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Abstract. When a randomly perturbed dynamical system is subject to some constraints, the
trajectories of the system and the noise-induced most probable transition pathways are restricted
on the manifold associated with the given constraints. We present a constrained minimum action
method to compute the optimal transition pathways on manifolds. By formulating the constrained
stochastic dynamics in a Stratonovich stochastic di↵erential equation of the projection form, we
consider the system as embedded in the Euclidean space and present the Freidlin-Wentzell action
functional via large deviation theory. We then reformulate it as a minimization problem in the
space of curves through Maupertuis’ principle. Furthermore we show that the action functionals
are intrinsically defined on the manifold. The constrained minimum action method is proposed to
compute the minimum action path with the assistance of the constrained optimization scheme. The
examples of conformational transition paths for both single and double rod molecules in polymeric
fluid are numerically investigated.
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1. Introduction. A large number of interesting behaviors of randomly per-
turbed dynamical systems are closely related to rare but important transition events
between metastable states. Such rare events play a major role in chemical reactions,
conformational changes of biomolecules, nucleation events and the like. Theoretical
understanding of such transition events and transition paths has attracted a lot of
attentions for many years [13, 9]. The classic model is the following Ito stochastic
di↵erential equation (SDE) in Rn with small noise amplitude

(1.1) dX
t

= b(X
t

) dt +
p

"�(X
t

) dW
t

.

In Eqn (1.1), the solution X
t

is Rn-valued, b is a vector field Rn

! Rn, � is a
matrix-valued function Rn

! Rn⇥m, and W is an m-dimensional standard Brownian
motion. The drift term b(x) could be the gradient of a potential energy function or
have a rather general form. The di↵usion matrix �(x) is assumed uniformly non-
degenerate. b and � satisfy the regular smoothness conditions such as the global
Lipschitz continuity and boundedness conditions.

According to the large deviation principle (LDP) developed by Freidlin and Wentzell
[9], in the asymptotic regime of vanishing noise " # 0, the most probable transition
pathway in the time period [0, T ] between metastable states can be described through
the minimizer of the following Freidlin-Wentzell action functional,

(1.2) S
T

[�] =
1

2

Z

T

0
k��1(�)(�̇ � b(�))k2

2 dt,
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for a non-degenerate square matrix �. Based on this principle of least action, some
numerical methods, such as the Minimum Action Method (MAM) and its adaptive
version [8, 25], have been proposed and developed for a fixed time interval [0, T ] of
interest. Another di↵erent formulation of the Freidlin-Wentzell theory, based on the
Maupertuis’ principle [14], is the geometric Minimum Action Method (gMAM) on the
space of curves [10]. The path given by the gMAM can be viewed as the minimum
action path of the original Freidlin-Wentzell action for an optimal T . In the special
case that b(x) = �rV (x) and �(x) ⌘ I, where V is a potential function and I is the
identity matrix, the minimum action path is minimum energy path and the string
method [7] is applicable to identify this path.

In practical applications, the dynamics of the system of concern may be subject
to one or more constraints, such as the constant length of rigid molecules [5], the con-
servation of mass [24, 15], or more general constraints [4]. These constraints restrict
the system to live in a particular manifold M ⇢ Rn, determined by all the constraints.
Even when the stochastic perturbation is applied, the resulting stochastic system still
has to satisfy these physical constraints. Based upon this consideration, it is natural
and interesting to investigate the rare events occurring on manifolds. The following
problems are fundamental to be addressed in the first step. What is the suitable
mathematical setup for the rare event study on manifolds? How to characterize the
most probable transition path? If one embeds the considered stochastic dynamics
on a manifold in the ambient space, does the resulting formulation depend on the
choice of embedding? How to design the e↵ective path-finding algorithm with the
obtained results? The aim of this paper is to answer these questions and present
some preliminary numerical studies for some simple models.

We first outline our methodology and major points of this paper. There is an in-
trinsic formulation of the SDE on a Riemannian manifold, and one could “translate”
the classic Freidlin-Wentzell LDP in Euclidean space to this manifold case, however
the abstractness of this formulation hinders its practicability. We actually start from
a stochastic system in Rn with drift b and di↵usion � subject to independent (deter-
ministic) constraints {c

k

(x) = 0} through Lagrange multipliers. By explicitly solving
these Lagrange multipliers in the stochastic version, we derive an SDE in the ambient
space but in the projection form, which elucidates the connection between the con-
strained SDE form and the projection form. This connection is a generalization of
similar results studied in [4], but with a more transparent proof. With this connection,
we obtain an SDE described by the projected drift ⇧b and the degenerate di↵usion
⇧� for a projection operator ⇧ from Rn to the tangent bundle. And this SDE indeed
lives on the manifold with the unique drift eb = ⇧b and the di↵usion e� = ⇧�. By using
the generalization of the Freidlin-Wentzell LDP in the degenerated di↵usion case, we
derive the specific forms of action functionals by introducing the generalized inverse of
the projection operator ⇧. Moreover, we prove that our results of the action function-
als only depend on ⇧b and ⇧�, not on their extensions and the embedding in Rn. We
also derive the geometric formulation of the action functional on the space of curves
and the Euler-Lagrange equation that the minimizing path must satisfy. We find that
in the gradient case, i.e., b = �rV and � = I, the projection-type string method
works [6], while in general cases, the direct application of existing pathway finding
approaches with projection does not apply. We instead propose our constrained geo-
metric minimum action method in the ambient space. In a nutshell, we present the
basic mathematical setup and investigate some essential ingredients for the study of
rare events on manifolds, and demonstrate a viable numerical approach to compute
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the optimal transition path.
The paper is organized as follows. We first discuss the stochastic di↵erential

equation on manifolds and the abstract form of the Freidlin-Wentzell action functional
in the corresponding setup in Section 2. In Section 3, we develop our model and
discuss about the variational characterization of transition paths and the issue of
embeddings following the idea we mentioned above . Section 4 is devoted to the
discussion of the numerical methods — the constrained minimum action method.
The applications to liquid crystal models are presented in Section 5, where we study
the conformational transitions for rod molecules on S2 (unit sphere) and S2

⇥ S2. In
Section 6, we show some possible extensions to general bead-rod chain systems. The
summary is in Section 7. The detailed technical proofs and some discussion about
the comparison of di↵erent action functionals are left in the appendix.

2. SDE and large deviation principle on manifolds. We first give an intro-
duction to the formulation of describing the SDE on a Riemannian manifold and the
formal extrapolation of the classic Freidlin-Wentzell theory for this manifold setting.
The SDE on the manifold is most conveniently written in the following Stratonovich
sense [12],

(2.1) dX
t

= b(X
t

) dt +
p

"
L

X

k=1

�
k

(X
t

) � dW k

t

on a compact di↵erentiable d-dimensional manifold M without boundary. Here X 2

M, the drift and di↵usion b(x) and �
k

(x) belong to T
x

M, the tangent to M, and
{W k

}

L

k=1 are independent Wiener processes on R. We assume the non-degenerate
condition for di↵usion,

dim span{�
k

(x)}L

k=1 = d, 8x 2 M.

For the Brownian motion on Riemannian manifold (b = 0 and � is the orthogonal
projection operator related to the Laplace-Beltrami operator. See, e.g., [12]), [11]
proved the LDP for short time limit and gave the rate function. The minimizing
path of this rate function for the Brownian motion is the minimizing geodesics on the
manifold from starting point to ending point. For the SDE case rather than Brownian
motion, we here formally “extrapolate” the existing result on the Freidlin-Wentzell
LDP in Euclidean Rn to the manifold case. It will be shown later that we eventually
work on the SDE in the ambient space and use the corresponding LDP for Euclidean
case.

Under certain regularity conditions on b and �
k

, we can write, as least in a formal
way, the rate function (or action functional) for Eqn (2.1) when " # 0 as

(2.2) S
T

[�] =

Z

T

0
L(�, �̇) dt,

when � 2 AC([0, T ];M), “AC” meaning absolutely continuous functions. Otherwise,
S

T

[�] = +1. Here �̇ is the time derivative d�/ dt. The Lagrangian in Eqn (2.2)
L : M⇥ TM ! R is defined as

(2.3) L(x, y) :=
1

2

⌦

a�1(y � b(x)), y � b(x)
↵

,
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where h·, ·i is the dual product between the cotangent space T ⇤
M and the tangent

space TM. Eqn (2.3) can be treated as 1
2ky � b(x)k2

M where the norm in TM,
kykM :=

⌦

y, a�1y
↵

, is induced by the inverse of the non-degenerate a(x) = �(x)⌦�(x).
Remark 1. Note that the type (0, 2) covariant symmetric tensor field

m

X

k=1

�
k

⌦ �
k

2 T 2
0M

can also be viewed as a mapping

a :=
m

X

k=1

�
k

⌦ �
k

: T ⇤
M �! TM

by fixing its first or second argument [2]. From the non-degenerate condition, we have

that the mapping a is bijective, thus its inverse a�1 : TM ! T ⇤
M is well-defined.

Remark 2. The classic Freidlin-Wentzell LDP is formulated for the Ito stochas-

tic di↵erential equation. So, it appears that the action functional, Eqn (2.2) and (2.3)
would only correspond to the SDE (2.1) interpreted in Ito sense. Indeed, the LDP

action functional, Eqn (2.2) and (2.3), still have the exactly same expression no mat-

ter (2.1) is in Ito sense or Stratonovich sense, because the LDP here is for the limit

" # 0. We use Eqn (1.1) in Euclidean space to elaborate this point. Consider the

following SDE with the same form of drift and the di↵usion as the Ito Eqn (1.1), but
in Stratonovich sense:

(2.4) dX
t

= b(X
t

) dt +
p

"�(X
t

) � dW
t

.

We know Eqn (2.4) is equivalent to the following Ito SDE,

(2.5) dX
t

= b"(X
t

) dt +
p

"�(X
t

) dW
t

,

where b"

i

(x) = b
i

(x) + "

2

P

n

j=1

P

m

k=1
@�

ik

(x)
@x

j

�
jk

(x). By [9] or [3], if b"

! b uniformly

in maximum norm as " ! 0, for example, when � and its derivative are uniformly

bounded for the situation here, then the Ito SDE (2.5) (equivalently, the Stratonovich

SDE (2.4)) and the Ito SDE (1.1) share the same large deviation result with the same

rate function (1.2) .

Therefore, under mild conditions, it is valid to take limit " # 0 for the "-dependent
drift function first to have an "-independent drift for the use of the action functional

in Freidlin-Wentzell LDP.

There is a conjugate relation between the Lagrangian and the Hamiltonian for the
underlying large deviation principle. The Hamiltonian corresponding to Eqn (2.3),
H : M⇥ T ⇤

M ! R has the following form

H(x, p) := hp, b(x)i +
1

2

m

X

k=1

hp, �
k

(x)i2

We show that Eqn (2.3) is indeed the Legendre transformation of the Hamiltonian,
i.e.,

(2.6) L(x, y) = sup
p2T

⇤M
{hp, yi � H(x, p)} .
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To show this, we calculate the critical point of (2.6)

(2.7) y =
@H

@p
= b(x) +

m

X

k=1

hp, �
k

(x)i�
k

(x)

to get the optimal p⇤(x, y) = a�1(y � b(x)). Plugging this p⇤ into the right hand side
of Eqn (2.6), we immediately see that Eqn (2.6) holds. In addition, we have that
p⇤(�, �̇) is equal to the generalized momentum defined as @L

@y

(�, �̇) = a�1(�̇ � b(�)).

