;=T(V;) and
Vi
w;= WiTg 1 (7)

The proof of Theorem 2 is given in the Appendix.
Theorem 2 reveals that the original NURBS curve and
the projected curve are related to each other by their con-
trol points and the corresponding weights; perspectively
transforming a NURBS curve is equivalent to perspec-
tively transforming its control points and operating the
relevant weights, which are intrinsic parameters of the
NURBS curve. Therefore we can treat the projection of a
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NURBS curve as a mapping in its intrinsic parameter
space without calculating each point on the NURBS curve
individually.

C. Constraints on Stereo Projections of a NURBS Curve
It is well known that stereo projections of a point in 3D
satisfy the “epipolar constraint.” Now that a NURBS
curve can be treated as a vector in its intrinsic parameter
space, when a 3D NURBS curve is captured by two cam-
eras at different views, the parameter vectors of two pro-
jected curves will similarly follow some constraints. Let
TE)(-) and T®)(-) denote the perspective projections of the
left and right camera, respectively; the following con-
straints can be deduced:

1. Epipolar constraint on control points of projected
NURBS curves: Since control points of projected NURBS
curves are the projections of control points of the 3D
NURBS curve, i.e., v"'=TH(V,) and v¥'=T®(V)), where
V; denote 3D control points and VEL) and vl(.R) denote con-
trol points of the projected curve on the left and right
retina, respectively, then by use of the similar method of
deducing epipolar constraint on image points at binocular
view,! the epipolar constraint on the control points VEL)
and vl(.R ) can be derived, e.g., in the form

R)|T (L)
V; Vi
|: :| F(RL)|: :| ) 0, (8)
1 1

where FEL) ig the fundamental matrix of the stereo cam-
era geometry determined by 7%)(-) and T®)(-).!

2. Weight constraint. Using Eq. (7), the following con-
straint on the weights of the two projected curves can also

be derived:
wwrnf]]/wl]

3. STEREO RECONSTRUCTION OF
NONUNIFORM RATIONAL B-SPLINE
CURVES

A. Problem Statement and Simplification

In Section 2, we presented a brief overview of the NURBS
curve model. We also discussed the geometric invariance
of NURBS representation and derived constraints on the
projected curves when a 3D NURBS curve is perspec-
tively observed at two views. Geometric invariance, espe-
cially perspective invariance, exists in all primitives used
previously in stereo reconstruction, e.g., straight lines,
conics, algebraic curves. The geometric invariance of
NURBS naturally inspired us to consider NURBS as a
primitive in stereovision. As the perspective transforma-
tion of a NURBS curve can be treated as a mapping of its
intrinsic parameter vector, the idea is to reconstruct the
intrinsic parameters of a 3D NURBS curve from those of
its stereo-projected curves using a similar method of re-
constructing a 3D point from its stereo images. This idea
is illustrated in Fig. 1, where a 3D curve framed by con-
trol points {V,;} has two perspective images on left (L) and
right (R) retinas that are basically 2D NURBS curves (de-

note VEL) as control points of the left curve and VER) as con-
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Fig. 1. Space curve and its binocular perspective projections.

trol points of the right curve). In a nondegenerate case,
i.e., any pair of control points of a space NURBS curve
does not share any ray starting from an optical center of
the camera, we can reconstruct the control points of the
3D NURBS curve by triangulation from the correspond-
ing control points of the projected 2D NURBS curves, as
they satisfy epipolar constraints. Afterwards the weights
of the 3D NURBS curve can be calculated by

W, = wmd \f , (10a)
or o

Wi=w®rrd| |, (10b)
Where( }g}EL) and wER) denote corresponding weights of VEL)
and v;

To realize such a scheme in real applications where im-
age curves are initially chains of pixels (digital curves),
we need to obtain appropriate NURBS representations
for those digital image curves, which must satisfy the fol-
lowing constraints: i. the types of the left and the right
NURBS curve are the same (as they represent projections
of the same space curve), ii. each control point of the left
curve shares an epipolar plane with its corresponding
control point of the right curve, iii. the corresponding
weights of the left and the right curve satisfy Eq. (6). The
reasons for these constraints and the formulation of the
problem under the constraints are explained below.

Given a digital image curve on the left retina consisting
of ny; data points {p(L) [(p) (L),(p) (L) 17 j1=1,2,...,n1
and a corresponding i 1mage curve on the rlght retina con-
sisting of n, data points {p(R) [(p (R) ®) (R)]T
=1,2,...,na}, our task is to estlmate a 3D NURBS curve
whose stereo projections best fit the two (left and right)
image curves. In the least-squares measure, such a task
can be formulated as the following minimization:

ny
min( E |pj(-f) - TE(C

J1=1

CUVL{WLe))I?

+E| B _ TR(CUVLWs; ))|2)

with respect to

tj1:j1 = 1729 VAT
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sj,v2=1,2, ... ,ng{Vi}{Wi}:

i=0,1,...,m, (11)

where C({V;},{W,},t|s) is the 3D NURBS curve, TW(:)
and T®)(-) denote the left and right perspective transfor-
mations, and ¢; :j;=1,2,...,n; and s;,:j3=1,2,... ,ny are
two samplings in the NURBS curve parameter domain
associated with data points in the left and right image
curves. The two samplings are not necessarily related.
The term inside min(:) is the so-called energy function.

