
MA6606 — Computational Linear Algebra

Ya Yan Lu

Department of Mathematics

City University of Hong Kong

September 16, 2008

Contents

1 More on Linear Algebra 3
1.1 Orthogonal matrix . 3
1.2 Eigenvalue decomposition . 4
1.3 Vector norm . 8
1.4 Matrix norm . 10
1.5 Singular value decomposition . 14
1.6 More on SVD . 15
1.7 Exercises . 16

2 QR Factorization and Least Squares 18
2.1 Householder reflections . 18
2.2 QR factorization . 19
2.3 Least squares problems . 21
2.4 Givens rotation . 22
2.5 Exercises . 22

3 Linear System of Equations 24
3.1 Cholesky decomposition . 24
3.2 LU decomposition . 26
3.3 Partial pivoting . 26
3.4 Condition number . 28
3.5 Backward stability analysis . 31

3.5.1 Floating point arithmetic . 31
3.5.2 Backward stability . 31
3.5.3 Backward stability of triangular solver . 32

3.6 Exercises . 33

1

4 Matrix Eigenvalue Problems 35
4.1 Introduction . 35
4.2 Power, inverse power and Rayleigh quotient iterations 36
4.3 Reduction to tridiagonal / upper Hessenberg matrices 37
4.4 The QR algorithm . 40
4.5 Givens rotation . 41
4.6 Divide and conquer method . 44
4.7 Exercises . 46

5 Iterative Methods 48
5.1 The Conjugate Gradient Method . 48

5.1.1 Background . 48
5.1.2 1-D optimization problem . 49
5.1.3 Subspace minimization problem . 49
5.1.4 Orthogonal residual . 50
5.1.5 The next conjugate direction . 51
5.1.6 The conjugate gradient iteration . 52
5.1.7 Optimal polynomial problem . 52
5.1.8 Rate of convergence . 53

5.2 Lanczos method . 53
5.2.1 Lanczos tridiagonalization process . 53
5.2.2 Approximating eigenvalues . 56
5.2.3 Approximating f(A)b . 58

5.3 Exercises . 59

2

Chapter 1

More on Linear Algebra

Numerical (or computational) linear algebra is a subject that studies numerical methods for
linear algebra problems. The numerical methods are given in terms of algorithms which can be
implemented as computer programs. Three main problems are: (1) linear system of equation
Ax = b, (2) least squares problems min ||Ax − b|| and (3) eigenvalue problem Ax = λx. To
understand these methods, a solid background in linear algebra is essential. Some linear algebra
topics are covered in this chapter.

1.1 Orthogonal matrix

Let x and y be vectors (of complex number) of length m, say

x =


x1

x2
...
xm

 , y =


y1

y2
...
ym

 ,
we define the inner product of x and y as

x∗y = x1y1 + x2y2 + ...+ xmym

where xj is the complex conjugate of xj , x∗ is the row vector obtained from x by transpose and
complex conjugate. Namely,

x∗ = [x1, x2, ..., xm].

The two vectors are orthogonal to each other, if x∗y = 0.
This also gives rise to the definition of 2-norm (or, Euclidean norm):

||x||2 =
√
x∗x =

√
|x1|2 + |x2|2 + ...+ |xm|2.

A unit vector (in the 2-norm) is the vector with ||x||2 = 1.
Let Q be an m×m (complex) matrix, we write down its columns as q1, q2, ..., qm. Namely,

Q = [q1, q2, ..., qm].

3

The matrix Q is unitary if the column vectors are unit vectors and they are orthogonal to each
other. More precisely,

q∗i qj =
{

1 if i = j

0 if i 6= j

The above condition is precisely
Q∗Q = I,

where I is the identity matrix. As before, Q∗ = Q
T is the transpose of Q and Q is the complex

conjugate of Q. The above equation implies that Q∗ is the inverse of Q, and of course, we also
have QQ∗ = I. Notice that the condition QQ∗ = I implies that the rows of Q are unit vectors
and they are orthogonal to each other.

If Q is real and unitary (thus QT = Q−1), then Q is called orthogonal.
A 1× 1 unitary matrix is just a complex number, say a, satisfying |a| = 1. In other words,

a = eiθ for some real number θ.
A 2× 2 orthogonal matrix can be written down as

Q =
[
c s

s −c

]
or Q =

[
c −s
s c

]
where

c = cos(θ), s = sin(θ)

for some real number θ.

Theorem 1 If Q is unitary and x is a column vector, then

||Qx||2 = ||x||2.

Proof: ||Qx||2 =
√

(Qx)∗Qx =
√
x∗Q∗Qx =

√
x∗x = ||x||2, since Q∗Q = I. �

1.2 Eigenvalue decomposition

If A = A∗, the matrix A is called Hermitian. It must be a square matrix (say m×m). A real
Hermitian matrix is a symmetric matrix (A = AT). For a square matrix A, an eigenvalue λ is
a solution of the polynomial equation:

det(λI −A) = 0.

In this case, there is a non-zero vector x, such that

(λI −A)x = 0, or Ax = λx.

The vector x is the eigenvector corresponding to the eigenvalue λ.

Theorem 2 The eigenvalues of a Hermitian matrix are real.

4

Proof: Let A be a Hermitian matrix and Ax = λx, where λ is an eigenvalue and x is the
corresponding eigenvector. If we multiply x∗ to Ax = λx, we obtain

x∗Ax = λx∗x.

Now, if we take the transpose and complex conjugate (i.e. the ∗-operation) of the above identity,
we obtain

(x∗Ax)∗ = x∗A∗(x∗)∗ = x∗Ax = (λx∗x)∗ = λx∗x.

Here, we have used A∗ = A and (x∗)∗ = x. Therefore,

λx∗x = λx∗x.

Since the eigenvector x is non-zero, x∗x = ||x||22 6= 0, we have

λ = λ.

Therefore, λ is real. �

Theorem 3 For a Hermitian matrix, the eigenvectors corresponding to distinct eigenvalues
are orthogonal to each other.

Proof: Let A be a Hermitian matrix, λ1 and λ2 are two eigenvalues of A, such that λ1 6= λ2.
From Theorem 2, we know that λ1 and λ2 are real. Let x1 and x2 be the corresponding
eigenvectors. That is,

Ax1 = λ1x1, Ax2 = λ2x2.