We also have that along a path �, H(�, p⇤(�, �̇)) = 1
2k�̇k

2
M �

1
2kb(�)k2

M.

The geometric action functional Ŝ for the SDE (2.1) on the manifold M can also
be formally generalized as for the Euclidean case in [10] by using the Maupertuis’
principle (§44, [14]), which says that the geometric action (also called abbreviated

action) is the following line integration of the generalized momentum along a curve
� = {'(↵) : ↵ 2 [0, 1]} on M,

Ŝ['] =

Z

�

hp⇤, d'i ,

with the constraint H(�, p⇤) ⌘ 0. In the case of (2.1) here, p⇤ = a�1(�̇ � b(�))
where �(t) is the t-parametrization of the curve �. Write '0 = d'

d↵

. Note that
H(�, p⇤) ⌘ 0 gives that k'0

kM
d↵

dt

= kb(')kM. Thus, p⇤ = a�1
�

'0 d↵

dt

� b(x)
�

=

a�1
⇣

'

0

k'

0kM
kb(')kM � b(x)

⌘

. Thus, we have the geometric action functional for (2.1)

(2.8) Ŝ['] =

Z

�

⌦

a�1 (⌧(')kb(')kM � b(x)) , d'
↵

,

where ⌧ = '0/k'0
kM is the normalized tangent. It is clear that (2.8) is invariant for

specific parametrization of the curve �.

3. Action functional for constrained SDE . The abstract formulation in
Section 2 is intrinsically defined for a Riemannian manifold M. However, for real
applications, the SDE of interest is usually written in an ambient space, say Rn, sub-
ject to some constraints, such as the example of polymer chain in Section 6. Thus
the resulting trajectories of the SDE lie in the submanifold immersed in Rn. For the
deterministic dynamics subjected to imposed constraints, one of the traditional ap-
proaches is to introduce the Lagrange multipliers. By explicitly solving the Lagrange
multiplier from the constraints, one can obtain a new dynamical flow in ambient space,
but naturally living on the submanifold determined by the constraints. This flow on
the submanifold is equivalent to projecting the original flow onto the tangent space
of the submanifold.

We shall take the similar approach to model the problem of the “constrained SDE”
and show the equivalence of the Lagrange multiplier approach and the projection
approach. The purpose here is to rigorously derive the correct form of the “projected
SDE” embedded in the ambient space. After we derive this SDE in the projection
form, we treat it as an SDE in the ambient space with degenerate di↵usion, from
which we carry out the study of the action functional in LDP.

3.1. Constrained SDE in ambient space. Consider a stochastic dynamics
written as an Ito SDE in Rn

(3.1) dX = b(X) dt + �(X) dW
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subject to p = n � d independent constraints c
j

(X) = 0, j = 1, . . . , p.
To incorporate these constraints, we introduce the Lagrangian multipliers µ =

(µ1, . . . , µp

)T, as well as the Jacobian of the constraint functions

(3.2) G(x) =

0

B

B

B

@

(rc1(x))T

(rc2(x))T

...
(rc

p

(x))T

1

C

C

C

A

2 Rp⇥n and M(x) = G(x)GT(x) 2 Rp⇥p.

The matrix M can be considered as a metric matrix in the normal space spanned
by {rc

j

(x)}. The independence of the constraints amounts to the condition that
M�1(x) exits for any x. Now we consider the constrained SDE of the form

dX = b(X) dt + GT(X) dµ + �(X) dW,(3.3)

where the Lagrange multiplier µ is described by

dµ = ↵(X) dt + �(X) dW.(3.4)

The driving Brownian motion W in (3.3) and W in (3.4) are the same. The functions
↵(x) 2 Rp and �(x) 2 Rp⇥n above will be determined by the constraints such that the
solution X

t

to (3.3) and (3.4) satisfies c
j

(X
t

) ⌘ 0, 8j, 8t � 0 as long as c
j

(X0) = 0.
The calculations by using Ito lemma show the following result.

Theorem 3.1. The functions ↵ and � in Eqn (3.4) for the Lagrange multipliers

have the form

(3.5) ↵ = �M�1
h

Gb +
1

2
r

2c : (BBT )
i

and

(3.6) � = �M�1G�,

where B = GT� + �, and (r2c : (BBT))
i

:=
P

n

j,k,m=1(@jk

c
i

)B
jm

B
km

.

If the primitive di↵usion coe�cient � satisfies the condition that

(3.7) a(x) := �(x)�(x)T = ✓(x)I,

where ✓ is a positive scalar, then Eqn (3.3) is equivalent to the following Stratonovich

SDE

(3.8) dX = P (X)
⇣

b(X) dt + �(X) � dW
⌘

,

where

(3.9) P = I � GTM�1G

is the orthogonal projection onto the tangent space of the manifold arising from the

constraints:

M = {x 2 Rn : c
j

(x) = 0, j = 1, . . . , p} .

The action of the projection operator P in Eqn (3.8) is understood in the Stratonovich

sense.
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If a = ��T is not a scalar matrix, then the Stratonovich projection form (3.9) is
generally not true. But for the vanishing noise limit, we still have the following result.

Corollary 3.2. If the term �(x) in (3.3) is replaced by

p

"�(x), then the con-

strained SDE (3.3) (3.4) can be transformed to

(3.10) dX = P (X)

 

⇣

b(X) + h(X, ")
⌘

dt +
p

"�(X) � dW

!

where kh(x, ")k ⇠ O("). The proof of this corollary is straightforward by direct
calculations using (3.5) and (3.6). The h term above actually comes from the F1 term
in the proof of Proposition 3.1. Since the action functional is unchanged if the term
h(x, ") is taken out in Eqn (3.10), due to the same argument in Remark 2, we can
use Eqn (3.8) to study the transition path problem, regardless of the condition (3.7).
It should be noted that for finite noise, Eqn (3.8) and Eqn (3.10) are di↵erent SDEs,
although they share the same rate function at the large deviation level.

3.2. SDE embedded in ambient space . We have shown the transformation
of an Ito-SDE in the ambient space subject to constraints into a projection form by
introducing the orthogonal projection operator P . In comparison to the deterministic
case, the Lagrange multiplier µ carries information of both the drift b and the di↵usion
�. Therefore, the drift of the resulting SDE (3.10) has additional term from the
di↵usion �, except that ��T is a scalar matrix. Since we here are only interested in
the transition pathways of these SDEs and the large deviation rate functions are the
same if the drift terms in these SDEs only have an order O(") perturbation, we can
study Eqn (3.10) by taking out the extra h term,which is the following projected SDE

(3.11) dX = P (X)
⇣

b(X) dt +
p

"�(X) � dW
⌘

In what follows, we shall view this SDE in projection form as an extension in Rn of
the SDE intrinsically defined on manifold as in Section 2.

Assume that a d-dimensional closed Riemannian submanifold M is a submanifold
in the ambient Euclidean space Rn (n > d) by isometric embedding. The Rieman-
nian metric on M is naturally induced by Euclidean metric in Rn. We consider the
following Stratonovich SDE intrinsically defined on M (Eqn (2.4))

(3.12) dX = eb(X) dt +
p

"
n

X

k=1

e�
k

(X) � dW k

t

,

where eb and e�
k

, M ! TM, are vector fields on M and the driving Brownian motion
{W k : k = 1, . . . , n} is the standard Brownian motion in Rn. e�(x) := [e�1, . . . , e�n

] is
a linear mapping Rn

! T
x

M for each x 2 M, and is assumed to be non-degenerate
on M; that is

span {e�
k

(x) : k = 1, . . . , n} = T
x

M, 8x 2 M.

Write ea(x) := e�(x)e�(x)T. The non-degeneracy of e� implies that ea(x) is positive
definite and invertible as a linear mapping from T ⇤

x

M to T
x

M.
A special case of (3.12) is the Brownian motion, in which, by [12, Thm 3.1.4],

eb = 0|M and e�
k

= P
k

, the orthogonal projection of the standard orthonormal basis
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on Rn onto the tangent bundle TM. Let P be corresponding orthogonal projection
matrix from Rn to TM, i.e., P (x) = [P1(x), . . . , P

n

(x)] then the solution of dX =
P (X) � dW :=

P

n

k=1 P
k

(X) � dW k is the Brownian motion on M.

Extending eb(x) and e�
k

(x) in Eqn (3.12) arbitrarily to the ambient space x 2 Rn,
we can identify the equation (3.12) on M as the following extrinsic SDE on Rn,

(3.13) dX = ⇧

 

b(X) dt +
p

"
n

X

k=1

�
k

(X) � dW k

t

!

,

where ⇧ = ⇧
x

is a projection matrix (not necessarily orthogonal matrix) from Rn to
T

x

M. The tangent space T
x

M is now identified as Img(⇧
x

), a d-dim subspace of Rn.
The subindex of the projection ⇧ is sometimes dropped out henceforth if there is no
ambiguity. With probability 1, if the initial condition X0 = x 2 M, the solution of
Eqn (3.13) X

t

is always on the manifold M for any time t > 0.
By identifying b̃ in (3.12) as a vector field on Rn, we require that

⇧(b(x)) = eb(x), 8x 2 M.

Let � := [�1, · · · , �
n

]. We assume that � is non-degenerate in Rn, i.e.,

span {�1, . . . , �n

} = Rn.

Then we further require that

⇧�(x) = e�(x)

for all x on M with the same range space T
x

M. When � is identity matrix in Rn,
the di↵usion term is ⇧ � dW , corresponding to the Brownian motion on M.

The equation (3.13) is the same as (3.11) if the manifold M is determined by the
p = n � d independent constraints; however, in Eqn (3.13) we do not assume that ⇧
must be orthogonal projection, although the results can be further simplified if ⇧ is
indeed orthogonal.

Next, we give some comments to emphasize that ea indeed induces a metric on
Img(⇧) = T

x

M. Since ea(x) = e�(x)e�(x)T and a(x) = �(x)�(x)T, then

(3.14) ea(x) = ⇧a(x)⇧T, 8x 2 M.

Note that ea is a linear mapping from Rn to Img(⇧) with the same kernel space as e�T

and ⇧T. Thus, for any v 2 Img(⇧), there is a unique vector ev in Img(⇧) such that the
linear equation eaev = v holds. For such a ev, we have vTev = evTeaev � 0 and the equality
evTeaev = 0 holds if and only if ev = 0. Thus, we can define ea-norm on the subspace
Img(⇧) as follows

(3.15) kvkea :=
p

hv, evi =
p

vTev

Formally we can write ev = ea�1v, then kvkea =
p

hv,ea�1vi. Here h·, ·i is the Eu-
clidean inner product of Rn. Meanwhile, ea-inner product is also induced as hw, viea =
⌦

ea�1w, v
↵

=
⌦

w,ea�1v
↵

. For the special case that a(x) = I and ⇧ = ⇧T (orthogonal
projection), eav = ⇧v = v for any v 2 T

x

M and thus both ea and ea�1 are I|
T

x

M, the
identity mapping restricted on T

x

M.
The vector field eb and the di↵usion tensor ea uniquely define a unique SDE (3.12)

on M. We extended the domains of eb and ea to b and a respectively by introducing the
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projection ⇧ to have an equivalent SDE (3.13) embedded in the ambient space. By
viewing this projection-form SDE (3.13) as an Rn-valued SDE in the ambient space,
we can study its LDP and action functional. Obviously, the extended b, a and the
choice of ⇧ are not unique in the ambient space. Will the LDP result and the action
functional obtained from the ambient space depend on the non-unique extensions of
b(x) and a(x)? We next show that the answer is no and the final result of the action

functional of Eqn (3.13) only depends on the intrinsic flow eb (i.e., ⇧b) and the ea-norm
on M.