Formalism (11) optimizes two kinds of parameters: one
is the intrinsic parameters of the 3D NURBS curve, i.e.,
{v;} and {W;}; the other is the two parameter samplings
each associated with data points in an image curve. The
reason for optimizing parameter samplings is that we
want to achieve the locations for data points of image
curves on the 3D NURBS curve that result in minimum
proximity between the reconstructed curves and the data
points, thereby avoiding explicitly matching the data
points in pairs, which is neither accurate nor robust. Such
formalism proves to be the particular strength over the
B-spline-based work, achieving more accurate and reli-
able results, as demonstrated in Section 4.

Formalism (11) is apparently a large-scale nonlinear
optimization. Such a problem would be computationally
prohibitive without analyzing its specificity and choosing
methods suitable for the specificity, although general pur-
pose optimization techniques (such as simulated anneal-
ing, genetic programming, etc.) might be applied. The fol-
lowing describes our study of the problem’s “specificity”
and the corresponding method for tackling the problem.

First of all, we observed that perspective invariance of
NURBS can be utilized to reduce the nonlinearity of the
problem. Assuming that the projections of the 3D NURBS
curve C{V;},{W;},t|s) are c({v(l’)} {w(L)} t) and
c({v(R)} {w(R)} s) on the left and right retinas, respec-
tlvely, formahsm (11) can be rewritten in the form

ny

mm(2| B (v w2+ X R

Jo=1

- e(vi¥L{wi®s),)| )

with respect to

tjllj1=1,2, el sz:j2=1925 cee sy
VLV Py {wFli= 0,1, ... ,m; (12)
subject to
(L) )

. . . R) -
i. epipolar constraints on v;” and v;", i.e.,

® |7 (€)
Vi F<RL>[V‘1 }:0, i=0,1,...,m
1

ii. weight constraints on w([‘ and w(R), ie.,
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wPw® = T<L>{V} / Tg"’{vi} i=0,1,...,m
1 1 ’ ) LA ]

Compared with formalism (11), formalism (12) has a sim-
pler form in which the nonlinear transformations T0)(-)
and T®)(-) vanish. Although the induced constraints i.
and ii. are actually the price of removing 7")(-) and T'®
X(+), the structure of the problem emerges more clearly,
and the constraints can be further simplified.

The major difficulty in solving formalism (12) lies in the
weight constraints. The relation of corresponding weights
wEL) and wER) depends not only on a known fundamental
matrix, but also the unknown 3D control points V;, which
are actually the parameters we are going to estimate.
Therefore the “chicken—egg” puzzle is that if we want to
obtain V; we need to solve formalism (12); if we want to
solve formalism (12) we have to know V.

The key to this puzzle lies in a rectification of image
curve pairs. We discovered that in a particular stereo con-
figuration, namely, parallel configuration, in which the
cameras share a common image plane, the constraints in
formalism (12) can be greatly simplified so that the prob-
lem becomes tractable [no “chicken—egg” puzzles (ex-
plained below)]. Moreover it has been proved that an ar-
bitrary nondegenerate stereo pair can be transformed to a
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V; V;
| =T®
311 511

Consequently the weight constraint in Eq. (9) can be sim-
plified to

wt = w® (13)

Moreover in a parallel stereo configuration, the epipolar
constraint also becomes simple®®

Wyt =y (14)
where (v)y(L) and © (R) are the y coordlnates of v, L) and
ER) (similarly, the x coordlnates of v ) and v; ®) are ex-

), (L) () (R))

pressed by and
We can then rewrite formalism (12) to the following un-
constrained least-squares relation:

2(nq+ng)
min( > ff),
j=1

with respect to

(v)xl(,L)’ (U)xl(R), (U)yi’ L = 0, 1’ ...m,

parallel stereo pair linearly in homogeneous
coordinates.?® Therefore we can rectify image curves to a ti1=1,2,...,n1, s;,is=12,... 09, (15)
parallel configuration first and study the curves after-
wards, where the following relation can be obtained®?: where
( m
Ol S DR, (), j=1,2,...n4
i=0
Pyl - E Oy R 5t 0, j=ni1+1,2,...2n,
f} =
®E) 2 ClPR, o(s)0n,), J=2n1+1,2, ... 2n,
(p)yJ(R2)n1 nZE © i, 3( 2”1‘”2)’ j= 2711 +ng+ 1,2, . 2(711 + nz);
\

(U)yi=(u)yEL)=(U)y§R) and R, 5(-) are the rational bas1s func-
tions containing weights {wl} that satisfy w;= wg (R).
The weights in NURBS, while providing great ﬁex1b11-
ity in modeling curves, cause redundancy in the represen-
tation. Theoretically there are an infinite number of con-
figurations of control points and weights that would
result in the same curve, as a NURBS curve can be con-
sidered a projection of a 4D nonrational B-spline curve
constructed in a homogeneous space of control points and
weights, which is a many-to-one mapping. Therefore, to
be able to obtain a unique representation, currently in
most existing CAD systems, the setting of weights is de-
pendent on the preference of end users, although some re-
searchers have proposed constraints to compute weights
for specific purposes.34 Following the same rule, we allow

an arbitrary configuration of weights (e.g., we applied a
uniform weight setting in our experiments) in the algo-
rithm by leaving weight-setting a choice of the user. Once
the weights are set, our algorithm will automatically es-
timate the remaining parameters in formalism (15),
namely, the coordinates of the control points and the sam-
plings of image curves.

B. Algorithm

Although formalism (15) remains nonlinear, its form has
been greatly simplified. Each component in the fitness
function is a rational polynomial of a few variables, and
the partial derivatives of the components with respect to
these variables can be computed analytically. In such a
scenario, derivative-based optimization techniques can be
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used to solve the problem. Among the derivative-based
methods for nonlinear least-squares problems, the
Levenberg—Marquardt method®® has proved its popular-
ity in various fields through its simplicity and efficiency.
The Levenberg—Marquardt method requires only one-
order partial derivatives and is therefore well suited for
our scenario where the one-order derivatives are analyti-
cally available.