For Ax1 = λ1x1, we multiply x∗2. Thus,

x∗2Ax1 = λ1x
∗
2x1.

Take the ∗-operation for both sides, we get

(x∗2Ax1)∗ = x∗1A
∗(x∗2)∗ = x∗1Ax2 = (λ1x

∗
2x1)∗ = λ1x

∗
1(x∗2)∗ = λ1x

∗
1x2.

For the equation Ax2 = λ2x2, we multiply x∗1, thus

x∗1Ax2 = λ2x
∗
1x2.

Compare the two equations above, we obtain

λ1x
∗
1x2 = λ2x

∗
1x2.

This leads to
(λ1 − λ2)x∗1x2 = 0.

Since λ1 6= λ2, we must have
x∗1x2 = 0.

Therefore, the two eigenvectors are orthogonal to each other. �

Vectors q1, q2, ..., qk are called orthonormal if they are unit vectors (i.e. the 2-norm is 1)
and they are orthogonal to each other. This implies

q∗i qj =
{

1 if i = j

0 if i 6= j
.

5

Lemma 1 Any given k orthonormal vectors of length m (k < m) can always be regarded as
the first k columns of an m×m unitary matrix.

Proof: Let q1, q2, ..., qk be the given k orthonormal vectors. Let Cm be the m-dimensional
space of all complex columns vectors of length m. Let < q1, q2, ..., qk > be the k-dimensional
space spanned by the k orthonormal vectors. That is

< q1, q2, ..., qk >= {w | w is a linear combination of q1, q2, ..., qk}.

Since < q1, q2, ..., qk > is a subspace of Cm and its dimension is smaller than m, we can always
find a vector u in Cm, but not in < q1, q2, ..., qk >. Now, let

v = u− (q∗1u)q1 − (q∗2u)q2 − ...− (q∗ku)qk.

Obviously,
q∗i v = 0 for i = 1, 2, ..., k,

and v 6= 0 (otherwise u ∈< q1, q2, ..., qk >). We can thus let

qk+1 = v/||v||2.

Then, the k + 1 vectors q1, ..., qk, qk+1 are orthonormal. This process can be repeated untill
we find the last vector qm. Then, the matrix Q = [q1, q2, ..., qm] is unitary. �

The following theorem is the eigenvalue decomposition of a Hermitian matrix. It may be
the most important result in linear lagebra.

Theorem 4 (Eigenvalue decomposition) An m×m Hermitian matrix A can always be written
as

A = QΛQ∗, or AQ = QΛ, or Q∗AQ = Λ,

where Q is unitary and Λ is real and diagonal. Meanwhile, the diagonal entries of Λ are the
eigenvalues of A and the columnes of Q are the corresponding eigenvectors.

Proof: The proof is by induction. The case of m = 1 is obvious. You can choose Q = 1
and Λ = A. Let us assume that the eigenvalue decomposition is established for all Hermitian
matrices of size (m − 1) × (m − 1). Now, for our m ×m Hermitian matrix, we start with one
eigenvalue λ1 and its corresponding unit eigenvector q1, such that Aq1 = λ1q1. From Lemma
1, we can find an unitary matrix

U = [q1, u2, u3, ..., um].

Then,

U∗AU = U∗[Aq1, Au2, ..., Aum] =


q∗1
u∗2
...
u∗m

 [λ1q1, Au2, ..., Aum].

6

Since q1 is an unit vector and it is orthogonal with uk (k = 2, ...,m), we have

U∗AU =


λ1 ∗ ... ∗
0 ∗ ... ∗
... ∗ ... ∗
0 ∗ ... ∗

 .
But, U∗AU is also Hermitian, thus

U∗AU =


λ1 0 ... 0
0 ∗ ... ∗
... ∗ ... ∗
0 ∗ ... ∗

 =
[
λ1

A1

]

where A1 is an (m− 1)× (m− 1) Hermitian matrix. Because of the induction assumption, we
have an eigenvalue decomposition of A1:

A1 = Q1Λ1Q
∗
1.

Thus,

A = U

[
1

Q1

] [
λ1

Λ1

] [
1

Q∗1

]
U∗.

Now, let

Q = U

[
1

Q1

]
, Λ =

[
λ1

Λ1

]
,

we have
A = QΛQ∗.

Clearly, Λ is real and diagonal. It is also easy to verify that Q is unitary and the first column
of Q is q1.

Now, if we let

Q = [q1, q2, ..., qm], Λ =


λ1

λ2
. . .

λm

 ,
then, from AQ = QΛ, we have

Aqj = λjqj , j = 1, 2, ...,m.

Therefore, Λ and Q are the matrices for eigenvalues and eigenvectors, respectively. �

For the following non-symmetric matrix

A =

 1 1 0
0 1 0
0 0 3

 ,
the three eigenvalues are

λ1 = λ2 = 1, λ3 = 3.

Corresponing to the double eigenvalue λ = 1, there is only one linearly independent eigenvector.
For a Hermitian matrix, a double eigenvalue must have two linearly independent eigenvectors.

7

Theorem 5 If λ is a multiple eigenvalue of a Hermitian matrix A with multiplicity k, then
there are exactly k linearly independent eigenvectors corresponding to λ.

Proof: From the eigenvalue decomposition of A, we have a set of orthonormal eigenvectors
q1, q2, ..., qm satisfying Aqj = λjqj . For a multiple eigenvalue λ of multiplicity k, there are k
coresponding eigenvectors in the orthonormal set. They are obviously linearly independent. �

In general, it is not always possible to diagonalize a non-Hermitian matrix. When the matrix
can be diagonalized, we have a non-singular matrix S and a diagonal matrix Λ, such that

A = SΛS−1, AS = SΛ, S−1AS = Λ,

where the diagonal entries of Λ are the eigenvalues, the columns of S are the corresponding
eigenvectors. The above is not always possible, because some multiple eigenvalues may not
have enough linearly independent eigenvectors. Even when the above is possible, the matrix
S maybe near singular. That is, the columns of S can be nearly linearly dependent on each
other. In general, for non-Hermitian matrices, we do not attempt to calculate the eigenvalue
decomposition. Instead, we use the so-called Schur decomposition.

Theorem 6 (Schur decomposition) For any m × m complex matrix A, there is an unitary
matrix Q and an upper triangular matrix T , such that

A = QTQ∗, AQ = QT, Q∗AQ = T.

Meanwhile, the diagonals of T are the eigenvalues of A.