3.3. Action functional. Eqn (3.13) on Euclidean Rn has degenerate di↵usion
restricted in T

x

M, a subspace of Rn. The classic Freidlin-Wentzell theory [9] for the
non-degenerate case is not directly applicable. TheFreidlin-Wentzell LDP result has
been generalized for the degenerate case. Refer to [3, 1, 20] and the literature therein.
Under certain mild assumptions for ⇧b and ⇧� (sublinear growth, locally Lipschitz
continuity in Rn, etc.), it follows from [3] that the LDP of Freidlin-Wentzell estimate
holds with the rate function given by

(3.16) S[�] =

Z

T

0
L(�, �̇) dt = inf

f2L

2([0,T ];Rn)

(

1

2

Z

T

0
kfk2 dt : �̇ � ⇧b(�) = ⇧�f

)

,

if � 2 AC([0, T ],Rn) and S[�] = +1 otherwise. Here ⇧ = ⇧
�(t) and �̇ = d�/ dt is

the time derivative. The norm kfk is the 2-norm in Rn. (3.16) implies that for any
path with finite action, its velocity �̇ must lie in Img(⇧), which is just the tangent
bundle TM. Let the two ends of the path be fixed at two given points A and B on
M, i.e., �(0) = A and �(T ) = B. Then �̇ 2 TM implies that the path with finite
action must be in the following admissible set

A = {� 2 AC([0, T ];M) : �(0) = A, �(T ) = B} ,(3.17)

which is equivalent to

(3.18) A

0 =
n

� 2 AC([0, T ];Rn) : �̇ 2 Img⇧
�

, �(0) = A, �(T ) = B
o

.

The Lagrangian L(x, y) : M ⇥ TM ! R in (3.16) has the following form by
introducing u = �f(t) for each t,

(3.19) L(x, y) = min
u2Rn

,⇧u=y�⇧b(x)

1

2
kuk2

a

.

Recall that a(x) = �(x)�(x)T is non-degenerate and positive definite in Rn and
kuk

a

:=
p

uTa�1(x)u for u 2 Rn. So (3.19) is a quadratic programming and the
solution u is unique in general. The following result relates the above minimization
problem to the ea-norm we defined before.

Proposition 3.3. For any vector v 2 T
x

M, we have that

(3.20) min
u2Rn

,⇧u=v

kuk2
a

= kvk2
ea

where ea is defined in (3.14) and k · kea is defined in (3.15). In addition, the optimal

u⇤ = a⇧T
ea�1v. Furthermore, if ⇧T = ⇧, then u⇤ = aea�1v.
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Proof. Write ev := ea�1v. By the definition of ea and ea�1, we have eaev = ⇧a⇧T
ev = v.

Introduce l := u � a⇧T
ev, then ⇧l = 0. We have that

kuk2
a

= uTa�1u = (l + a⇧T
ev)T(a�1l + ⇧T

ev)

= klk2
a

+ evT⇧l + lT⇧T
ev + evT⇧a⇧T

ev

= klk2
a

+ vTev = klk2
a

+ kvk2
ea  kvk2

ea.

So the conclusion holds and the optimal solution is u⇤ = a⇧T
ev.

The following theorem is a direct consequence of the above result.
Theorem 3.4. The Lagrangian (3.19) is equivalent to

(3.21) L(x, y) =
1

2
ky �

eb(x)k2
ea.

So, the Lagrangian (3.19) and the action functional are independent of the embedding

in the ambient space.

Following Section 2, we have that the corresponding Hamiltonian for (3.19) is

(3.22) H(x, p) = h⇧b(x), pi +
1

2

�

��(x)T⇧Tp
�

�

2
,

where h·, ·i and k · k are the inner product and 2-norm of Rn, respectively. To that
verify (3.22) is the Legendre transformed L, we use the duality theory of optimization
and shall show that for any fixed x 2 M and y 2 T

x

M,

L(x, y) = sup
p2Rn

⇣

hy, pi � H(x, p)
⌘

= sup
p2Rn

✓

hy � ⇧b(x), pi �
1

2
k�(x)T⇧Tpk2

◆

.
(3.23)

The Lagrange function L : Rn

⇥Rn

! R associated with the constrained optimization
problem for the variable u in Eqn (3.19) is as follows

L(u, �) =
1

2
kuk2

a

� h�, ⇧u � y + ⇧b(x)i

where � 2 Rn is the Lagrange multiplier. The dual function g(�) = min
u2Rn

L(u, �).
Straightforward calculation for this minimization shows g(�) = L(a⇧T�, �) = �

1
2k�

T⇧T�k2+
h�, y � ⇧b(x)i. Since the strong duality holds for the quadratic programming in (3.19),
we have that L(x, y) = sup

�2Rn

g(�), which is exactly (3.23) by identifying p as �. It
is not di�cult to show that for finite L(x, y), the optimal p⇤ in (3.23) is in Img(⇧).
So, the Hamiltonian H(x, p) in (3.22) is finite for x 2 M and p 2 T

x

M and is equal
to �1 otherwise.

By the duality theory, we also have that

(3.24)
@L

@y
= p⇤, and u⇤ = a⇧Tp⇤

where u⇤ is the minimizer of (3.19). It is also observed that p⇤ is the unique solution
(in Img(⇧)) of ãp⇤ = y � ⇧b(x) since ⇧a⇧Tp⇤ = ⇧u.
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3.4. Geometric action functional on M. The geometric formulation of the
action function, developed in [10], does not involve time explicitly but allows the
variation of the time interval. If we consider the original formulation of Freidlin-
Wentzell theory as an analogy of Lagrangian mechanics for the trajectory of a particle,
then the geometric action functional in [10] corresponds to the Maupertuis’ principle
(§44, [14]) for the curve along which the particle travels.

In the next, we consider the geometric action functional Ŝ for the SDE (3.13)
on the manifold M. Suppose that a curve � on M is parametrized as � = '(↵),
with ↵ 2 [0, 1], for instance, ↵ being the normalized arc length parameter. Then the
geometric action functional is the following line integration along �

Ŝ['] =

Z

�

hp, d'i

subject to the constraint H(', p) = 0, where p = @L/@y(', '̇) is the generalized
momentum, L is the Lagrangian defined in (3.23) and '̇ is the time derivative. By
Eqn (3.24), this generalized momentum satisfies eap = y � ⇧b(x), and

(3.25) p = ea�1('̇ � ⇧b(')).

So, Ŝ has the following expression:

Ŝ['] =

Z

⌦

ea�1('̇ � ⇧b(')), d'
↵

=

Z 1

0

⌦

ea�1('0� � ⇧b(')), '0↵ d↵,

where the scalar-valued function � := d↵/dt 2 [0, +1] is the change of variable
between the physical time t and the arc length ↵. Here '̇ = d'/ dt is the time deriva-
tive and '0 = d'(↵)/ d↵ is the tangent vector of the curve for the ↵-parametrization.
To derive the expression of � in terms of ' and '0, we use the condition that the
Hamiltonian along the path is constant zero [10, 14] as well as the formula for p in
Eqn (3.25):

H(', p) =
1

2
h'̇ + ⇧b('), '̇ � ⇧b(')iea =

1

2
k'̇kea �

1

2
k⇧b(')kea = 0.

Since '̇ = '0�, the above equation gives the important quantity

(3.26)
d↵

dt
= � =

k

ebkea
k'0

kea
.

Therefore, we obtain the expression of Ŝ for ' 2 A,

Ŝ['] =

Z 1

0

*

ea�1

 

'0 k
ebkea

k'0
kea

� ⇧b(')

!

, '0

+

d↵

=

Z 1

0
k

eb(')keak'
0
kea �

D

eb('), '0
E

ea
d↵.

(3.27)

This expression can also be obtained from the time-parametrized SM
T

in (7.7) by using
Eqn (3.26). Proposition 7.3 allows us to write Eqn (3.27) equivalently in the following
a-norm

Ŝ['] =

Z 1

0
k⇧�1

eb(')k
a

k⇧�1'0
k

a

�

D

⇧�1
eb('), '0

E

a

d↵.(3.28)
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We remind that ⇧�1
eb = ⇧�1⇧b is not equal to b.

The Euler-Lagrange equation for the geometric action functional Ŝ can be ob-
tained directly from the variational calculus or by using (3.26) to transform the Euler-
Lagrange equation for SM

T

into arc-length parametrized form. For the same curve
� = {�(t) : t 2 [0, T ]} = {'(↵) : ↵ 2 [0, 1]}, where d↵/dt = � is given by Eqn (3.26),
the following general result holds for the Fréchet derivativeof two functionals SM and
Ŝ

�Ŝ

�'
= ��1 �SM

T

��
.

Thus, by Eqn (7.13) and (3.26)

(3.29)
�Ŝ

�'
= ��1

✓

�ep0� �

eJT
ep +

1

2
(eaep) ⌦ (eaep) : r(ea�1)

◆

where ep = ea�1(�0� �

eb).

We finish this section by presenting a spherical manifold case which will be used
later.

Example 1 (Sphere Sd

). Using the result in Example 3, we have the form of the

action functional SM
T

in Eqn (7.6)

SM
T

[�] =
1

2

Z

T

0

�

�

�

�̇ � ⇧b(�)
�

�

�

2

a

�

⌧

�

k�k
a

, �̇ � ⇧b(�)

�2

a

dt.

Note that the first term is exactly S1
T

of Eqn (7.9), so SM
T

[�]  S1
T

[�]. Likewise, we

have the expression of the geometric action function Eqn (3.28) in this case, which is

Ŝ['] =

Z 1

0

r

⇣

k⇧bk2
a

� h⇧b, 'i2
a

/k'k2
a

⌘⇣

k'0
k

2
a

� h'0, 'i2 /k'k2
a

⌘

� h⇧b, '0
i

a

+ h⇧b, 'i
a

h'0, 'i
a

/k'k2
a

d↵.

4. Constrained Minimum Action Method. The least action principle is to
solve the following constraint minimization problem (Eqn (7.6))

inf
�2A

SM
T

[�] = inf
�2A

1

2

Z

T

0

�

�

�

⇧�1(�̇ � ⇧b)
�

�

�

2

a

dt.

and the geometric version (Eqn (3.28))

inf
�2A

Ŝ['] = inf
�2A

Z 1

0
k⇧�1⇧bk

a

k⇧�1'0
k

a

�

⌦

⇧�1⇧b, '0↵
a

d↵.

The Euler-Lagrange equations have been derived in Section 3. Thus, in prin-
ciple, the minimum action paths can be calculated by any numerical optimization
solver, such as the steepest descent dynamics. In the next, we briefly discuss many
practical aspects of this computational problem. Many of them have already been
investigated in the context without constraints during the developments of minimum
action method [8, 25, 10, 23, 22, 21]. Some of these techniques are quite important for
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large-scale problem. The consideration of the constraints in the constraint minimum
action method will also be discussed in detail.