To solve the problem efficiently, we follow the
Levenberg—Marquardt scheme introduced in Ref. 36 as it
is more computationally attainable than the other vari-
ants of the method. Such a scheme iteratively searches for
better solutions of the optimization problem by solving a
linear equation constructed from a Jacobian matrix in
each iteration step. For formalism (15) the Jacobian ma-
trix can not only be computed analytically but has a
sparse and simple form that allows efficient solution of
the linear equation in the Levenberg—Marquardt itera-
tion step. Figure 2 illustrates the pattern of the Jacobian
matrix. Obviously most of the elements in the matrix are
empty (filled with zeros). We label the submatrices that
have nonzero elements 1, 2, 3, 4, 5, 6, 7, and 8 in the fig-
ure.

Matrices 1, 2, 3, and 4 are diagonal matrices and their
diagonal elements are derivatives with respect to param-
eters {th} and {SJ'Z}' Denote

O 0) (16)

i=0

a 1D rational B-spline function. The derivative Jy(t)/dt
can be obtained by directly differentiating Eq. (16). If we
substitute (")xl(.L), <U)yi, (U)xER) for ¢ and {t;,t5,...t, },
{31,82,..-Sn2} for ¢t in Jy(t)/dt, the diagonal elements of
matrices 1, 2, 3, and 4 can be obtained as

a. Matrix 1: Substitute (U)xil‘) for ; and {¢1,t,...t,}
for ¢,

b. Matrix 2: Substitute (U)yi for ¢; and {t{,¢s, .. 't”1} for ¢,
P : ‘, ) g DO 1) O D) R
1
1 5
o
2 6
Som,
3 7
.f2711+rxZ
4 8
-fz("l*’"z)
5 Sn, (V)J’o (V)ym

Fig. 2. Jacobian matrix of formalism (15).
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c. Matrix 3: Substitute (")xER) for ¢; and {s1,sg,...5,,}
for ¢,

d. Matrix 4: Substitute
for t.

Matrices 5,6,7, and 8 are upper-triangular matrices
whose nonzero elements are derivatives with respect to

(U)yi for ¢; and {s1,59,...5,,}

the coordmate variables of the control points @y (L) (")yl,
©x®) From Eq. (16), we have
Ye)
W =R, (). (17)
i

For matrix 5, 6, 7, and 8, merely by substituting “x!

yl, and Vx (R for ¢; and {t1,t5,...t, }, {51,852, ..-5n,} fort
in Eq. (17), we can obtain the values of all the nonzero el-
ements as

e. Matrix 5: Substitute V'x (L for ¢, and {¢1,%s,...2, 1}
for ¢,

f. Matrix 6: Substitute *’

g. Matrix 7: Substitute
for ¢,

h. Matrix 8: Substitute
for ¢.

Following the version of the Levenberg—Marquardt al-
gorithm introduced in Ref. 36, the searching of the opti-
mal parameters is an iterative procedure. In each itera-
tion step the increment of parameters optimized is the
solution of the following linear equations

y. for ; and {t1,to,...t, }fort
x(R) for ¢; and {sl,sz,.

"y, for y; and {S1,S2,...Sp,}

[J(d)I(d) +\I]od = g(d), (18)

where d is the vector containing parameters
{(”) () ("yl, (")xER)}, {t; }, and {S;,}, &d is its increment, g(d)
is 1ts gradient vector, J(d) is the Jacobian matrix illus-
trated in Fig. 2, and \ is a coefficient adjusted in each
step.

Because of the sparsity of the above-mentioned Jaco-
bian matrix, the complexity of the Levenberg—Marquardt
algorithm for our problem is much less than that with a
dense Jacobian matrix. It is not difficult to prove that
[J(d)TI(d)+AI] is a symmetric matrix with O(ni+ng
+m) nonzero elements. To be more exact the number of
nonzero elements is 9(n;+ny) + 12m if each B-spline curve
segment contains an identical number of data points.
Practically the numbers might be slightly different, but it
will not affect the result that [J(d)7d(d)+\I] has O(n,
+ng9+m) nonzero elements. Through O(n;+ny+m) Jaco-
bian transformations, we can convert [J(d)7J(d)+N\I] to a
diagonal matrix. Therefore the running time of the solu-
tion of Egs. (18) will be as O(n{+ny+m). The Levenberg—
Marquardt algorithm usually requires limited iterations.
Thus we can conclude that the complexity of the search-
ing algorithm is O(n{+ny+m) linear. The linear complex-
ity arises from the well-defined formalism in relation (15).

An iterative process needs an initialization that sets up
a starting state for iteration. In our case, assuming that
the end points of image curves have been matched (this
can be simply done using epipolar constraints and dispar-
ity order constraints when image curves are matched), we
apply the following normalized chordal parameterization
to initialize parameters ¢, and sj, in formalism (15):
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S i -pf

\"

where t(, s are small positive values to avoid computa-
tional singularity. This parameterization allocates initial
parameters to data points in the left and right image
curves in the same parameter region while keeping the
continuity of image curves.