Proof: The proof is nearly identical to the proof of Theorem 4. �

Notice that Theorem 4 can be easily obtained from Theorem 6. Since A is Hermitian, then
the upper triangular matrix T = Q∗AQ is also Hermitian. Thus, T is real and diagonal.

1.3 Vector norm

A norm is a function defined on a vector space satisfying three basic conditions. Let us denote
a norm (of some vector x) by ||x||, we must have

1. for any x in the given vector space ||x|| ≥ 0, and ||x|| = 0 if and only if x = 0;

2. for artitrary x and y in the given vector space,

||x+ y|| ≤ ||x||+ ||y||;

3. for any complex number α and any vector x,

||αx|| = |α|||x||.

To prove the 2-norm defined based on inner product is actually a norm, you need to verify
the above three conditions. The first and the last conditions are easy to check. The second
condition is the triangular inequality, which can be proved using the Cauchy-Schwarz inequality.

8

Lemma 2 (Cauchy-Schwarz inequality) Let x and y be two column vectors of length m, then

|x∗y| ≤ ||x||2||y||2.

Proof: We can assume that the vectors x and y are non-zero vectors, otherwise, both sides of
the above inequality are just zero. Now, for any complex t,

||x− ty||22 ≥ 0.

The left hand side above is actually a quadratic polynomial of t1 and t2, where t = t1 + it2

(i =
√
−1). We can find the minimum of the left hand side and the minimum should still be

non-negative.

||x− ty||22 = (x∗ − ty∗)(x− ty) = ||x||22 − tx∗y − ty∗x+ |t|2||y||22

If we let x∗y = α+ iβ for real α and β, then

||x− ty||22 = ||x||22 − 2(αt1 − βt2) + (t21 + t22)||y||22.

The minimum of the above is reached at

t1 =
α

||y||22
, t2 = − β

||y||22
.

Insert the above values of t1 and t2, we have

0 ≤ min ||x− ty||22 = ||x||22 −
α2 + β2

||y||22
.

This implies |x∗y| ≤ ||x|| · ||y||. �

Theorem 7 For any two vectors of same length, the 2-norm satisfies the triangular inequality:

||x+ y||2 ≤ ||x||2 + ||y||2.

Proof: Notice that

||x+ y||22 = (x∗ + y∗)(x+ y) = ||x||22 + x∗y + y∗x+ ||y||22 ≤ ||x||22 + |x∗y|+ |y∗x|+ ||y||22.

Now, we use the Cauchy-Schwarz inequalities:

|x∗y| ≤ ||x||2||y||2 and |y∗x| ≤ ||x||2||y||2.

Thus,
||x+ y||22 ≤ ||x||22 + ||x||2||y||2 + ||x||2||y||2 + ||y||22 = (||x||2 + ||y||2)2.

Therefore, ||x+ y||2 ≤ ||x||2 + ||y||2. �

More generally, we can define the vector p-norm for p ≥ 1 by

||x||p = (|x1|p + |x2|p + ...+ |xm|p)1/p

9

A particulay simple and useful norm is the 1-norm for p = 1. That is,

||x||1 = |x1|+ |x2|+ ...+ |xm|.

Moreover, the limit of p→∞ gives

||x||∞ = max
1≤j≤m

|xj |.

This is the ∞-norm. For the general p-norm, we have the following Hölder inequality:

Lemma 3 For p and q satisfying 1/p+ 1/q = 1 and 1 ≤ p, q ≤ ∞, and for any two vectors of
same length, we have

|x∗y| ≤ ||x||p ||y||q.

The Cauchy-Schwarz inequality is the special case p = q = 2.
Based on the p-norm, we can define a weighted p-norm, using a non-singular diagonal matrix

W :

W =


w1

w2
. . .

wm


(assuming wi 6= 0 for all i). Here is the weighted 2-norm:

||x||W =

√√√√ m∑
i=1

|wixi|2 = ||Wx||2.

The notation || · ||W is not a standard notation.

1.4 Matrix norm

For two matrices of same size (say, both 3×3), one matrix may have some large entries and the
other matrix may have only small entries. To distinguish these two matrices, we could attach
a number to each matrix. This would be the matrix norm. Naturally, the matrix with larger
entries would have a larger norm on average. However, there is not a unique way of defining
the matrix norm. Like vector norms, there are many different matrix norms.

An important class of matrix norms is the induced matrix norms. This is related to what
the matrix will do for vectors. Let A be a complex m × n matrix, an important aspect of the
matrix is that it takes x in Cn (the vector space of complex column vectors of length n) to
y = Ax in Cm. That is to say, the matrix A represents a linear operator that maps x to y.
Since x and y can be mesured by their norms in Cn and Cm, respectively, we will introduce
the matrix norm as the maximum of the ratio ||y||/||x|| among all non-zero x. Therefore, the
matrix norm is the largest possible increasing (or decreasing) factor when it acts on vectors.

10

More precisely, let || · ||(n) be a vector norm for Cn and || · ||(m) be a vector norm for Cm,
(these two norms do not have to be the same, as Cn and Cm are different vector spaces), we
define the induced matrix norm of A as:

||A||(m,n) = sup
0 6=x∈Cn

||Ax||(m)

||x||(n)
.

Since the right hand side above does not change when x is replaced by αx for any constant α,
we can assume ||x||(n) = 1 and use the definition

||A||(m,n) = sup
x∈Cn, ||x||(n)=1

||Ax||(m).

Since the induced matrix norm is defined as the maximum above, for any vector x, we always
have

||Ax||(m) ≤ ||A||(m,n) ||x||(n).

If the norms for x and y = Ax in the definition of the induced matrix norm are the same,
then the induced norm will use the same name as the norm for x and y. That is, if the p-norm
is used for both x ∈ Cn and Ax ∈ Cm, then the induced matrix norm is the matrix p-norm.
Among them, the most important matrix norm is the matrix 2-norm, which is defined using
vector 2-norms for both x and y = Ax. Therefore,

||A||2 = sup
x∈Cn, ||x||2=1

||Ax||2.

Example: Consider

A =

 1 2
1 1
3 0

 ,
if we use || · ||2 for C2 and || · ||1 for C3, then induced matrix norm of A is

||A||1,2 = sup
|x1|2+|x2|2=1

(|x1 + 2x2|+ |x1 + x2|+ |3x1|) =
√

34.