Firstly recall that one of our motivations for the manifold case is for the constraints
specified by the non-degenerate constraint functions c

k

(x) = 0, k = 1, 2, . . . , n � d,
as discussed in Proposition 3.1. Thus the manifold M = {x 2 Rn : c

k

(x) = 0, k =
1, 2, . . . , n�d} and the projection ⇧ is the orthogonal projection P = I�GT(GGT)�1G
in Eqn (3.9). The inverse of ea appearing in Euler-Lagrange equation can be calculated
via a�1⇧�1 as shown in Proposition 7.2. The explicit formula for ⇧�1 is usually
solved from its definition. The basis vector for the space Ker(⇧

x

) is ⇠
k

= rc
k

(x).
The explicit formula of ⇧�1 under a-norm can be expressed in terms of ⇠

k

= rc
k

,
following the same procedure as in Proposition 7.6. We also mention that when the
local coordinate representations for ea�1 are conveniently available for some special
problems, the corresponding local coordinate form for the action functional Eqn (7.6)
and Eqn (3.28) can be derived and used to have a standard nonlinear optimization
problem without constraints.

The first thing to consider in any numerical scheme for the action function-
als Eqn (7.6) and Eqn (3.28) and their Euler-Lagrange equations Eqn (7.13) and
Eqn (3.28) respectively is the “spatial” discretization for t or ↵. For Freidlin-Wentzell
action functional Eqn (7.6), the path to compute is represented as � = (�0, �1, �2, . . . , �N

)
for a given time mesh grid 0 = t0 < t1 < t2 . . . < t

N

= T such that �
i

⇡ �(t
i

). It
is important to maintain a good parametrization for the path in the configuration
space to ensure good accuracy; thus, the idea of adaptive minimum action method
(aMAM) in [25] should also be applied here. The aMAM uses the moving mesh
method to redistribute the time mesh grid {t

i

} when the current mesh grid does not
meet certain criteria, for instance, when the ratio max

i

k�
i+1 � �

i

k/ min
i

k�
i+1 � �

i

k

exceeds some threshold (1.5 ⇠ 5 in practice). The aMAM solves an 1D elliptic equa-
tion to obtain the numerical mapping between the time t 2 [0, T ] and a new variable
↵ 2 [0, 1] (similar role for the arc-length parameter in some sense, but more flexible).
The key element in this moving mesh strategy is the monitor function w, which is
typically chosen as k�̇k to achieve arc-length parametrization for the discrete path.
The alternative choice with similar e↵ect is to choose w(t) = kb(�)kea by noting that

the minimum path satisfies k�̇kea = k

ebkea for zero-valued Hamiltonian. The flexibility
of selecting other types of the monitor function w caters for other needs, for example,
including the second derivative k@2

↵

�k�1 in w to place more points in regions of high
curvature.

Besides the redistribution of the mesh grid, the first and second derivative of the
path can be calculated by the finite di↵erence method as aMAM [25] did or by more
advanced spectral element method proposed in [22] to achieve higher accuracy.

For the geometric minimum action method (gMAM) to solve Eqn (3.28), the curve
� is represented by ('0, '1, . . . , 'N

), and the above “spatial” discretization methods
are all applicable in this geometric setting. Likewise, the progress of the path evolution
will eventually deteriorate the mesh quality. Thus it is equally important as in aMAM
to check the ratio max

i

k'
i+1 �'

i

k/ min
i

k'
i+1 �'

i

k and perform reparametrization
by interpolation when necessary.

For the calculation of the arc length of the curve '(↵), it may be more natural to
use the geodesic distance on M to define the arc length, but it is practically convenient
to just use the Euclidean arc length. If the number of discrete images in representing
the curve is su�ciently large, these two choices of the distance between neighboring
images measured by geodesic or Euclidean metrics would not give much di↵erence.
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After the temporal mesh or arc length mesh is redistributed, the interpolation
can be implemented by the cubic spline interpolation like in [8, 25]. Since for the non-
gradient system, the path usually has a sharp corner on the basin boundary, the high
curvature there would decrease the interpolation accuracy. The well-known WENO
interpolation is quite a feasible and e�cient method to handle the discontinuous sec-
ond derivative (w.r.t arc-length ↵ or the ↵ variable in aMAM).

In the end, we discuss the issue of how to take care of the constraints. We select
a numerical scheme for the constrained nonlinear optimization, say, the augmented
Lagrangian method [18], which requires the input of objective function, constraint
functions, and their gradients. In our constrained minimum action method, the objec-
tive function is the discretized version of the action functional S[�0, �1, . . . , �N

] where
�0 = A, �

N

= B are given on M. The derivative of the objective function is calcu-
lated by Fréchet derivative of the action functional, i.e., the Euler-Lagrange equation
(unconstrained version on Rn). The constraints are c

k

(�
i

) = 0 for all k = 1, . . . , n�d
and i = 1, . . . , N�1, totally (n�d)(N�1) constraints. Their gradients can usually be
derived analytically for specific problems; otherwise, the derivative-free optimization
solvers have to be used. The augmented Lagrangian method solves the constrained
problem by sequentially solving unconstrained problems

min
�

 

S[�] �
X

k,i

�
ki

c
k

(�
i

) +
µ

2

X

ki

c2
k

(�
i

)

!

and updating the Lagrange multipliers �
ki

and the penalty factor µ. When path
is parametrized in time, then the above S is SM

T

. During solving this constrained
optimization problem for a given mesh grid in [0, T ], the mesh quality will be checked
and when the adjustment for the mesh is needed, the mesh will be redistributed and
the path after interpolation will be used as the initial guess for the constrained discrete
optimization problem associated with the updated time mesh grid. When using the
geometric action functional Ŝ, the arc-length distribution of the discrete images on
the curve can be achieved in an alternative approach, rather than using interpolation
in the above aMAM idea: we furthermore impose N � 1 constraints for arc-length
parametrization requirement: k'

i+1�'
i

k

2 = k'
i

�'
i�1k

2 for i = 1, . . . , N�1. In this
way, the initial curve does not have to be exactly on the manifold or even arc-length
parametrized to satisfy all the constraints. The augmented Lagrangian method will
take care of both types of constraints. The calculations in the next section for our
examples of interest in this paper are implemented by calling MATLAB’s “fmincon”
subroutine and incorporating the above two types of constraints.

One can also use the projected steepest descent dynamics to solve the constrained
optimization problem. That is to solve the Euler-Lagrange equation, i.e.,

@
⌧

�(⌧, t) = �⇧
�S

��
.

This requires that the initial guess of the path �(0, ·) should satisfy the constraints
{c

k

= 0}. The projection ⇧ is explicitly placed on the right hand side to suppress the
“spatial” discretization error amounting to small deviation from the tangent space.
However, the ⌧ -discretization will also bring a small deviation from the manifold,
even when the force at ⌧

n

is exactly on the tangent space. Thus, it is favored to
bring e�(n+1) = �(n)

� �⌧ · (⇧ �S

��

)(n) back to the manifold exactly so that the obtained

�(n+1) is on M. This can not be done via the projection ⇧ on tangent space and
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indeed it may be quite challenging for certain problems. But sometimes, for the
examples in our following section where the manifold is typically a sphere Sd, this
procedure is quite easy and a simple normalization x ! x/kxk works well. For general
situations, [6] o↵ered a proposal of using the implicit scheme for ⌧ in developing the
constrained string method. A similar idea is to introduce components in normal
space, span {rc

k

}, to correct the error from �⌧ : to look for �1, . . . , �n�d

such that

c
k

(�(n+1)) = c
k

⇣

e�(n+1) + �
j

rc
j

(�(n))
⌘

= 0 for all k. Overall, both of these methods

eventually brings some overhead of solving nonlinear equations for �(n+1).
The last comment is about the choice of the initial path. Like any optimization

problem, the choice of good initial path is essential to find global minimizer and this
is the biggest di�culty for many practical problems with multiple local minimizers.
The general strategy we used for path-finding problems is to explore the configuration
space by using the minimum action method with simple guesses such as straight
lines. With a more clear understanding about the invariant structures such at saddle
points, heteroclinic orbits, etc., some new initial guesses can be proposed to try in
hope of new information of configuration space. These two tasks actually benefit each
other. Usually, by this recursive procedure, one can both gain deep insights of the
configuration space and obtain the path whose action is as small as possible. The
details for specific examples can be found in the next section or the previous work
[23].

5. Examples. In this section, we apply the constrained minimum action method
to study the transition pathways for the motion of one class of liquid crystal molecules.
This type of macromolecules are usually modeled as rigid rods so the configuration
space for each rod is S2. More realistic models such as general bead-rod-spring models
have more complex intrinsic constraints for the molecular configurations; the details
are well explained in Chapter 5 of reference [19]. The rigid rod model we are studying
here is the typical building block for those chain models.

X

rigid rod

shear

Fig. 1: Rigid rod polymeric model in shear flow. The length of the directed vector X
is one.

Typically, there are many equilibrium states for the molecular configurations.
Depending on the interaction between molecules, there could be some spontaneously
preferred directions X for the molecules. In many cases where the ensemble statistics
is of interest, the direction X and �X is undistinguished due to symmetry. But at
microscopical level, each individual configuration does switch between the symmetric
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two metastable states X and �X. When these macromolecular polymers are added
into solvent (Figure 1), then the mixed solution has interesting hydrodynamic and
rheological features di↵erent from the Newtonian fluid. The study of complex fluid
mainly focuses on macroscopic quantities of polymeric fluid, such as viscoelasticity.
However, the change of macromolecular configurations at the microscopic level due
to thermal fluctuation and fluid shear is of its own interests, in particular when these
macromolecules, for instance liquid crystals, are directly responsible for some physical
mechanisms in practice such as color control for display devices.

In the following, we present two examples to understand the transition paths
in the rigid rod model. In the first example, we study the single rod molecule with
quadratic potential in shear flow. Due to spherical symmetry, any linearly stable state
X has a symmetric stable one �X. The transition from X to �X corresponds to the
flip over process of the rod molecule. How the shear rate impacts this flip over process
is of our interest. Our second example includes two rods with interaction between
them. This is the simplest case for the weakly interaction particle system [16]. To
see how the anisotropic di↵usion tensor play roles in transition path, we artificially
assign two di↵erent di↵usion coe�cients, �1 and �2, for the two rods and investigate
the e↵ect of the ratio �2/�1 on the transition pathways. Although the di↵usion
coe�cient (i.e., temperature) of two molecules seem to be the same in physical reality,
our manipulation of anisotropic noise in this model produces some interesting results,
which could be instructive in the general case of the state-dependent noise �(x) and
may be quite useful when the precise control of noise size for each individual rod (or
two groups of rods) is possible.

Lastly, we remark that we only report the results from the constrained minimum
action method based on the geometric action formulation. Thus, the objects we
calculated are curves in the phase space. The pathways from the constrained Freidlin-
Wentzellaction functional are consistent with these results when the underlying time
interval is su�cient large.

