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9.

1. (15 marks) Find the singular value decomposition and the matrix 2-norm of

1 01
A= .
% 10]

2. (10 marks) Find the Cholesky decomposition of

4 2 2
2 2 1
A=
2 1 5
0 0 2 10
3. Consider the matrix
1 -1 1
A= 2 1 1
-2 1 0

(a) (10 marks) Using Householder reflections, find the matrix R in a QR factor-

ization of A.
(b) (10 marks) Using Householder reflections, find an upper Hessenberg matrix

T, such that A and T have the same eigenvalues.

4. (20 marks) Let A be a 2 x 2 real symmetric positive definite matrix. It has a LDLT
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Show that the computer results [ and d (for [ and d) correspond to the exact LDLT

decomposition:

where

decomposition of A, where the entries of A are close to the entries of A.

5. If A has a LU decomposition, i.e. A = LU, where L is unit lower triangular and U
is upper triangular, we define the matrix A by A = UL. Show that:

(a) (7 marks) A and A have the same eigenvalues;

(b) (8 marks) If A is upper Hessenberg, then A is also upper Hessenberg.
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6. (20 marks) Let A be a real symmetric matrix. The eigenvalues and eigenvectors of
A are \; and Z; (for j = 1,2, ...), respectively. We assume that A\; > Ay and the

eigenvectors are unit orthogonal vectors. Let
q1=c¥1+ ST

for some positive constants ¢ and s such that ¢ + s> = 1. Show that when g is

used as the starting vector for the Lanczos method:
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we have B = 0. Find a4, (1, as and ¢.
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