Having ¢; and s;,, we can decompose formalism (15)
into the followmg three linear least- squares relations and
estimate the other parameters {(") €L ) ,(")xER '} by stan-
dard linear least-squares techmques

ny m 2
min }( 2 (wyj('f) - E @ iRi,g(th))
m =0

{;,0=0,1,..., J1=1
2
Slwgann) o

ny

m 2
min >, (ij(-f)—z<”)xl(-L)Ri’3(tjl)) , (20b)
=0

«P,i=0,1,..., m}jr=1

ng m 2
min >, (@x;fh}‘,@) RIR, os; )) . (20¢)

&®i=0,1,..., m}jo=1 i=0

The above initialization techniques provide a rough so-
lution for the optimization, and the iterative searching
will refine the solution step by step until a reasonable
precision is achieved judged by the difference between re-
sults in consecutive steps (in our case, less than 1%).

The outcome of the iteration is an estimate of the con-
trol points of the 2D NURBS curves representing the im-
age curves on binocular retinas and the sampling param-
eters assigned to data points in the image curves. From
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the 2D control points obtained and known weights, we
can reconstruct the NURBS representation for the space
curve using the method illustrated in Fig. 1. The sam-
pling parameters in the optimization are locations in the
spline parameter domain that correspond to data points
providing information about reconstruction regions. The
reconstruction regions for the left and right image curve
are [min({¢; }), max({¢; })] and [min({s; }), max({s;s})], re-
spectively. Inside the reconstruction regions recon-
structed curves are interpolated, while outside the recon-
struction regions reconstructed curves are extrapolated.

4. ALGORITHM VALIDATION

We have implemented our algorithm in MATLAB 5.3 and
validated it using both synthetic and real stereo data sets.
The purpose of experimenting with synthetic data is to
demonstrate specifically the strengths of our algorithm by
simulating imperfectly posed conditions such as different
samplings at the two views, noise in the image curve ex-
traction, and discontinuities in the image curves. On the
other hand, experiments with real stereo images, de-
signed with different object geometry and using different
curve extraction methods and different image capturing
devices, help us to investigate the suitability and adapt-
ability of our approach in real-world scenes. All objects ex-
amined in the experiments (both synthetic and real) ex-
hibit true 3D properties. The results have been compared
with those of previous methods when appropriate.

A. Experiments with Synthetic Data

1. Different Samplings
Because of the discrete nature of image pixels, an image
curve can be treated as a projection of a set of points (a

1 1 2
0 0
1 -1

Fig. 3. Simulated space curve.
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Fig. 4. Simulated stereo projections of the curve in Fig. 3.
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sampling) in 3D on a continuous curve. For a stereo pair
of image curves, unless specifically designed, the left and
right image curves are usually cast from different sam-
plings on the 3D curve. Therefore precise point-to-point
correspondence matching can hardly be achieved in its
nature, even without noise in images. In our first experi-
ment, we evaluated our algorithm with simulated image
curves whose data points correspond to different sam-
plings on a 3D free-form curve. To this end, we first gen-
erated a ground-truth curve in 3D using parametric equa-
tions:

X=2cost
Y=2sint te[0,5/47] .
Z=2(t+1)

D(t) ~

Such a curve is truly spatial (nonplanar) as illustrated
in Fig. 3. We sampled this curve uniformly in the param-
eter region by an interval of t;,;= /24, giving 31 sampling
points on the curve. We denoted these parameters by t
=[¢1,...t3;] and the corresponding sampling points by

Y. J. Xiao and Y. F. Li

®(t). We then added Gaussian white noise to t and ob-
tained another parameter set t'=[¢1,...t5;] such that ¢/
=t;+n(0,0y), 1=1,2,...,31, where n(0,0;) denotes Gauss-
ian noise with zero mean and standard deviation o,. We
projected the sampling points ®(t) onto the left retina
and the sampling points ®(t’) onto the right retina in a
virtual parallel stereo configuration, where the projection
matrices of left and right cameras were designed as fol-
lows:

[ " - NN RR-C RN}

©)

Fig. 5. 3D reconstruction from projections in Fig. 4. (a) Point-

based, (b) NURBS-based.

Table 1. Errors of Reconstruction® with Sampling Differences, in Pixels

Noise Levels

Approach 0,=0.1¢;,¢ 0,=0.2t,¢ 0,=0.3tn¢
NURBS-based

0.0072 0.0075 0.0079

0.0151 , 0.0146 0.0160

#34710.00027510 ¢84710.00015031 ¢3470.00030896

0.0038 0.0037 0.0036

0.1361 0.1402 0.1454

0.7078 0.5967 0.5976

€247 (.0042 €2d1=10.0017 €217, 0032

0.1192 0.1214 0.1188

0.0966 0.0990 0.1044

0.4435 0.3654 0.3637

“2dr=\0.0052 “2dr=|0.0022 “2dr=\0.0037

0.0759 0.0733 0.0717

Point-based

0.0280 0.0573 0.0878

0.1018 0.1644 0.3347

¢34=0.0032 ¢34=0.0064 ¢8470.0080

0.0260 0.0437 0.0823

0.1626 0.2257 0.2861

0.5508 1.0227 1.2363

2417100133 €217 0355 €217, 0389

0.1459 0.2009 0.2674

0.1285 0.1764 0.2407

0.4368 0.6986 0.8416

“2dr=\0.0132 “2dr=|0.0322 “2dr=\0 0084

0.0953 0.1278 0.1998

“e3g, ayps €24y denote errors in 3D, left retina, and right retina, respectively.