5.1. Flip over process of one rigid rod . Consider a unit sphere S2 in R3.
X = (X1, X2, X3) 2 R3. Let V : R3

! R be the potential energy with symmetry
V (x) = V (�x) and W

t

be a Brownian motion in R3. Write the normal vector n(x) =
x/kxk 2 S2. The motion of the rod molecule in consideration is described by the
following equation,

dX = (I � n(X)n(X)T)

✓

(�rV (X) + K0X) dt +
p

" � dW
t

◆

where K0 is the matrix of the shear rate tensor in the Cartesian coordinate.
Here the noise is isotropic and the manifold M is S2. The geometric action

functional in Eqn (3.28) is reduced to

Ŝ['] =

Z 1

0
k⇧�1⇧b(')kk⇧�1'0

k �

⌦

⇧�1⇧b('), '0↵ d↵

=

Z 1

0
k⇧b(')kk'0

k � h⇧b('), '0
i d↵

(5.1)

where k'(↵)k = 1 for all ↵.
We assume the following quadratic form of the external potential function V

(5.2) V (x) =
3
X

i=1

1

2
µ

i

x2
i

, where µ3 > µ2 > µ1 > 0.
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The two local minima of V on S2 are e

(1) = (1, 0, 0) and �e

(1) = (�1, 0, 0); the two
local maxima are e

(3) = (0, 0, 1) and �e

(3) = (0, 0,�1); the saddles are e

(2) = (0, 1, 0)
and �e

(2) = (0,�1, 0). In the example below, we simply set (µ1, µ2, µ3) = (1, 2, 3).
For the quadratic potential Eqn (5.2), the SDE then becomes the following form

(5.3) dX = (I � n(X)n(X)T)(KX dt +
p

" � dW
t

)

where K = diag{µ1, µ2, µ3} + K0. We consider two forms of shear rate matrix K0

corresponding to di↵erent directions of the shear flow.

5.1.1. Shear flow: example 1. We first consider the following shear flow where
x1 is the stream-wise direction, x2 is the shear-wise direction and x3 is the span-wise
direction. So it is assumed that

(5.4) K0 =

2

4

0 �̇12 0
0 0 0
0 0 0

3

5 .

Here the shear rate �̇12 is a constant parameter.
The deterministic drift flow on S2 is Ẋ = (I �nn

T)KX. The fixed points of this
flow are the following three vectors on S2

n

(1) = (1, 0, 0)T,

n

(2) = (��̇12, µ2 � µ1, 0)T/
q

�̇2
12 + (µ2 � µ1)2,(5.5)

n

(3) = (0, 0, 1)T,

and their symmetric counterparts �n

(i), i = 1, 2, 3. In total, there are three pairs of
fixed points. Since µ3 > µ2 > µ1 > 0 in the quadratic potential (Eqn (5.2)), we can
derive the following linear stability results for infinitesimal perturbations. The pair
±n

(1) is linearly stable (classified as sink and denoted as si+ and si�, respectively)
with two stable eigen directions e

(2) and e

(3). The pair of ±n

(3) is linearly unstable
(classified as source and denoted as so+ and so�, respectively). The pair of ±n

(2) is
saddle point (denoted as sa+ and sa�, respectively) with one stable eigen direction
e

(3) (the unstable eigen direction relies on �̇12). The separatrix on the unit sphere
between the two sources si+ and si� is the great circle of S2 in the plane spanned by
sa± and so±.

The introduction of the shear rate in form of Eqn (5.4) only a↵ects the orientation
of the saddle point (Eqn (5.5)). The positive value of shear rate �̇12 has the e↵ect of
rotating the saddle direction n

(2) counterclockwise (looking down from x3-direction,
i.e., vertical direction). The negative �̇12 gives the opposite rotation direction.

We are concerned with the flip over process of the rigid rod, i.e., the transition
between two symmetric stable fixed points si+ = n

(1) and si� = �n

(1). The minimal
action for this transition is related to the frequency of this process ( / exp(� inf S/")
[9]). The smaller the minimal action, the more frequently the rod flips between two
stable states.

To resolve all possible minimizers of the variational problem inf
'2S2 Ŝ['], the

initial guesses of the path should be carefully constructed. The idea of setting initial
guess is as follows. Since on the separatrix between si+ and si�, there are four fixed
points, so± and sa±. We then construct the di↵erent initial paths passing through
these points, respectively. In consideration of the symmetry for the case of so±, we
only need to test three di↵erent initial guesses, which give three di↵erent local minima
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of the action functional Ŝ. As a result, the obtained three minima correspond to the
minimal actions from si+ to saddles sa�, sa+, and so� (or so+), respectively. The
minimum among these three minimized actions gives the global optimum and thus
corresponds to the correct transition path between si� and si+. Refer to Figure 2 for
the plot of these three actions when the shear rate is varied. This evidence shows that
the shear of the flow field lowers the global minimum of the action, hence increase the
flip over frequency. At a high shear rate, the frequency could be so large that the rod
molecule would oscillate between the direction si� = �n

(1) and si+ = n

(1).
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sa−
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Fig. 2: The minimum actions (vertical axis) for three paths from si+ to sa�, sa+ and
so±, respectively.

Among the obtained three paths from di↵erent initial guesses, the global minimum
is the one passing the saddle sa� or sa+, depending on the direction of the shear, i.e.,
the sign of �̇12. These paths are one of semi great circles entirely in the x1-x2 plane.
Figure 3 shows the global minimum action path starting from si+ for �̇12 = 0, 1,�1.
For instance, when �̇12 > 0, the saddle sa� (the solid black line) is shifted closer to
si+ so that it takes less action for the system to escape from si� to the separatrix by
selecting this saddle sa�. A similar picture holds for negative �̇12 where the saddle
sa+ (the dashed black line) is shifted closer to si+.

5.1.2. Shear flow: example 2. Next we study the transitions with the follow-
ing shear rate tensor

K0 =

2

4

0 0 �̇13

0 0 0
0 0 0

3

5 .

The fixed points for this K0 become

n

(1) = (1, 0, 0)T,

n

(2) = (0, 1, 0)T,

n

(3) = (��̇13, 0, µ3 � µ1)
T/
q

�̇2
13 + (µ3 � µ1)2.
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(a) shear rate �̇12 = 0.

(b) shear rate �̇12 = 1.0

(c) shear rate �̇12 = �1.0

Fig. 3: Global minimum action paths for di↵erent shear rates. The two symmetric
flip-over paths passing sa� are shown in white and black, respectively.
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and si� = �n

(1) and si+ = n

(1) are sinks, sa� = �n

(2) and sa+ = n

(2) are saddles,
so� = �n

(3) and so+ = n

(3) are sources. The heteroclinic orbits among these
fixed points are similar to the previous example in §5.1.1: They are the great circles
connecting the neighboring fixed points. The separatrix between si+ and si� is also
the great circle in the plane of sa and so. The di↵erence from the example in §5.1.1 is
that now the shear rate a↵ects the location of the sources so± while the saddles sa±
are unchanged.

Again, we are interested in the transition from si+ to si� and shall examine
the minimum action paths with di↵erent initial guesses which pass through the fixed
points so�, so+ and sa±, respectively. Figure 4 shows the minimum actions for these
three paths. From this figure, we can observe that a larger shear rate deceases the
actions both to the saddle and to the source. However, there is a competition between
these two local minima of the action. When the shear rate is small, the path passing
the saddle is the global solution. But when the shear rate is very large, the calculation
shows that the action to the source can be slightly smaller than the one to the saddle
so that the transition state changes from the saddle to the source. This suggests that
there is a bifurcation point of the parameter �̇⇤

13 (around 1.9 for this example in our
calculation) for the patterns of the global minimum action path.
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Fig. 4: The minimum actions for three paths from si+ to so�, so+ and sa± (either
sa� or sa+ since the minimal actions are the same due to symmetry), respectively.
When �̇13 passes the critical value �̇⇤

13 ⇡ 1.9, the global minimum path changes from
passing o sa to passing so�, i.e., the transition state changes from sa to so�. The
right panel is the zoom of the left panel for a window near �̇13 = 2.

The above conclusion can be better understood if we plot the global minimum
action path for �̇13 = 1 and 2 in Figure 5. The positive value of shear rate �̇13 has
the e↵ect of tilting the unstable fixed point so+ = n

(3) (the solid red line) counter-
clockwisely in the x1-x3 plane (looking from �x2-direction). Such tilts will pull so�
(the dashed red line) towards si+ (the solid blue line) and push so+ away from si+.
However, when the shear rate is not strong, this push is not significant enough to beat
the action of the path through the saddle sa± (the pair of curves shown in Figure 5a
). When �̇13 continues to increase by passing the critical value �̇⇤

13, the shear-induced
tilt will become strong enough to lower the action to reach so� significantly so as to
become a global solution.

In summary, when the shear of the fluid a↵ects the unstable fixed points so± of the



FINDING TRANSITION PATHWAYS ON MANIFOLDS 21

(a) shear rate �̇13 = 1.0. (b) shear rate �̇13 = 2.0

Fig. 5: Global minimum action paths for di↵erent shear rates. (a): The transition
path from si+ to si� through sa� and its symmetric mirror are both shown. (b) The
path is the semi-circle in the plan spanned by so and si (x1-x3 plane) . The initial
guess of the path in the minimum action method is the path in Figure 5a.

molecular configuration on S2, the competition of the minimum action paths passing
through the saddle sa± or through the source so± would generate a bifurcation of
the patterns of the global path. The same phenomena have been observed before,
for instance, in some planer (non-gradient) system [17]. For real problems, the shear
rate tensor K0 may be the combination of the above two examples we have studied;
from the analysis above, we expect that the similar bifurcation of the pathways could
happen for di↵erent size of the shear rate. It is also generally believed that the shear
would lower the global minimum action, thus increase the flip over frequency.

5.2. Flip over of two rigid rods . Here, we study a slight generalization of
the previous studied single rod case, a toy model of two interactive rigid rods. Let
X1,X2 be the directed unit vector of two rods. We consider the following stochastic
dynamics on S2

⇥ S2,

(5.6)

(

dX1 = (I � n1n
T
1 )(�rV (X1) dt �r

x1U(X1,X2) dt + �1
p

✏ � dW 1),

dX2 = (I � n2n
T
2 )(�rV (X2) dt �r

x2U(X1,X2) dt + �2
p

✏ � dW 2),

where n
i

= X

i

/kX
i

k, i = 1, 2. �1 and �2 are two positive constants. Here U(x1,x2) :
S2

⇥ S2
! R describes the interactions of these two rods. One common choice of this

potential U is the following Maier-Saupe potential

(5.7) U(x1,x2) = A sin2(✓ � ✓0)

where ✓ is the angle between x1 and x2 (Figure 6), A is a positive number and ✓0 is
the preferred angle. We assume ✓0 = 0 without loss of generality.

The model we are studying in Eqn (5.6) has no e↵ect of shear flow and is a re-
versible system when �1 = �2. In the following, we are interested in how di↵erent
values of the ratio �2/�1 a↵ects the transition paths. First we give the action func-
tional form for this example. We write the path as a pair ' = ['1, '2] 2 R3

⇥ R3.
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X1

X2

U(X1, X2)

✓

Fig. 6: Two rigid rods with interaction potential U .

Denote b(') = [b1('), b2(')] 2 R3
⇥ R3 where b

i

(') = �rV ('
i

) � r

x

i

U('1, '2)
corresponds to the rod i. The geometric action functional (3.28) for Eqn (5.6) thus
has the following form

(5.8) Ŝ['] =

Z 1

0

s

kb1k
2

�2
1

+
kb2k

2

�2
2

s

'02
1

�2
1

+
'02

2

�2
2

�

hb1, '0
1i

�2
1

�

hb2, '0
2i

�2
2

d↵.

The constraint is k'1k = k'2k = 1.