Another matrix norm, which is often used because it is easy to compute, is the Frobenius
norm. It is not an “induced matrix norm”. For an m×n matrix A, it is like the vector 2-norm,
when the matrix A is regarded as a vector of length mn. That is,

||A||F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

where aij is the (i, j) entry of A.
These matrix norms defined above are actually “norms” following the definition (the three

conditions) in the previous section. In this case, the set of m× n matrices are considered as a
“vector space”. We have

Theorem 8 The induced matrix norms and the Frobenius norm satisfy the following three
conditions (for a general definition of norm):

11

1. ||A|| ≥ 0, and ||A|| = 0 only if A = 0 (the zero matrix),

2. ||A+B|| ≤ ||A||+ ||B||, where A and B have the same size.

3. ||αA|| = |α| ||A||, where α is a complex scalar.

For an l×m matrix A, and an m× n matrix B, we have an l× n matrix C = AB. We can
consider how the matrix norm of C is bounded by the matrix norms of A and B.

Theorem 9 Let || · ||(l), || · ||(l), and || · ||(l) be norms on Cl, Cm, and Cn, respectively, then the
induced norms satisfy

||AB||(l,n) ≤ ||A||(l,m) ||B||(m,n).

Proof: For any vector x ∈ Cn, we have

||ABx||(l) ≤ ||A||(l,m) ||Bx||(m) ≤ ||A||(l,m) ||B||(m,n)||x||(n).

The result is then clear from the definition of the matrix induced norm. �

For the Frobenius norm, we have a similar result.

Theorem 10 The Frobenius norm of matrices satisfy

||AB||F ≤ ||A||F ||B||F .

Proof: Let A and B be matrices of size (l,m) and (m,n), respectively, we write down the rows
of A and columns of B:

A =


a∗1
a∗2
...
a∗l

 , B = [b1, b2, ..., bn].

Then,

||A||2F =
l∑

i=1

||ai||22, ||B||2F =
n∑
j=1

||bj ||22.

The produce C = AB is a matrix of size (l, n). The (i, j) entry of C is

cij = a∗i bj .

From the Cauchy-Schwarz inequality, we have

|cij |2 ≤ ||ai||22 ||bj ||22.

Thus,

||AB||2F =
l∑

i=1

n∑
j=1

|cij |2 ≤
l∑

i=1

n∑
j=1

||ai||22 ||bj ||22 =
l∑

i=1

||ai||22
n∑
j=1

||bj ||22 = ||A||2F ||B||2F .

This completes our proof. �

The following theorem states that when a unitary matrix is multiplied to a matrix, the
2-norm and the Frobenius norm are unchanged.

12

Theorem 11 For any m × n matrix A, m ×m unitary matrix Q1 and n × n unitary matrix
Q2, we have

||A||2 = ||Q1A||2 = ||AQ2||2, ||A||F = ||Q1A||F = ||AQ2||F .

The 1-norm and the ∞-norm of a matrix have explicit formulas. The following theorem
states that the 1-norm is the maximum of column sum, and the ∞-norm is the maximum row
sum.

Theorem 12 Let aij be the (i, j) entry of an m× n matrix A, then

||A||1 = max
1≤j≤n

m∑
i=1

|aij |,

||A||∞ = max
1≤i≤m

n∑
j=1

|aij |.

The matrix 2-norm is somewhat more complicated. We first establish the following lemma:

Lemma 4 Let d1, d2, ..., dm be non-negative numbers, then

sup
x 6=0

d1|x1|2 + d2|x2|2 + ...+ dm|xm|2

|x1|2 + |x2|2 + ...+ |xm|2
= max

1≤j≤m
dj .

If we introduce a diagonal matrix D = diag(d1, d2, ..., dm), the left hand side above is the
so-called Rayleigh quotient

rD(x) =
x∗Dx

x∗x
.

Thus,
sup

06=x∈Cm
rD(x) = sup

x∈Cm, ||x||2=1

x∗Dx = max
1≤1≤m

di.

Now, we can establish a result on the 2-norm of an m×m Hermitian matrix.

Theorem 13 Let A be an m ×m Hermitian matrix, λ1, λ2, ..., λm be the eigenvalues of A,
then

||A||2 = max
1≤j≤m

|λj |.

Proof: We start with the eigenvalue decomposition

A = QΛQ∗,

where Q is unitary and Λ is the real diagonal matrix of the eigenvalues. Therefore,

||A||2 = ||Λ||2 = sup
z 6=0

||Λz||2
||z||2

= sup
z 6=0

√
z∗Λ2z

z∗z
= max

1≤j≤m
|λj |.

This completes the proof. �

Finally, we have the following result for the 2-norm of a general m× n matrix.

13

Theorem 14 For any complex matrix A, we have

||A||2 = square root of the largest eigenvalue of A∗A.

Proof: We consider an m× n matrix A. From the definition, we have

||A||2 = sup
x 6=0

||Ax||2
||x||2

= sup
x 6=0

√
x∗A∗Ax

x∗x
.

Let the eigenvalue decomposition of A∗A be

A∗A = UDU∗,

where U is unitary, D = diag(d1, d2, ..., dn) is the diagonal matrix of the eigenvalues of A∗A
(which must be non-negative). We let z = U∗x, then x∗x = z∗z and

||A||2 = sup
z 6=0

√
z∗Dz

z∗z
= max

1≤j≤n

√
dj .

1.5 Singular value decomposition

Let A be m× n and complex, we have the following singular value decomposition (SVD)

A = UΣV ∗

where U is an m ×m unitary matrix, V is an n × n unitary matrix, Σ is an m × n diagonal
matrix given as

Σ =

σ1

σ2
. . .


where σ1 ≥ σ2 ≥ ... ≥ 0. Notice that Σ is not a square matrix in general. The diagonal entries
of Σ are the singular values of A.

To give a proof for the existence of SVD, we need the following result: Let

C =
[
σ1 w∗

0 B

]
be an m ×m matrix, where B is (m − 1) × (n − 1), σ1 is a scalar and w∗ is a row vector of
length m− 1. If ||C||2 = |σ1|, then w∗ = 0.

This result can be proved from

|σ1| = ||C||2 ≥
||Cx||2
||x||2

for the particular choice of

x =
[
σ̄1

w

]
.

The right hand side can be proved to be greater than or equal to
√
|σ1|2 + ||w||22.