Each column vector contains the values of mean, maximum, minimum, and SD in descending order.
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Fig. 6. Corrupted stereo projections (o=[0.610.6]7) of the curve in Fig. 3 and the back projections of the reconstructed curve.
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TO=| 0 100 0 O}, T®=| 0 100 0 0
0 0 11 0 0 1 1

If the standard deviation of noise 0;=0, then the point
TE(d(¢;)) on the left retina must be the exact correspon-
dence of the point T®)(d(¢/)) on the right retina, because
®(t;) and ®@(¢;) are the same samplings in 3D. When we
assign a positive value to o,, the sampling difference be-
tween two image curves appears. If we still treat
TE(d(¢;)) and T(R)((D(ti' )) as a stereo pair of correspond-
ing points, an error will occur in the location of the corre-
spondences. Figure 4 illustrates the stereo projections
TE(D(¢;)) and TR (d(¢!)) when o,=0.3t;,.

Using the corresponding pairs TW(d(t;)) and
T(R)(lI)(ti/)), i1=1,2,...,31, we can reconstruct 31 3D points
by triangulation. Figure 5(a) shows a linear interpolation
of these reconstructed points, which makes it easy to vi-
sualize the recovered shape of the curve. It is shown that
the reconstruction result is strongly affected by the sam-
pling difference between the two image curves. The recov-
ered 3D curve is neither smooth nor accurate. In contrast,
with our algorithm a much better result has been
achieved as illustrated in Fig. 5(b). The recovered curve is
almost the same as the original one in Fig. 3, with seven
control points in its NURBS representation.

The quantitative measurements of reconstruction er-
rors, conducted in both 3D and 2D, are listed in Table 1.
Since we know the ground-truth curve in 3D, we can com-
pute closest point distances (CPDs)*" from the recon-
structed curve (in the reconstruction region) to the
ground-truth curve, which reflect proximity of the two
curves. The 2D measurement is conducted in a similar
way, i.e., by computing CPDs from the projections of the
reconstructed curve (in left and right reconstruction re-
gions) to the projections of the ground-truth curve. Table
1 lists four significant statistics of these CPDs, i.e., the
mean values, maximum values, minimum values, and
standard deviations (SD) under noise levels 0;=0.1¢;,,
0.2t;nt, and 0.3¢;,;. Applying the same measurements to
point-based reconstruction results, we obtained the data
listed in the second row of Table 1.

Obviously the NURBS-based reconstruction is over-
whelmingly better than point-based reconstruction in at
least two respects. First, in precision, the maxima,
means, and standard deviations of NURBS-based recon-
struction errors are much smaller than those of point-
based results in both 3D and 2D. Second, in consistency,

ol Original curve
8
7
Reconstructed curve
6
5
4
3
2
2 1 2
0 0
17,

Fig. 7. Reconstructed curve from corrupted stereo projections.

the NURBS-based method achieves a similar quality of
reconstruction results when the samplings of image
curves vary, showing its insensitivity to the sampling dif-
ference, whereas the point-based approach produces re-
construction errors clearly associated with the levels of
sampling differences. Actually in the NURBS-based ap-
proach, optimal positions are assigned to all data points
in terms of sampling parameters on the spline, which are
not necessarily required to be the same at left and right
views, while the point-based approach relies crucially on
the location precision of point correspondences. Therefore
NURBS-based reconstruction is truly “curve-based,”
which means it needs no correspondence and permits
sampling differences between data points in image
curves, while the point-based method is particularly con-
strained to the matching accuracy of data points.

2. Noisy Data

In the second experiment, we validated our algorithm us-
ing image curves corrupted by random noise. Without loss
of generality, we used Gaussian white noise again to
simulate the random noise in curve extraction. Sampling
100 points uniformly along each projected curve of the 3D
curve in Fig. 3 (this means that the interval on the curve
between any pair of adjacent points is identical), we
added 2D Gaussian noise n(0, o) to the coordinate vectors
of these points. In Fig. 6 the jagged curves are the cor-
rupted image curves (o=[0.6 0.6]7). We can observe
many sharp glitches along the image curves that strongly
change the local properties of the curves. If we apply a
point-based approach to this kind of data, accurate point-
to-point correspondences will be extremely hard to find
because of the noise. However, using the NURBS-based
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algorithm, we can obtain an acceptable reconstruction re-
sult as shown in Fig. 7, where the reconstructed curve is
very close to the original 3D curve. The projections of our
reconstructed curve are shown in Fig. 6 as smooth curves,
which obviously fit well to the image curves.

The quantitative analysis of the reconstruction errors
is given in Table 2 using the same measuring method as
that in the first experiment. On the whole the reconstruc-
tion errors are relatively small compared with the noise
levels, as noise is suppressed by the introduction of the
curve model. At the highest noise level (o=[1.0 1.0]7),
the mean of reconstruction errors in 2D is about
0.2 pixels, while the induced noise reaches about 1.0 pixel
in each image axis on average. The quantitative data also

Table 2. Errors of Reconstruction® with Corrupted
Data, in Pixels

Noise Level esq eoqr eodr
o=[02 0.2]" 0.0119 0.1952 0.1354
0.0286 |, 0.7812 0.5549
0.0020 0.0083 0.0041
0.0043 0.1558 0.0995
o=[0.4 04]" 0.0162 0.1968 0.1361
0.0721 0.7687 0.5596
0.0028 0.0049 0.0130
0.0198 0.1486 0.1042
o=[0.6 0.6]7 0.0260 0.1924 0.1777
0.0892 0.8090 0.5555
0.0028 0.0164 0.1009
0.0198 0.1272 0.0260
o=[0.8 0.8]" 0.0483 0.1901 0.1839
0.1575 0.8186 0.5280
0.0029 0.0105 0.0179
0.0398 0.1498 0.0987
o=[1.0 1.0]" 0.0674 0.2069 0.2086
0.4081 0.7834 0.5885
0.0091 0.0255 0.0267
0.0639 0.1704 0.1470

Y34, €1 €24, denote errors in 3D, left retina, and right retina, respectively.