We choose the quadratic potential as in the previous example of one rod. V (x) =
x

TKx/2. Here K = diag{µ1, µ2, µ3} where µ1 < µ2 < µ3. Next, we show the
following property of the drift flow of Eqn (5.6) on S2

⇥ S2 for the weak strength of
the interaction.

Proposition 5.1. If the coupling constant A in the potential Eqn (5.7) satisfies

(5.9) A <
1

4
min
i 6=j

|µ
i

� µ
j

|

hold, then all fixed points of the deterministic drift flow of Eqn (5.6) are the following

36 points

(±e

i

,±e

j

), i, j = 1, 2, 3,

where e

i

is the unit eigenvector of K for eigenvalue µ
i

, for instance e1 = (1, 0, 0).
Moreover, the four points (±e1,±e1) are stable (classified as sink), the four points

(±e3,±e3) are unstable (classified as source) and other fixed points are all saddles.

Proof. It can be verified that any fixed point (x1,x2) must satisfy the following
equations

�Kx1 + 2A hx1,x2ix2 � 2A hx1,x2i
2
x1 + (xT

1 Kx1)x1 = 0,(5.10)

�Kx2 + 2A hx1,x2ix1 � 2A hx1,x2i
2
x2 + (xT

2 Kx2)x2 = 0,(5.11)

kx1k = kx2k = 1.(5.12)

If hx1,x2i = 0, Eqs. (5.10) and (5.11) suggest x1 and x2 must be unit eigenvectors
of K corresponding to distinctive eigenvalues, respectively. It gives 24 fixed points
(±e

i

,±e

j

) for i 6= j in this case.
If hx1,x2i 6= 0, Eqs. (5.10) and (5.11) together imply that hx1,x2i (xT

1 Kx1 �

x

T
2 Kx2) = 0, or, xT

1 Kx1 = xT
2 Kx2 = �. Furthermore, by considering (5.10) ± (5.11),
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stable points S2
⇥ S2 (✓1, ✓2) saddle points S2

⇥ S2 (✓1, ✓2)

si1 (e1, e1) (0, 0) sa1 (e2, e1) (⇡/2, 0)
si2 (e1,�e1) (0, ⇡) sa2 (e1, e2) (0, ⇡/2)
si3 (�e1, e1) (⇡, 0) sa3 (e2,�e1) (⇡/2, ⇡/2)
si4 (�e1,�e1) (⇡, ⇡) sa4 (�e1, e2) (⇡, ⇡/2)

sa5 (e2, e2) (⇡/2, ⇡/2)

Table 1: 4 sinks and 5 saddles for (✓1, ✓2) 2 [0, ⇡] ⇥ [0, ⇡].

we have x1 ± x2 are either zero vector or an eigenvector of K. The former case gives
the other 12 fixed points (±e

i

,±e

i

). The latter case that x1 ± x2 is an eigenvector
of K will eventually lead to an equality µ

i

� µ
j

= 4A hx1, x2i. But since it follows
|µ

i

� µ
j

| = |4A hx1, x2i|  4Akx1kkx2k = 4A, which contradicts to condition (5.9),
there are no other solutions.

The conclusions of the linear stability are based on the calculation of the Jacobian
matrices at these fixed points. We neglect the details.

In all, there are 36 di↵erent fixed points. From the above proof we know that
(e

i

, e
j

) is a fixed point even without the condition (5.9). If the condition (5.9) does
not hold, there may be other fixed points and it can be shown that there are at most
60 fixed points. In our numerical calculations, we choose K = diag{1, 3, 5}, A = 0.4
to satisfy the condition (5.9). In addition, we always let �1 = 1 but allow �2 to vary.

The transition path we will study is from the initial state (e1,�e1) to the final
state (�e1, e1), in which both rods flip over their initial directions. Since the initial
and final states both lie in the e1-e2 plane for each rod, then by symmetry consid-
eration, the transition paths, i.e., the minimizers of the action functional Eqn (5.8)
must also lie in this plane. Our numerical calculations based on S2

⇥ S2 indeed verify
this fact. Therefore, we can visualize the obtained paths and interpret our results on
a lower dimensional product space S1

⇥ S1. It is convenient to use local coordinates
(✓1, ✓2) 2 [0, 2⇡) ⇥ [0, 2⇡) to denote a point of the path (�1, �2):

�1 = [cos ✓1, sin ✓1, 0], �2 = [cos ✓2, sin ✓2, 0].

In this local coordinates representation, the initial and final states (e1,�e1) and
(�e1, e1) can be written as (✓1, ✓2) = (0, ⇡) and (⇡, 0), respectively. There are 16
fixed points on S1

⇥ S1 in total. Further taking into account the spatial symmetry,
we only need to focus on 4 sinks and 5 saddles for (✓1, ✓2) 2 [0, ⇡]⇥ [0, ⇡], as shown in
Table 1 and Figure 7. In the figure, the heteroclinic orbits between these fixed points
are shown in arrowed lines. The saddle point sa5, at the centre of the figure, is on the
separatrix of all four sinks in the phase space and its unstable manifold has dimension
2. All other four saddle points have one dimensional unstable manifold for each, i.e.
they are index-1 saddles.

The transition path we studied is from si2 to si3, two diagonal nodes in Figure
7. In solving minimization problem inf

�

Ŝ[�], one critical issue is how to locate the
global solution rather than being trapped by the local ones. Since there is no e�cient
global minimization solvers (we used MATLAB subroutine fmincon for nonlinear op-
timization), the selection of initial guess of path is crucial. We utilize the information
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Fig. 7: Fixed points in ✓1-✓2 plane. Sinks are denoted by solid dots (•) , saddles are
denoted by circles (�). The arrows shows the heteroclinic orbits of the deterministic
drift flow. All saddles have index 1 except that sa5 has index 2.

of the heteroclinic orbits in Figure 7 and propose the following five routes as our initial
guesses by choosing di↵erent fixed points as intermediate states:
A si2 ! sa5 ! si3,
B si2 ! sa2 ! sa5 ! si3,
C si2 ! sa2 ! si1 ! sa1 ! si3,
D si2 ! sa3 ! sa5 ! si3,
E si2 ! sa3 ! si4 ! sa4 ! si3.
Then, each choice of initial guess gives a local minimum action path and the obtained
minimized actions for the five solutions are plotted in Figure 8. The lowest value of
these five curves gives the global minimum action.
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Fig. 8: Numerical values of the minimal actions corresponding to five di↵erent initial
guess paths by varying the di↵usion coe�cient �2.

When �1 = �2, the same global solution can be achieved from initial guesses A,
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B and D. This global minimum action path is the diagonal line (si2 ! sa5 ! si3)
in the ✓1-✓2 visualization (Figure 9a). However, when �2 6= �1, the symmetric path
(si2 ! sa5 ! si3) is not the global minimal solution; in fact, the path for the global
solution will pass through index-1 saddle point sa2 (if �2 > �1) or sa3 (if �2 < �1).

Take �2 = 1.2 > �1 = 1 as an example. The transition path corresponding to
the global minimizer of the action functional is shown in the right panel of Figure
9b. The symmetry of the transition path is broken for this case of unequal di↵usion
coe�cients. This asymmetric path has three segments and accordingly the transition
process can be understood via three stages: The first stage is from si2 = (e1,�e1)
to sa2 = (e1, e2), where the first rod does not move much and only the second rod,
which has the larger di↵usion coe�cient, rotates in clockwise to the vertical position
e2; then, at the second stage which is from sa2 to sa5 = (e2, e2) , the second rod
is almost still and “waits” in the state e2 for the first rod to move from e1 to e2.
Once both rods reach the saddle state sa5, the last state starts and both rods directly
approach the final state si3 following the heteroclinic orbit in Figure 7 without any
aid from noise.

The above numerical results demonstrate a selection mechanism: the rod with a
larger di↵usion coe�cient � is subject to large random perturbations with the same
white noise realizations, and thus it is easier to make transition movements first. We
may call this rod as an “active” rod. After this rod actively approaches a critical
state (e2 here), it rests there, and the interaction U(x1,x2) starts to be the main
contributor to influence the system and the previously still rod (“passive” one) is
attracted by U from the active rod to the critical state, from where the entire system
has crossed all the barriers on the route of the transition. What is unexpected here
that the two rods move in tanderm during the first and the second transition stages.
Taking an analogy of the so-called reaction coordinate in chemical reactions, we can
think of ✓2 as an excellent candidate for reaction coordinate at the first transition
stage and ✓1 at the second stage. When we varied �2 from 1 to 2 (�1 = 1 is fixed), the
numerical result shows the robustness of this set of reaction coordinates especially at
the first stage from si2 to sa2. Refer to Figure 9c for the plots of 40 (global minimum
action) paths for various values of �2 by equally dividing the �2

2 from 1 to 4.
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Fig. 9: Global minimum action path(s) from si2 to si3.

In all, when the di↵usion coe�cients for the two rigid rods are identical, the
transition path is symmetric and both rods move simultaneously in the transitions.
If one of the di↵usion coe�cients is adjusted, then the rod molecule with the larger
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di↵usion amplitude will initiatively move into some intermediate state. Only after this
step will the other rod follow the movement in the similar fashion. The unbalance of
the noise amplitudes triggers an ordered process for each rod to make the transitions.

6. General bead-rod systems. We have studied the most probable transition
pathway for the stochastic dynamics with explicitly known projection operators. In
the theory of polymeric fluids, people are also interested in the stochastic conforma-
tional dynamics of the bead-rod system [5] with Lagrange multipliers as we discussed
in Section 3.1. All of our derivations before can be applied in this special case. Let
us illustrate this point concretely as below.

X2

X1

bead 1

bead 2

bead K

X
K

Fig. 10: The schematics of the bead-rod polymer chain with K beads.

Consider a bead-rod polymer chain with K-beads (Figure 10), being described,
for instance, by the following over-damped stochastic dynamics

(6.1) dX
i

=
⇣

u(X
i

) + (T
i

n

i

� T
i�1ni�1)

⌘

dt +
p

" dW
i

, i = 1, 2, . . . , K

where X

i

is the R3 coordinate of the ith bead, u(X) is the drift part which includes
the e↵ect of fluid velocity and driving potential at X, n

i

= (X
i+1�X

i

)/kX
i+1�X

i

k

for i = 1, 2, . . . , K � 1, and T
i

is the tension between the beads i and i + 1 such that
the constraints

(6.2) kX

i+1 �X

i

k = 1, i = 1, 2, . . . , K � 1

are satisfied. We take the convention that T0 = 0 and n

K

= 0. It is obvious that the
tension {T

i

} play the role of the Lagrange multipliers which will determined by the
constraints (6.2).

Mathematically, the equation (6.1) in engineering literature is not well-defined
since the tension force T

i

will involve the white noise Ẇ

i

as singular forces. Indeed, it
can be perfectly put into the framework shown in Proposition 3.1 with the constraints

c
j

(x) :=
1

2

�

kx

j+1 � x

j

k

2
� 1
�

, j = 1, . . . , K � 1

and the relation between Lagrange multipliers:

dµ
j

= �T
j

dt, j = 1, . . . , K,

where x = (x1, . . . ,xK

) 2 R3K . With this connection, Eqn (6.1) is transformed to

(6.3) dX = ⇧
⇣

u(X)dt + �

p

" dW
⌘
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where X = (X1, . . . ,XK

), W = (W 1, . . . ,WK

), and the matrix ⇧ = I � GTM�1G
is an orthogonal projection as defined in Proposition 3.1. This formulation will be
particularly useful to design the projection type methods for the SDE (6.1). It is also
interesting to observe that the SDE (6.3) have an equivalent form

(6.4) dX =
⇣

u(X) +
K�1
X

j=1

µr

j

rc
j

(X)
⌘

dt + ⇧ �

p

" dW

or

(6.5) dX = ⇧

"

⇣

u(X) +
K�1
X

j=1

µr

j

rc
j

(X)
⌘

dt + �

p

" dW

#

,

where µr(x) = �M�1Gu(x) is the “regular” part of the Lagrange multiplies including
only the drift.