14

To prove the SVD, we start with σ1 = ||A||2 and argue that there must be a unit vector,
say v1, such that

||Av1||2 = σ1.

This is so, because
σ1 = sup

||x||2=1
||Ax||2

and the maximum must be reached for some unit vector. Now, for the unit vector

u1 =
Av1
||Av1||2

we have Av1 = σ1u1. Now, we can find unitary matrices U1 and V1, such that u1 and v1 are their
first columns. If we write down U∗1AV1, we realize that the first column must be σ1 followed by
zeros. That is

U∗1AV1 =
[
σ1 w∗

0 B

]
= C.

It is not difficult to realize that the matrix 2-norm is un-changed when unitary matrices are
multiplied from left or right. This leads to

||C||2 = ||A||2 = σ1.

Therefore, w∗ = 0. Now the matrix B has one row and one column less than matrix A. By
induction, we assume that the SVD of B is already calculated:

B = U2Σ2V
∗
2 .

We therefore have

A = U1

[
1

U2

] [
σ1

Σ2

] [
1

V ∗2

]
V ∗1 .

This gives rise to the SVD decomposition A = UΣV ∗, since U and V defined below are also
unitary:

U = U1

[
1

U2

]
, V ∗ =

[
1

V ∗2

]
V ∗1 , Σ =

[
σ1

Σ2

]
.

1.6 More on SVD

Once the SVD of a matrix is calculated, many mathematical properties of the matrix are
revealed.

1. The rank of the matrix A equals to the number of non-zero singular values of A.

2. Suppose the matrix A has rank r and that the singular value decomposition of A is
A = UΣV ∗. We write down the matrix U by its columns U = [u1, u2, ..., um] and V =
[v1, v2, ..., vn]. Then range(A) is spanned by the r vectors u1, u2, ..., ur. Here range(A)
is the set of vectors that can be written as a linear combination of the columns of A. It
is also called the column space of A. This results mean: if a vector b can be written as a
sum (with suitable coefficients) of the columns of A, i.e, b = Ax for some x, then b can
be written as a sum (with suitable coefficients) of u1, u2, ..., ur.

15

3. The null space of A is all these vectors y, such that Ay = 0. If rank(A) = r, then null(A)
is spanned by vr+1, vr+2, ..., vn.

4. In the proof of SVD, we already see that ||A||2 = σ1. We also have

||A||F =
√
σ2

1 + σ2
2 + ...+ σ2

r

assuming rank(A) = r.

5. The non-zero singular values of A are the square roots of the eigenvalues of A∗A and AA∗.

6. If A is Hermitian, i.e., A = A∗, the singular values of A are the absolute values of the
eigenvalues of A.

7. If A is square, say m × m, then | det(A)| = σ1σ2...σm. This is so, because | det(U)| =
|det(V)| = 1.

8. If A has rank r, then

A =
r∑
j=1

σjujv
∗
j .

That is, A is a sum of r rank-1 matrices.

9. Let Ak =
∑k

j=1 σjujv
∗
j , this matrix is a sum of k rank-1 matrices. For k ≤ r = rank(A),

we know that Ak must have rank k. Now the matrix Ak is the closest rank-k matrix to
A, under the matrix 2-norm and the Frobenius norm. Let B be an arbitrary matrix of
the same size as A and assume rank(B) ≤ k, then

||A−B||2 ≥ ||A−Ak||2 = σk+1

||A−B||F ≥ ||A−Ak||F =
√
σ2
k+1 + ...+ σ2

r

1.7 Exercises

1. Let A be a non-singular m ×m upper triangular matrix. Show that A−1 is also upper
triangular.

2. Show that if a matrix A is both triangular and unitary, then it is diagonal.

3. What can be said about the eigenvalues of a unitary matrix?

4. Let S be an m×m skew-hermitian, i.e. S∗ = −S.

• Show that the eigenvalues of S are pure imaginary.

• Show that I − S is nonsingular.

• Show that Q = (I − S)−1(I + S) is unitary.

16

5. Let u and v be m-vectors and A = I + uv∗. Show that if A is nonsingular, then A−1 =
I + αuv∗ for some scalar α. Find an expression for α. For what u and v is A singular. If
it is singular, what is null(A)?

6. Let || · || be a “induced matrix norm” for m×m matrices. Show that ||A|| ≥ |λ| if λ is an
eigenvalue of A.

7. Let x be a m-vector, A be an m× n matrix, show that

• ||x||∞ ≤ ||x||2 ≤
√
m||x||∞.

• 1√
n
||A||∞ ≤ ||A||2 ≤

√
m||A||∞.

8. Let u and v be two m-vectors and E = uv∗, show that ||E||2 = ||u||2||v||2.

9. Determine SVDs of the following matrices (by hand calculation):

(a)
(

3 0
0 −2

)
, (b)

(
2 0
0 3

)
, (c)

 0 2
0 0
0 0

 , (d)
(

1 1
0 0

)
, (e)

(
1 1
1 1

)
.

10. Consider the matrix

A =
(−2 11
−10 5

)
.

Determine, on paper, a real SVD of A. What are the 1-, 2-, ∞-, and Frobenius norms of
A?

17

Chapter 2

QR Factorization and Least Squares

2.1 Householder reflections

Given a column vector x = (x1, x2, ..., xm)∗ in Cm, we can find a unitary matrix H, such that

Hx =


σ

0
...
0


Since (Hx)∗(Hx) = x∗x = |σ|2, we have |σ| = ||x||2.

It is very easy to show that if w is a unit vector, then I − 2ww∗ is unitary. If v is some
vector, we can normalize v to get w = v/||v||2. Therefore,

H = I − 2ww∗ = I − 2
v∗v

vv∗

is a unitary matrix, for any vector v. If we try

Hx = (I − 2ww∗)x =


σ

0
...
0


we get

x−


σ

0
...
0

 = 2(w∗x)w

Define the above vector as v, we also require w = v/||v||2, then

v = 2
v∗x

||v||2
v

||v||2

or v∗v = 2v∗x. This leads to
σx1 = σx1

18

That is, the number σx1 must be real. Now, if x1 = |x1|eiθ, we must have

σ = ±||x||2eiθ.

The matrix H constructed above is the Householder reflection for the vector x. Notice that
there are in general two Householder reflections for a given vector x.