"Each column vector contains the values of mean, maximum, minimum, and SD
in descending order.
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show that the reconstruction errors in 2D exhibit no sign
of an apparent increase when stronger noise is induced,
indicating the stability of our algorithm in randomly-
posed noisy conditions according to our reconstruction as-
sumption: finding the 3D curve which best fits the 2D im-
age data. The 3D reconstruction errors appear to increase
as noise increases. The reason is that the stronger noise
will cause larger stereo ambiguity around curve parts
parallel to epipolar lines. We will explain the stereo am-
biguity further in the experiments with real stereo im-
ages below.

3. Fragmented Curves
Fragmented curves commonly occur at the early-vision
processing stage of real images as a result of deficiencies
of both image data and curve extraction methods, which
indeed brings considerable difficulty to the reconstruc-
tion. As it is based on the NURBS curve model, our algo-
rithm can potentially deal with this problem to a certain
extent. Figure 8 illustrates a pair of stereo images of the
3D curve in Fig. 3 that consist of data points uniformly
sampled on the exact projections of the curve with some
parts missing. Each missing part is randomly selected
from an original projection with its length being 1/10 of
the whole length of the projected curve. We assume that
we still know the order of curve segments in the frag-
mented curves. For instance, we know fragments 1, 2, and
3 in Fig. 8(a) are successive segments of an image curve.
Feeding our algorithm with such fragmented image
curves, the result is a continuous and smooth curve as
shown in Fig. 9, which resembles rather accurately the
original 3D curve in Fig. 3. As our algorithm reconstructs
a curve as a whole and retains the continuity of data
points, missing parts in one image curve can be compen-
sated for by the corresponding parts in the other image
curve. Table 3 lists the quantitative reconstruction errors,
which clearly remain quite low in both 3D and 2D cases.

We compared the result with that of the B-spline-based
approach? (in second row, Table 3), which also recon-
structs a curve as a whole. It is clearly seen that the re-
construction error level of the NURBS-based method is
significantly lower than that of the B-spline-based ap-
proach, indicating that the NURBS model represents (in-
terpolates and extrapolates) data points more accurately
than the B-spline approach in the fragmented case.

The above three experiments with synthetic data re-
vealed certain strengths of our method: It is not sensitive
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Fig. 8. Broken stereo projections of the curve in Fig. 3.
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Fig. 9. Reconstructed curve from data in Fig. 8.

Table 3. Errors of Reconstruction® with
Fragmented Data, in Pixels

Approach €34 €241 €24dr

NURBS-based

0.0077 0.1999 0.1330
0.0148 b 0.5455 0.5226
4.9422 X 1070005 0.0014 0.0012
0.0039 0.1805 0.1070
B-Spline-based
0.5812 2.3153 1.2288
1.1926 6.3277 2.4278
0.0087 0.0450 0.0199
0.4052 1.7830 0.6562

“e34, €rap €2qy denote errors in 3D, left retina, and right retina, respectively.

"Each column vector contains the values of mean, maximum, minimum, and SD
in descending order.
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to different samplings in stereo images, it works reason-
ably well in noisy conditions, and it has the potential for
recovering missing parts of measured curves.

B. Experiments with Real Images

The purpose of experiments with real data is to examine
the suitability and adaptability of the approach in real-
world scenes. In the experiments we have used two
groups of real stereo images acquired from different sub-
jects in different scenes at different times using different
stereo capturing devices. In the first experiment, the im-
aging device used was a narrow-baseline stereo head con-
sisting of two B/W cameras calibrated with the projection
matrices identified as follows:

(162 03 45 —1455.9]
TO-| 1 -166 25 773.7
~03 -02 -1 5381

’

(161 03 44 -20426]
TR _|_04 —165 2.6 980.8
03 -02 -1 5103

The objects of interest are the boundaries of the three
vanes of a fan model (Fig. 10), which exhibit true 3D free-
form properties suitable for our tests. Each of these three
curves was modeled by a NURBS curve with 23 control
points from image curves extracted using the Canny op-
erator. Figure 11 displays the reconstructed curves at
three orthogonal views. Curves 1, 2, and 3 are the 3D con-
tours of the three vanes that appear from the bottom
counter clockwise in the stereo images. The back projec-
tions of the reconstructed curves to the binocular retinas
are displayed as curves marked by white x’s in Fig. 10,
where we can clearly see that the reconstructed 3D
shapes of the fan-vanes produce projections that fit well to
the image contours of the fan. In sharp contrast, when we
applied straight line primitives for 3D reconstruction, we
obtained the much cluttered result shown in Figure 12 at
the same orthogonal views, indicating again the appropri-

(b)

Fig. 10. Real stereo images of a fan model and back projections of the reconstruction result.
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Fig. 11. Reconstructed curves of the fan model.
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Fig. 12. Reconstructed line segments of fan model in Fig. 10.

ateness of choosing NURBS as shape representation and
computing a curve as a whole for reconstructing 3D, free-
form curved objects.

As there is no ground-truth curve in this experiment,
we measure only quantitative reconstruction errors of the
back projections in 2D, listed in Table 4. The measure-
ments are distances between data points in image curves
and their corresponding points on the projected NURBS
curves (the spline parameter for each data point is known
after reconstruction). We use the same four statistics
(mean, maximum, minimum, and standard deviation) to
represent the distances. In order to prove our hypothesis
that the NURBS-based approach is superior to the
B-spline-based approach,?® we conducted the same ex-
periment with the latter approach using the same quan-
titative measurements and compared the results of the
two approaches.