Thanks to the result (7.9) in Section 7, we have the Freidlin-Wentzell action
functional to the SDE (6.3) as

(6.6) S
T

[�] =
1

2

Z

T

0
k�̇� ⇧u(�)k2 dt

subject to the constraints

� 2 M =
n

�|c
j

(�) = 0, j = 1, . . . , K � 1
o

and �̇ 2 T
�

M.

Its geometric action functional has the following form based on the result (3.27)

Ŝ['] =

Z 1

0
k'

0
kk⇧uk � h'

0, ⇧ui d↵

subject to the constraints '

0
2 T

'

M.
Based on the obtained optimization problem with constraints or its relaxation

form, we can compute the transition pathways correspondingly. We shall not develop
the study on this point here since it is beyond the main goal of this paper. Further
research on this topic will be a future study.

7. Summary. In this summary, we want to reiterate the mathematical impor-
tance of specifying how the constrained dynamical system is perturbed by noise when
one intends to investigate the transition paths in these constrained systems. Here we
considered the SDE whose solution satisfies constraints, i.e., stays on M, for any ",
rather than accommodates for constraints in the asymptotic sense. The asymptotic
limit " # 0 is only applied in the large deviation result. In formulating the action
functional, we took the approach of using the local projection ⇧ to describe the con-
straints and solved the issue of degeneracy brought by this projection operator in the
augmented Euclidean space Rn.

In the reversible case where the drift term is of gradient type and the di↵usion
coe�cient is an isotropic constant, we proved that the constraints actually do not
bring significant numerical di�culties and the original string method still works by
using the projected gradient force for each image on string: It is essentially the same
as one solves the deterministic gradient flow on the manifold.
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In the irreversible case, one needs to pay attention to the generalized inverse of
the projection operator in the calculation of constrained minimum action. The state-
dependent ⇧�1

x

term appears in the action functional and the path calculation. In
our current version of the constraint minimum action method and for all examples in
this paper, we assume that ⇧ and ⇧�1 as well as their derivatives are all analytically
available. It may be rewarding to explore the numerically convenient extension of eb
and ea on M to the non-unique ⇧, a and b in Rn in order to achieve new form of ⇧�1

easier to compute. We leave this idea to a future study. Additionally, the resulting
constrained optimization problem needs to be solved by good initial guesses to find
the global solution. The initial guesses in our example of rigid rod models are built
on some prior understanding of the phase spaces. For the numerical results, when
the liquid crystal molecules are influenced by macroscopic fluid or unequal di↵usion
coe�cients, the global minimum action pathway we found here reveals very interest-
ing non-equilibrium phenomena, and these phenomena are believed to be generic in
irreversible systems and deserve further investigations.

Appendix.

A. Proof. [Proof of Theorem 3.1] By Ito’s formula and the constraint conditions,
we have

0 = dc
j

(X) =(rc
j

(X))T dX +
1

2
r

2c
j

(X) : ( dX dXT).

Comparing the terms involving Brownian motion, we get

GGT� + G� = 0

which implies (3.6). The terms involving dt yield to

G(b + GT↵) +
1

2
r

2c : (BBT) = 0,

which gives (3.5).

Substituting � into (3.3) and (3.4), we obtain

(7.1) dX =
⇣

b(X) + GT↵(X)
⌘

dt + P�(X) dW.

Notice that PT = P and GP = 0, then

P 2 = I � 2GTM�1G + GTM�1GGTM�1G = P.

This implies that P is the orthogonal projection to TM.

To prove (3.8), from (7.1) we note

(7.2) dX =
⇣

b(X) + GT↵(X)
⌘

dt +
⇣

P�(X) dW � P�(X) � dW
⌘

+ P�(X) � dW.
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From the relation between Ito and Stratonovich integral, we have

⇣

P�(X) � dW � P�(X) dW
⌘

i

=
1

2

X

j,k

@
k

(P�)
ij

(P�)
kj

dt

=
1

2

X

j,k

@
k

⇣

eT
i

P�e
j

⌘

eT
k

P�e
j

dt = �

1

2
eT
i

X

j,k

@
k

⇣

GTM�1G�e
j

⌘

eT
k

P�e
j

dt

= �

1

2
eT
i

X

j,k

(@
k

GT)M�1G�e
j

eT
k

P�e
j

dt �
1

2
eT
i

GT
X

j,k

@
k

⇣

M�1G�
⌘

e
j

eT
k

P�e
j

dt

=:
⇣

F1

⌘

i

dt +
⇣

F2

⌘

i

dt,

where e
i

, e
j

and e
k

are canonical basis vectors in the corresponding Euclidean space,
and the partial derivative of a matrix is defined to take di↵erential to each component.
F1 actually vanishes if we assume ��T is a scalar matrix:

F1 = �

1

2

X

j,k

(@
k

GT)M�1G�e
j

eT
k

P�e
j

= �

1

2

X

j,k

(@
k

GT)M�1G�e
j

eT
j

�TPe
k

= �

1

2

X

k

(@
k

GT)M�1G��TPe
k

= �

1

2
✓
X

k

(@
k

GT)M�1GPe
k

= 0,

where the last equality comes from GP = 0. The expression for F2 can be denoted as
F2 = GT� for some vector �. Substituting this form into (7.2), we get

dX =
⇣

b(X) + GT(↵(X) � �(X))
⌘

dt + P�(X) � dW.

From dc
j

(X) = (rc
j

(X))T � dX = 0, i.e., G � dX = 0, we obtain

Gb(X) + GGT(↵(X) � �(X)) = 0.

This means that ↵(X) � �(X) = �M�1Gb(X). So Eqn (3.8) holds.

B. Projection operator and its inverse
From the constraint ⇧u = y � ⇧b(x) for the minimization problem (3.19), one

may formally view u as an element in the set ⇧�1(y �⇧b(x)) which has the minimal
a-norm. To ease the presentation, we redefine ⇧�1 as follows.

Definition 7.1. Let ⇧ be an orthogonal projection matrix in Rn

and the di↵usion

matrix a be a positive definite matrix. For any v 2 Img(⇧), we define ⇧�1v as the

vector u⇤
2 Rn

such that u⇤
solves min

⇧u=v

kuk
a

.

The above defined ⇧�1v for a given v 2 Img(⇧) is unique since a is not singular.
⇧�1 is a linear transformation defined on Img(⇧). We point out that ⇧�1 is not an
inverse of ⇧ in usual sense because although ⇧ � ⇧�1 is identity restricted on the
space Img(⇧), it is generally invalid that ⇧�1(⇧v) = v. This generalized inverse
⇧�1 : Img(⇧) ! Rn depends on the metric induced by a. If a(x) is a scalar matrix
and ⇧ is orthogonal projections, then Definition 7.1 directly shows that ⇧�1 is identity
restricted on Img(⇧).

We next point out some useful properties of ⇧�1 and the connection to ea-norm.
Two examples of the manifold cases are also shown for illustration.

Proposition 7.2. ⇧�1 = a⇧T
ea�1

. If ⇧ = ⇧T
, then ⇧�1 = aea�1

and ea�1 =
a�1⇧�1

.
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Proof. Straightforward from the proof of Proposition 3.3.
Proposition 7.3. If v 2 Img(⇧), then

(7.3) kvkea = k⇧�1vk
a

.

In addition, for v1, v2 both in Img(⇧),

(7.4) hv1, v2iea =
⌦

v1, ⇧
�1v2

↵

a

=
⌦

v1, ⇧
�1v2

↵

a

.

Proof. (7.3) is Proposition 3.3. For the second part, hv1, v2iea = hv1, ev2i =
h⇧v1, ev2i =

⌦

v1, ⇧T
ev2

↵

=
⌦

v1, a�1⇧T
ev2

↵

a

=
⌦

v1, ⇧�1v2

↵

a

.
Proposition 7.4. For every w 2 Ker(⇧) and v 2 Img(⇧), we have

⌦

⇧�1v, w
↵

a

= 0.

Proof. Let u⇤ = ⇧�1v. Define u
✓

= u⇤+✓w, 8✓ 2 R. Then ⇧u
✓

= ⇧u⇤ = v for all
✓. So, the function f(✓) := ku

✓

k

2
a

has a minimal value ku⇤
k

2
a

at ✓0 = 0. Consequently,
f 0(✓0) = 0 and hu⇤, wi = 0 follows.

Proposition 7.5. For any vector v 2 Img(⇧), it is true that

k⇧�1vk2
a

=
⌦

v, ⇧�1v
↵

a

,

kvk2
a

= k⇧�1vk2
a

+ kv � ⇧�1vk2
a

.

Proof. The first equality is due to the fact v�⇧�1v 2 Ker(⇧) and Proposition 7.4.
Then it follows that kvk2

a

=
⌦

v, ⇧�1v
↵

a

+
⌦

v, v � ⇧�1v
↵

a

= k⇧�1vk2
a

+
⌦

v, v � ⇧�1v
↵

a

.

Since
⌦

⇧�1v, v � ⇧�1v
↵

a

= 0 due to Proposition 7.4, then kvk2
a

= k⇧�1vk2
a

+ kv �

⇧�1vk2
a

.
Proposition 7.6. If dimKer(⇧) = K, and Ker(⇧) = span{⇠

k

: k = 1, · · · , K},

then for any v 2 Img(⇧),

kvk2
a

= k⇧�1vk2
a

+ kv̂k2
M

= kvk2
ea + kv̂k2

M

,

where M = (M
ij

) = h⇠
i

, ⇠
j

i

a

, i, j = 1, 2, . . . , K and v̂ = (v̂
k

) = hv, ⇠
k

i

a

, k = 1, . . . , K.

When a is a scalar matrix, i.e., the condition (3.7) holds, and ⇧ = ⇧T
, then

kvk2
a

= kvk2
ea, i.e., a-norm and ea-norm are identical.

Proof. Write v � ⇧�1v =
P

k

�
k

⇠
k

, then these �
k

minimize kv �

P

k

�
k

⇠
k

k

2
a

. So,
� = (�1, �2, . . . , �K

)T satisfy M� = v̂. Note that kv � ⇧�1vk2
a

= k

P

k

�
k

⇠
k

k

2
a

=
�TM� = v̂TM�1v̂ = kv̂k2

M

. The conclusion is then immediate from Proposition 7.5.
When ⇧ = ⇧T, ker(⇧) is orthogonal to Img(⇧) in Rn. If furthermore a(x) is

scalar, then by (3.7), hv, ⇠
k

i

a

= hv, ⇠
k

i /✓(x) = 0.
When ⇧ is the orthogonal projection induced by the constraints {c

k

(x) = 0 : k =
1, 2, . . . , n� d}, then the basis of Ker(⇧) above can be chosen as ⇠

k

= rc
k

(x). In the
following, we show calculations of ea�1 and ⇧�1 for two simple examples.