In the case that x1 is real (i.e. θ = 0 or θ = π), we can take σ as ||x||2 or −||x||2. Usually, we
want to avoid a subtraction in computing the first component of v (which is x1−σ). Therefore,
if x1 ≥ 0, we take σ = −||x||2. Otherwise, we take σ = ||x||2.

2.2 QR factorization

The QR factorization is A = QR, where Q is unitary and R is upper triangular. This is useful
for least squares problems (in section 2.3) and for eigenvalue problems. A special case of the
least squares problem is the linear system of equations Ax = b. Therefore, the QR factorization
is also useful for solving Ax = b. This factorization can be calculated using Householder
reflections. We find H1, H2, ..., Hk, such that

HkHk−1...H2H1A = R

If the matrix A is m × n, the integer k is m − 1 if m ≤ n and k = n if m > n. Notice that
A is a general m × n matrix. The matrix Q is actually (Hk...H2H1)−1. Most of the time
(for the purpose of solving linear system of equations, least squares problems and in other
applications), you do not need to explicitly calculate the matrix Q. Since Hj is unitary for j =
1, 2, ..., k, we conclude that their product Hk...H2H1 is also unitary. Therefore, (Hk...H2H1)∗ =
(Hk...H2H1)−1 is also unitary.

The matrix H1 is the Householder reflection based on the first column of the matrix A.
Therefore,

H1A =


∗ ∗ ... ∗
0 ∗ ... ∗
...

...
...

0 ∗ ... ∗


For this purpose, we take the first column of A as x, then define v by

v = x− σe1

where e1 is the first column of the identity matrix, σ = ±||x||2, and define H1 by

H1 = I − 2
v∗v

vv∗.

Next, we work on the second column. But it is the second column of H1A, not the second
column of A. Besides, we start with the second column of H1A from row 2 to row m only. We
do not want to touch the first row. We define x as the second column of H1A from row 2 to
row m. In MATLAB, this can be written as

x = (H1A)(2 : m, 2).

19

Then, we define v (which is a vector of length m− 1) by the same formula

v = x− σe1

where e1 is the first column of the (m− 1)× (m− 1) identity matrix, and we define H̃2 by

H̃2 = I − 2
v∗v

vv∗.

Since, we do not want to do anything for the first column, we set

H2 =
[

1
H̃2

]
.

Now, we use H2 to multiply H1A, we should obtain

H2H1A =


∗ ∗ ∗ ... ∗
0 ∗ ∗ ... ∗
0 0 ∗ ... ∗
...

...
...

...
0 0 ∗ ... ∗

 .
The third step is similar, we define x as the part of column 3 of H2H1A from row 3 to row m,
then define v and H̃3 in a similar fashion. Finally, we define

H3 =
[
I2

H̃3

]
where T2 is the 2× 2 identity matrix. Then, the matrix H3H2H1A will have zero entries in the
first three columns and below the diagonal.

If m ≤ n, we stop at Hm−1. If m > n, we stop at Hn. This gives rise to our definition of k
earlier.

In the special case that m > n, the upper triangular matrix R can be written as

R =
[
R1

0

]
where R1 is a square n× n upper triangular matrix and 0 is a (m− n)× n zero matrix. This
leads to

A = QR = Q1R1

where Q1 is a m× n matrix and it is the first n columns of Q. More precisely, let

Q = [q1, q2, ..., qm]

where qj is the j-th column of Q. Then

Q1 = [q1, q2, ..., qn].

We will call A = Q1R1 the reduced QR factorization.
The reduced QR factorization can be calculated by the Gram-Schmidt orthogonalization

process. This is a standard textbook material in linear algebra. There is a variant called
modified Gram-Schmidt orthogonalization process which has a different computing priority
(but does the same thing mathematically). The modified Gram-Schmidt process has better
numerical properties. However, the QR process based on Householder reflections is supposed
to be the best.

20

2.3 Least squares problems

Let A be a complex m × n matrix. We assume m > n and rankA = n, then Ax = b has m
equations for n unknowns. Usually, the linear system Ax = b has no solution (Sometimes, it
does). However, we can look for the minimum

min
x∈Cn

||Ax− b||2.

The minimum always exists and we assume the minimum is reached at x∗. That is

min
x∈Cn

||Ax− b||2 = ||Ax∗ − b||2.

The main results concerning the least squares problem are:

• b − Ax∗ is orthogonal to range(A). Here, range(A) is the vector space spanned by the
columns of A. In other words, a vector in range(A) is a linear combination of the columns
of A. Alternatively, if y ∈ range(A), then y = Az for some z ∈ Cn. In particular, the
columns of A themself are vectors in range(A). In any case, we have

y∗(b−Ax∗) = 0

if y = Az for any z ∈ Cn.

• x∗ can be computed by
A∗Ax = A∗b.

• The vector b has an orthogonal projection in range(A), which is

Ax∗ = A(A∗A)−1A∗b

The matrix P = A(A∗A)−1A∗ is the projection matrix.

Although we can solve x∗ from A∗Ax∗ = A∗b. It is usually not the most efficient method.
Besides, in finite precision calculations, this method based on A∗A can give less accurate solu-
tions. The method based on QR factorization is prefered.

We notice that
||Ax− b||22 = ||QRx−QQ∗b||22 = ||Rx−Q∗b||22

As before, we let

R =
[
R1

0

]
where R1 is n× n upper triangular. Since rank(A) = n = rank(R) = rank(R1), the matrix R1

is non-singular. Let us partition Q∗b as

Q∗b =
[
β

γ

]

21

where β is a vector of length n (we call it n-vector), and γ is a vector of length m − n. This
leads to

||Rx−Q∗b||22 = ||R1x− β||22 + ||γ||22

In order to obtain a minimum, we can force the first term to be zero. There is nothing we can
do for the second term. Therefore, x∗ can be calculated from R1x∗ = β and

min
x
||Ax− b||2 = ||γ||2

2.4 Givens rotation

Another important orthogonal matrix is the Givens rotation. A general m×m Givens rotation
is the same as the identity matrix, except four entries, say at (i, i), (i, j), (j, i) and (j, j). For
a given angle θ and a pair of integers i and j, we have

Gij(θ) =



1
1

. . .

c −s
. . .

s c
. . .