The statistical data in Table 4 reveal the difference be-
tween the reconstruction results obtained from the two
approaches. While the NURBS-based method yield sub-
pixel level reconstruction errors with the largest error in
all six projected curves of less than 1.1 pixels and the av-
erage CPD less than 0.22 pixels, the B-spline-based ap-
proach produces pixel level reconstruction errors with the
largest error as much as 9.5 pixels. The relatively large
reconstruction errors in the B-spline-based approach are
due mainly to the nonotimized sampling parameters and
the affine approximation of perspective transformation.
In the NURBS-based approach, on the other hand, the
sampling parameters are optimized and a fully perspec-
tive camera model is adopted, which dramatically reduces
the reconstruction errors.

Careful readers might notice the small distortion occur-
ring in the reconstructed curve 1 shown in Figs. 11(b) and
11(c). The distortion is caused by stereo ambiguity, which
arises when part of an image curve overlaps an epipolar
line [see the horizontal white line just above the bottom of

Fig. 10(a)]. In such a condition, the variation of a recon-
structed 3D curve on an epiolar plane will yield no change
in its projections on the binocular retinas. Such an ambi-
guity is due to the nature of triangulation itself, and it
can be dealt with by introducing more constraints in the
optimization framework.

In the second experiment, the stereo images in Fig. 13
were taken by a B/W camera mounted on a manipulator’s
end effector at two different positions at different times.
The projection matrices in such a stereo configuration
were calibrated as

(25465 1.6975 -14.6749 90.1389
TL=| 2.8606 219431 0.5021 -6414.6|,
| -0.0176 0.0065 - 0.0022 1

[ 8.3536 -1.3601 8.5493 - 4096.7
T® =|-2.1115 -17.6109 0.9637 4891.9
| 0.0127 -0.0052 —0.0065 1

The objects of interest were two wires bent in complex
shapes in 3D space. Our purpose was to reconstruct the
curves representing the skeletons of the wires. We applied
a NURBS curve model with 13 control points for the short
curve and 23 control points for the long curve. The image
curves were extracted using region segmentation and
skeleton extraction techniques.38 The reconstructed
curves using our approach are shown in Fig. 14, and their
back projections to two binocular retinas are displayed as
curves marked by white x’s in Fig. 13. It is evident that
the result visually exhibits a quality similar to that in the
experiment with the fan model.

The quantitative reconstruction errors of the back pro-
jections of the bentwire objects using our approach and
the B-spline-based approach are listed in Table 5 (the
short and long curves are labeled as curve 1 and curve 2,
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Table 4. Reconstruction Errors® of the Fan Model,

in Pixels
Approach Curve 1 Curve 2 Curve 3
NURBS-based
0.2095 0.2129 0.0592
0.8384 |, 1.0026 0.4045
“2di%10 0016 | “*7(0.0054| °*7|0.00070460
0.1872 0.1700 0.0677
0.1957 0.2304 0.0696
_|o0.6801 _|0.8392 | 0.3640
€2r=10 0023 | “2|0.0028| “2|0.00030307
0.1541 0.1813 0.0744
B-Spline based
2.2089 1.8797 1.8849
4.9437 4.3470 9.5069
€21%10.0005 | 27 |0.0130 2170 0268
1.7267 1.9866 2.2086
1.9709 1.7997 1.7864
4.5874 4.5549 9.5556
€2r=10 0158 | “24~|0.0037 “2dr=10 0140
1.5445 2.0025 2.2680

“esq15 €24, denote errors in left retina and right retina, respectively.

"Each column vector contains the values of mean, maximum, minimum, and SD
in descending order.

(@

Fig. 13. Stereo images of bent wire objects and the back projections of the reconstructed curves. (a) Left image, (b) right image.
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respectively), where the NURBS-based approach still
achieves subpixel accuracy compared with the rather
large reconstruction errors in the B-spline-based ap-
proach, basically reproducing the results of our first ex-
periment.

It is also worth mentioning that in the above two ex-
periments with real data, the imaging devices, the stereo
configurations, the image curve extraction methods, and
the shapes and sizes of objects are all different from each
other. Nevertheless, the NURBS-based method does not
show significant difference in the quality of the results.
This fact points up the potential suitability and adapt-
ability of the approach in real applications.

Figures 15 and 16 illustrate residual errors in the it-
erative processes of the above two experiments with real
data. Obviously the iterative processes converged at very
high rates. In a few iteration steps, the resulting residual
errors dropped to a very low level and remain virtually
unchanged thereafter. This observation reveals that the
objective function formulated in our optimization has a
sharp slope around the optimal solution. The Levenberg—
Marquardt approach can then quickly follow the slope to
find the solution zones.