Example 2 (Planar projection). Consider a hyperplane in Rn

, M = {x =
(x1, x2, . . . , xn

) : x
n

= 0}, corresponding to the unique constraint c(x) = x
n

= 0.

Then the (orthogonal) projection ⇧ =



I
n�1 0
0 0

�

. Write a =



A11 A12

AT
12 A22

�

where A11
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has size (n � 1) ⇥ (n � 1). Then v 2 Img(⇧) has the form v = (v1, 0)T where v1 has

size n � 1. It is easy to calculate that

ea = ⇧a⇧T =



A11 0
0 0

�

,

ea�1v =



A�1
11 v1

0

�

=



A�1
11 ⇤

0 ⇤

�

v,

and

⇧�1v = aea�1v =



A11 A12

AT
12 A22

� 

A�1
11 v1

0

�

=



A�1
11 v1

AT
12A

�1
11 v1

�

=



A�1
11 ⇤

AT
12A

�1
11 ⇤

�

v.

Example 3 (Spherical projection). Consider the spherical case M = Sd

where

d = n � 1. The constraint function is c(x) = kxk2
� 1 = 0. The projection onto the

tangent space is ⇧
x

= I � n(x) ⌦ n(x) where n(x) = x/kxk is the unit (L2
norm)

normal. The kernel space Ker(⇧
x

) = span {n(x)}. The calculation shows that for

any v 2 Img(⇧)

⇧�1v = v �

hv,ni
a

hn,ni
a

n = v � hv,n
a

i

a

n

a

and

ea�1v = a�1v � hv,n
a

i

a

a�1
n

a

,

where n

a

= n/knk
a

is the unit vector in sense of a-norm.

C. Euler-Lagrange equations and related discussions
In summary, the action functional for the SDE (3.13) is

(7.5) SM
T

[�] =

8

<

:

inf
u

⇢

1
2

R

T

0 kuk2
a

dt : �̇ � ⇧b(�) = ⇧u,

�

, if � 2 A

+1, otherwise.

In (7.5), u is a function of t and is equal to ⇧�1(�̇�⇧b(�)) for t 2 [0, T ] by Definition
7.1. Then the action functional (7.5) (for finite value) is written in terms of ⇧�1 as
follows

(7.6) SM
T

[�] =
1

2

Z

T

0

�

�

�

⇧�1(�̇ � ⇧b(�))
�

�

�

2

a

dt,

which is defined over the admissible set A or the equivalent A

0. By Proposition 3.4,
Eqn (7.6) is also equivalent to

(7.7) SM
T

[�] =
1

2

Z

T

0

�

�

�

�̇ �

eb(�)
�

�

�

2

ea
dt.

In words, Eqn (7.5), (7.6) and (7.7) are three equivalent forms of the action functional.
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In the next, we want to compare the action (7.6) or (7.7) to the action for the
following SDE in the ambient space without the projection of the random forcing
term, i.e.,

(7.8) dX = (⇧b(X)) dt +
p

"�(X) dW,

whose solution X
t

is not exactly on M. The action for Eqn (7.8) is

(7.9) S1
T

[�] :=
1

2

Z

T

0

�

�

�

�̇ � ⇧b(�)
�

�

�

2

a

dt, 8� 2 AC([0, T ],Rn).

Another case we want to compare with is the action for the SDE dX = b(X) dt +
p

"�(X) dW in Rn,

(7.10) S0
T

[�] :=
1

2

Z

T

0
k�̇ � b(�)k2

a

dt, 8� 2 AC([0, T ],Rn).

This action functional (7.10) probably looks absurd. But is that possible that only
in the last stage imposing the constraints for the action functional, S0

T

and S1
T

give
the same minimizing path, as the constrained string method [6] works for gradient
systems? We shall o↵er counterexamples to show that all these three functionals in
general have di↵erent minimizers by analyzing the Euler-Lagrange equations for these
functionals. We also give Remark 4 below to justify the constrained string method
proposed in [6].

To be specific, we consider the following three constrained optimization problems:

inf
�2A

S0[�] = inf
�2A

1

2

Z

T

0
k�̇ � b(�)k2

a

dt,(P0)

inf
�2A

S1[�] = inf
�2A

1

2

Z

T

0

�

�

�

�̇ � ⇧b(�)
�

�

�

2

a

dt,(P1)

inf
�2A

SM[�] = inf
�2A

1

2

Z

T

0

�

�

�

�̇ �

eb(�)
�

�

�

2

ea
dt.(P⇤)

For (P0) and (P1), the constraint � 2 A, i.e., �(t) 2 M is the forced constraint. But
for (P⇤), A is the domain for SM. We shall prove that the minimizing paths for these
three problems (P0), (P1), (P⇤), are generally not the same. The approach is to study
their Euler-Lagrange equations.

With the assumption for the state-independent di↵usion a, we have for (P0),

�

�S

0

��

[�] = ṗ + JT(�)p in L2([0, T ],Rn) space, where p(t) = a�1
⇣

�̇ � b(�)
⌘

, J(x) =

rb(x), J
ij

= @b

i

@x

j

. Thus the Euler-Lagrange equation in the constraint space L2([0, T ],M),

which the minimizer path for (P0) must satisfy, is

(7.11) ⇧T
�

ṗ + JT(�)p
�

= 0.

Similarly, the Euler-Lagrange equation for (P1) is

(7.12) ⇧T
⇣

ṗ + eJT(�)p
⌘

= 0

where p(t) := a�1
⇣

�̇ �

eb(�)
⌘

, eJ(x) := r

eb(x) = r(⇧
x

b(x)).
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For (P⇤), the Euler-Lagrange equation is

(7.13) �

�SM

��
= ėp + eJT

ep �

1

2
(eaep) ⌦ (eaep) : r(ea�1)

for � 2 A, where ep := ea�1(�̇�eb), the tensor contraction (y⌦y : D)
k

:=
P

ijk

y
i

y
j

D
ijk

with D = r(ea�1), D
ijk

= @

@x

k

(ea�1)
ij

.
Proposition 7.7. In general, the solution of the Euler-Lagrange equation for

(P0) is not equivalent to the solution of the Euler-Lagrange equation for (P1). There-

fore, the minimizing paths for (P0) and (P1) are di↵erent.

Proof. We consider a simple case that ⇧
x

⌘ ⇧ for all x 2 M and ⇧ = ⇧T

(for instance, Example 2). Assume a(x) ⌘ I and b(x) = �rV (x) (gradient system).
Thus, J(x) = J(x)T = �r

2V (x). eJ = ⇧J , eJT = J⇧. Let �0 and �1 satisfy the
Euler-Lagrange equation for (P0) and (P1), respectively. Then

⇧
⇣

�̈0 � J(�0)b(�0)
⌘

= 0,

and

⇧
⇣

�̈1 � J(�1)⇧b(�1)
⌘

= 0.

In general, ⇧Jb is not equal ⇧J⇧b. For instance, consider Example 2,

⇧J =



J11 J12

0 0

�

, ⇧J⇧ =



J11 0
0 0

�

.

The Euler-Lagrange equation for (P0) has an extra term J12b2 if writing b = (b1, b2).
This extra term comes from the normal space since only b1 is used in defining the
SDE on the manifold.

Proposition 7.8. If a(x) = �2(x)I (scalar matrix) and ⇧
x

is orthogonal pro-

jection for all x 2 M, then (P1) is equivalent to (P⇤). If a(x) is not a scalar matrix,

then (P1) is not equivalent to (P⇤) in general.

Proof. If a is a scalar matrix, then ⇧�1 is identity, and k·k

a

= k·kea by Proposition
7.6, so (P1) is equivalent to (P⇤).

When a is not a scalar matrix, then in general k · k
a

> k · kea by Proposition 7.6.
So, S1 is larger than SM. We shall see that the (constrained) minimizers of these
two functionals are also di↵erent, i.e., (P1) is not equivalent to (P⇤). To show this,
we continue to consider Example 2 with a state-independent a(x) ⌘ a for all x. Since
here ⇧ is independent of x, then the Euler-Lagrange equations for (P1) and (P⇤) are
respectively

⇧
⇣

a�1�̈1 � (a�1⇧J � JT⇧a�1)�̇1 � JT⇧a�1⇧b(�1)
⌘

= 0, (P1)

ea�1�̈⇤ � (ea�1⇧J � JT⇧ea�1)�̇⇤ � JT⇧ea�1⇧b(�⇤) = 0. (P⇤)

Using the notations in Example 2 where a =



A11 A12

AT
12 A22

�

, and writing a�1 =



B11 B12

BT
12 B22

�

and J =



J11 J12

JT
12 J22

�

where B11, J11 are both of size (n�1)⇥ (n�1), and b = (b1, b2),
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�1 = (�11, �12), �⇤ = (�⇤1, �⇤2), we can further calculate the above Euler-Lagrange
equations for (P1) and (P⇤) as

B11�̈11 � (B11J11 � JT
11B11)�̇11 � JT

11B11b1(�) = 0, (P1)

A�1
11 �̈⇤1 � (A�1

11 J11 � JT
11A

�1
11 )�̇⇤1 � JT

11A
�1
11 b1(�⇤) = 0. (P⇤)

The Euler-Lagrange equation for (P⇤) only involves A�1
11 , i.e., ea, thus it defines a

boundary value problem of the second-order di↵erential equation intrinsically on the
plane M. The Euler-Lagrange equation for (P1) involves a�1, which includes A12

and A22. It is only when A12 = 0 can we have A�1
11 = B11, and it follows that (P⇤)

is equivalent to (P1). However, in general, the di↵usion tensor a can not guaranteed
A�1

11 is equal to B11, therefore (P⇤) is not equivalent to (P1).
Remark 3. Given ea(x), there are various ways to design an augmented a(x)

to satisfy the consistence condition ea = ⇧a⇧T
. By Proposition 7.6, the condition

such that (P1) () (P⇤) for a general Riemannian manifold M is the following

orthogonality condition under a-metric,

(7.14) hv, ⇠i
a

= 0, 8v 2 Img(⇧), ⇠ 2 Ker(⇧).

When ⇧ = ⇧T
, this condition means that Img(⇧) or Ker(⇧) is an invariant subspace

of the matrix a�1
.

Remark 4. If we consider the following gradient system on a manifold in which

a(x) ⌘ I, b(x) = �rV (x), eb = �⇧
x

rV (x), and assume that ⇧ = ⇧T
, then we can

simplify the Euler-Lagrange equation for (P⇤) (or equivalently (P1) since a(x) = I

here) by noting the fact

D

w, eJv
E

=
D

v, eJw
E

holds for any v, w 2 Img(⇧) (note

eJ =

r

eb), i.e., ⇧( eJT
�

eJ)v = 0. The resulting Euler-Lagrange equation is as follows

⇧
⇣

�̈ + ( eJT
�

eJ)�̇ �

eJT⇧b(�)
⌘

= ⇧
⇣

�̈ �

eJT⇧b(�)
⌘

= 0.

It is easy to verify that if �̇ = ±⇧b(�), then �̈ = ±

eJ(�)�̇ = eJ(�)⇧b(�), and the

above Euler-Lagrange equation holds. This justifies, from the large deviation for this

special gradient system, the constrained string method in [6] which geometrically solves

�̇ = ±⇧b(�).
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