1
1


where c = cos(θ), s = sin(θ). The (i, i) and (j, j) entries are c and the (i, j) and (j, i) entries
are −s and s, respectively. (We assume i < j). For a given vector x, we can produce a zero at
its j-th component, by finding θ, such that[

c −s
s c

] [
xi

xj

]
=
[√

x2
i + x2

j

0

]
.

This can be done, if

c = cos θ =
xi√

x2
i + x2

j

, s = sin θ =
−xj√
x2
i + x2

j

The Given rotation can also be used to compute QR factorization. It is useful when A already
has a lot of zeros below the main diagonal.

2.5 Exercises

1. Determine the (a) eigenvalues, (b) determinant, and (c) singular values of a Householder
reflector.

22

2. Let A have the form

A =
[
R

S

]
where R is n × n upper triangular, and S is (m − n) × n and dense (assuming m > n).
Describe an algorithm using Householder reflections for reducing A to upper triangular
form. Your algorithm should not “fill in” the zeros in R and thus require fewer operations
than the general algorithm for QR factorization.

3. If A = R+ uv∗, where R is an upper triangular matrix, and u and v are column vectors,
describe an efficient algorithm to compute the QR factorization of A. (Hint: use Given
rotation).

4. Let x ∈ Rm and let H be a Householder reflection such that Hx = ±||x||2e1. Let
G1,2, G2,3, ..., Gm−1,m be Givins rotations and let G = G1,2G2,3...Gm−1,m. Suppose
Gx = ±||x||2e1. Must H equal G? You need to give a proof or a counterexample.

5. Let A be m× n and have full rank. Show that[
I A

A∗ 0

] [
r

x

]
=
[
b

0

]
has a solution where x minimizes ||Ax− b||2.

6. Let A be m × n, (m < n) and of full rank (i.e. rank(A) = m). Then, the linear system
Ax = b has infinite many solutions. Actually, the general solution depends on n − m
arbitrary parameters. How do you find the unique solution with the minimum 2-norm?

7. Describe a method to solve the constrained least squares problem:

min
x∈P
||Ax− b||2

where
P = {x ∈ Cn | c∗x = d}

for a given vector c and a scalar d.

8. Write a MATLAB program for calculating the QR factorization of the following 10× 10
matrix

A =


1 1 1
1 1 1

2
. . .

...
. . . 1 1

9 1


using Givens rotations. Submit the MATLAB program and a list for the diagonal entries
of R.

23

Chapter 3

Linear System of Equations

In this chapter, we discuss numerical methods for solving the linear system of equations Ax = b.
Although it is a very classical problem, numerical methods have special requirements. Two
algorithms are presented. The first is the Gaussian elliminaiton with partial pivoting. The
second method is for a symmetric positive definite matrix A. The method is the Cholesky
decomposition. We also introduce the concept of condition number. In the last section, we
develop the backward stability analysis. When you solve Ax = b by some method using finite
precision floating point numbers, you will get x̃ which is not the exact x. It is important to
know how accurate x̃ is. It turns out that it depends on the condition number of A and it
depends on whether or not your algorithm is stable.

3.1 Cholesky decomposition

A Hermitian matrix A is positive definite, if

x∗Ax > 0

for any non-zero vector x. Using the eigenvalue decomposition of A, we can prove that this is
equivalent to the condition that all eigenvalues of A are positive.

Theorem 15 Let A be a Hermitian matrix, then A is positive definite, if and only if all eigen-
values of A are positive.

Proof: Assume A is positive definite. Let λ be an eigenvalue of A and x 6= 0 be the corre-
sponding eigenvector. Thus,

Ax = λx.

We can multiply x∗, thus
λx∗x = x∗Ax > 0.

Therefore, λ > 0.
Assume all eigenvalues of A are positive. We have the eigenvalue decomposition:

A = QΛQ∗,

24

where Q is unitary and Λ is the diagonal matrix with the positive eigenvalues on the diagonal.
Then, for any x 6= 0, we have

x∗Ax = x∗QΛQ∗x = y∗Λy = λ1|y1|2 + λ2|y2|2 + ...+ λm|ym|2 > 0,

where y = Q∗x ne0 and λ1, λ2, ..., λm are the eigenvalues. �

Another condition is that A can be written as

A = SS∗

where S is a non-singular lower triangular matrix. In fact, we can insist that the diagonal
entries of S are all positive. This is called the Cholesky decomposition.

Theorem 16 A matrix A is Hermitian positive definite if and only if A = SS∗ for some
non-singular lower triangular matrix S.

Proof: If A = SS∗, then A is obviously Hermitian. Meanwhile, for any non-zero x, S∗x = y is
non-zero (because S is non-singular). Thus,

x∗Ax = x∗SS∗x = y∗y > 0.

Therefore, A is positive definite.
Next, we want to show that a Hermitian positive definite matrix always has a Cholesky

decomposition. This is proved by induction. The case for 1× 1 matrix is obvious. In this case,
A = a11 is positive. Then, S =

√
a11. We assume that a Cholesky decomposition is available

for any (m− 1)× (m− 1) Hermitian positive definite matrices. Let us write A as

A =
[
a11 w∗

w K

]
where w is a m− 1 vector, K is (m− 1)× (m− 1) and Hermitian positive definite (why?), and
a11 > 0 (why?). We then have

A =
[√

a11

w/
√
a11 I

] [
1

K − ww∗/a11

] [√
a11 w∗/

√
a11

I

]
.

It turns out that the matrix B = K−ww∗/a11 is still Hermitian positive definite (Why?). Now,
suppose we have a Cholesky decomposition for B, say B = S1S

∗
1 , then A = SS∗ for

S =
[√

a11

w/
√
a11 S1

]
.

This completes the proof. �

This leads to the following algorithm for Cholesky decomposition:

for k = 1, 2, ..., m
akk :=

√
akk

for i = k + 1, ..., m
aik := aik/akk

25

end
for j = k + 1, ..., m

for i = j, ..., m
aij := aij − aikājk

end
end

end

This algorithm transforms the lower triangular part of A to S. The above algorithm is backward
stable (the concept will be introduced in section 5 of this chapter). Wilkinson first established
the backward stability for computing Cholesky decomposition in 1968.

3.2 LU decomposition

The LU decomposition of a matrix A is the relationship

A = LU

where L is a unit lower triangular matrix, U is an upper triangular matrix. Unit lower means
that the diagonal entries are all 1. Consider the matrix A written as

A =
[
a11 b∗

c D

]
If a11 6= 0, we have

A =
[

1
c/a11 I

] [
a11 b∗

0 D − cb∗/a11

]
If the matrix B = D − 1

a11
cb∗ has a LU decomposition B = L1U1, then A = LU , where

L =
[

1
c/a11 L1

]
, U =

[
a11 b∗

U1

]
.