Figure 17 illustrates the change of control points in the
optimization for one curve (curve 2 in Fig. 10(a)). The
dashed curve is the image curve, and the circles are con-
trol points of the NURBS curve that represent it. The
traces of control points are depicted as the short curves in
the upper left-hand corner of Fig. 17(b), with the initial
positions represented by crosses. From the enlarged part
of the curve in Fig. 17(a), we can clearly see that the
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Fig. 14. Reconstructed curves of bent wire objects.
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change of control points is large in the first few steps—
especially in the first step—and afterwards the control
points remain stable. This result agrees with the observa-
tion drawn from Fig. 15. Moreover, the overall domain of
change of control points is relatively small compared with
the size of the whole image, implying that the normalized
parameterization for data points can provide roughly ac-
ceptable results (with pixel level reconstruction errors
that are only as large as those of the B-spline-based
method as given in Tables 4 and 5) and serve as good ini-
tialization of sampling parameters in the optimization. It
should also be noted that in the above real-world experi-

Table 5. Reconstruction Errors® of the Bent Wire
Objects, in Pixels

Approach Curve 1 Curve 2

NURBS-based

0.3079 0.3663

_[0.8992 |, | 1.4299

2= 0007 €217\ 0014

0.1993 0.2815

0.2657 0.3467

0.8835 1.9214

®24r=10.0019 “2dr=10 0004

0.2013 0.2849
B-spline based

4.8211 2.5231

44.9963 8.8661

2= 0 0447 2417 0.0040

8.9624 1.6836

3.4315 2.4030

34.3148 11.8237

2dr=| 0 0409 2dr=| 9 0139

4.8338 1.9952

“erap €24, denote errors in left retina and right retina, respectively.

b . . .
“Each column vector contains the values of mean, maximum, minimum, and SD
in descending order.
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ments, all objects chosen are of a true 3D nature, showing
the capability of our algorithm of reconstructing 3D free-
from curves from images, while our method can certainly
also be applied to planar objects, as NURBS is a unified
representation of curves.

5. CONCLUDING REMARKS

In this paper, we have presented a scheme to reconstruct
a NURBS representation of a 3D, free-form curve directly
from its stereo images. Previously, curve-based stereo re-
construction methods were either restricted to planar al-
gebraic curves or constrained to an affine camera model.
Our approach advances such technique by allowing both
entirely 3D free-form curves and a perspective camera
model while requiring no point-to-point correspondences.

Based on the perspective invariance of the NURBS rep-
resentation, we have deduced constraints on a stereo pair
of projections of a space NURBS curve and formulated the
reconstruction into an optimization framework. Through
its smooth representation of curves, NURBS leads to the
shape parameters of the NURBS model and sampling pa-
rameters for the data points being globally differentiable
in the energy function, thereby permitting the use of
derivative-based optimization techniques in the recon-
struction. While the algorithm needs no explicit point cor-
respondence, the data points themselves are actually
matched to optimal positions on the NURBS curves.

Our experiments revealed that the approach is able to
reconstruct 3D curves from their images on digital retinas
arbitrarily sampled and permits randomly-posed noise
and partial missing data while yielding much better re-
sults than the B-spline-based method. With the same
number of control points, the NURBS-based approach
achieved subpixel accuracy of reconstruction, whereas the
B-spline-based method achieved only pixel-level preci-
sion.

The NURBS-based reconstruction framework can be
applied to various vision applications where curve pat-
terns construct the major information cue to understand
the 3D scene, e.g., surface reconstruction from structured
lights. NURBS representation imposes no constraint on
curve shapes, therefore suiting a large range of curve-
based applications, particularly in natural environments.
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Fig. 15. Residual errors with iterations in reconstructing curves of fan model.
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Fig. 16. Residual errors with iterations in reconstructing curves of bent wire objects.
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Fig. 17. Trace of control points in the optimization of curve 2 in Fig. 10(a).

Addressing the full implications of NURBS in shape mod-
eling is beyond the scope of the research here; the inter-
ested readers can refer to the latest literature®*° to
study other issues such as the selection of the number of
control points.

Finally, noting that the current scheme constructed in
the sheer least-squares measure does not resolve stereo
ambiguity (as illustrated in Fig. 10), we are considering
accommodating more constraints, e.g., structural con-
straints, in our NURBS-based optimization framework to
improve further the reconstruction quality.

APPENDIX A: PROOF OF THEOREM 2

Let C(t)=[X(),Y(#),Z(#)]T denote a 3D NURBS curve. Its
2D projection ¢(t)=[x(¢),y(¢)]T can be expressed by func-
tions of the 3D control points V; and weights W; as fol-
lows, using Egs. (1), (3), and (5):

m Vl' m Vl‘
x(t)= 2 Tl[ . }Ri,ku) > Ts[ . }Ri,ka)
i=0 i=0

oo | Vi S | Vi
Y =2 Tz{ . }Ri,ku) > T3[ . ]Ri,km
i=0 i=0

where T4, Ty, T3 are row vectors in the perspective pro-
jection matrix and R; ;(¢) are rational basis functions.

Simultaneously multiplying the numerator and de-
nominator of the right side of the first equation of the
above equation array by a factor of =7, W;B; (t), the fol-
lowing equation results:

x(0)=2 Tl[ . ]Wl-Bi,km > Tg{ . ]WiBi,k(n.
i=0 =0

Thus

|V
mll

v, \'Z
Tg[ ]WL-Bi,k(n > Tg[ }WiBi,ku).
i=0 Vi 1 1

i=0
Similarly, we can deduce the following equation for y(¢)
from the second equation of the equation array:

m

13

T,

Y=
=0 T3

13

v, v,
7 T3[ . ]Wl-Bi,ku) > Tg{ . }WlBi,k(t).

1=0

v
| 1
V]
L 1 .
Let v;=T(V;) and wi=T3[‘;‘]Wi. The above two equations
can then be rewritten in a vector form:
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m m
c(t) =2, w;v;B; ,(t) > w;B; ;(t)
i=0 =0

Vi
w; = WiT3 1 .

Obviously, the projected curve ¢(¢) is a NURBS curve with
control points of v; and weights of w;.
Theorem 2 is thus proved.
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