You can then write down an algorithm similar to the algorithm for Cholesky decomposition.
We notice that if a11 = 0, we can not start the first step. In general, a matrix A may or may
not have a LU decomposition. But for certain special matrices, LU decomposition is always
possible.

3.3 Partial pivoting

For a general matrix, even if LU decomposition exists, it can lead to inaccurate solutions for
the linear system Ax = b, if a small diagonal entries are encountered. The diagonal entries
(a11 in A, the first entry of D − 1

a11
cb∗ in the second step, etc) are called the pivots for LU

decomposition. To obtain more reliable numerical solutions, we use row exchanges to find the
largest entry in the column as the pivot. In the first step, we look for the largest entry in the
first column of A (in absolute value), say ap1,1, then we exchange row 1 with row p1. In the

26

second step, we exchange row 2 with row p2 (if p2 > 2). This is to move the largest entry in
the first column of D − 1

a11
cb∗ to the (2, 2) position in the original matrix.

The LU decomposition with partial pivoting computes PA = LU , where P is the permu-
tation matrix that represents all the row exchanges. Since L is a unit lower triangular matrix,
the diagonal entries of L always equal to 1 and they do not need to be stored. Thus, we use
the lower triangular part of A (without the diagonal) to store the matrix L and use the upper
triangular part of A (including the diagonal) to store the matrix U . The matrix P is not ex-
plicitly formed. Instead, we use the integer vector p (length n − 1) for the pivoting index. If
for the 3rd column, we exchanged the 3rd row with the 5-th row, then p(3)=5. The algorithm
is as follows:

For k = 1, 2, ...,m− 1,

Find pk, such that

|apk,k| = max{|akk|, |ak+1,k|, ..., |amk|}.

If pk > k, swap the k-th row with the pk-th row.

Reset the k-th column for matrix L.

aik := aik/akk for i = k + 1, ...,m.

Update the trailing (m− k)× (m− k) matrix:

aij := aij − aikakj for i, j = k + 1, ...,m.

end.

Here is an example:

A =

 1 5 3
2 4 −2
3 0 −1

 =⇒

 3 0 −1
2 4 −2
1 5 3

 =⇒

 3 0 −1
2/3 4 −4/3
1/3 5 10/3


=⇒

 3 0 −1
1/3 5 10/3
2/3 4 −4/3

 =⇒

 3 0 −1
1/3 5 10/3
2/3 4/5 −4


Finally,

L =

 1
1/3 1
2/3 4/5 1

 , U =

 3 0 −1
5 10/3
−4

 .

Also, we found p1 = 3 and p2 = 3. We can obtain matrix P as follows: P = P2P1, where P1

is the permutation matrix that exchanges the 1st and 3rd rows, P2 is the permutation matrix
that exchanges the 2nd and 3rd rows:

P1 =

 0 0 1
0 1 0
1 0 0

 , P2 =

 1 0 0
0 0 1
0 1 0

 , P = P2P1 =

 0 0 1
1 0 0
0 1 0

 .

27

If we start with a 3× 3 identity matrix, exchange the 1st row with the 3rd row, then exchange
the 2nd and 3rd row, we also get the right P .

To solve a system of equations Ax = b, we can use the decomposition PA = LU . First, we
find Pb, then we solve Ly = Pb, finally, we solve Ux = y. Let us consider: 1 5 3

2 4 −2
3 0 −1

x =

 4
10
7

 .

We have:

Pb =

 7
4
10

 .

Now solve y based on:  1
1/3 1
2/3 4/5 1

 y1

y2

y3

 =

 7
4
10

 .

We get:  y1

y2

y3

 =

 7
5/3
4

 .

Finally, we solve:  3 0 −1
5 10/3
−4

x1

x2

x3

 =

 7
5/3
4

 .

We get: x1

x2

x3

 =

 2
1
−1

 .

3.4 Condition number

If an algorithm for f(x) is backward stable, then it is a good algorithm. However, when it is
used to compute a function f(x), the result may still be inaccurate. Even though the computer
result following the algorithm becomes f(x̃), for x̃ close to x. It is still possible that f(x̃) and
f(x) are not close. For example,

x = 1000.3, y = 2000.4, z = −3001.7

we approximate x, y and z by rounding to 4 decimal digits:

x̃ = 1000, ỹ = 2000, z̃ = −3002.

The relartive errors for x̃, ỹ and z̃ are reasonably small. But

f(x, y, z) = x+ y + z = −1, f(x̃, ỹ, z̃) = −2.

28

The relative error of f(x̃, ỹ, z̃) is 100%. When this happens, we can not blame the roundings
(to 4 digits) we used, or the algorithm we add the three numbers. It is simply a fact that this
problem itself is sentitive to small errors in inputs. We will call such problem ill-conditioned.
We will define a number called condition number. When the condition number is large, the
problem itself (i.e. the function f(x) itself, it has nothing to do with any algorithm) is ill-
conditioned. Thus a small error in inputs will lead to large errors in the output. Ill-conditioned
problems are difficult to calculate (to obtain accurate solution) because of its own nature. This
has nothing to do with algorithms. It is a indication that the function is sensitive to small
errors in inputs.

As an example, we consider the function

f(x) = x1 + x2 + x3, for x = (x1, x2, x3)

We assume x̃ = (x̃1, x̃2, x̃2) is close to x. For this purpose, we use vector 1-norm. Therefore,
we assume

||x̃− x||1
||x||1

≤ ε.

Here ε is just some small number. It has nothing to do with machine epsilon. Meanwhile, xj ,
x̃j are just real numbers and they do not need to be floating point numbers. In this case, we
have

|f(x̃)− f(x)| ≤ ||x̃− x||1

Thus, ∣∣∣∣f(x̃)− f(x)
f(x)

∣∣∣∣ ≤ κ(x)
||x̃− x||1
||x||1

where
κ(x) =

||x||1
|f(x)|

=
|x1|+ |x2|+ |x3|
|x1 + x2 + x3|

is the condition number.
For a more general function f(x), we start with some norm for x and assume

||x̃− x||
||x||

≤ ε

then we attempt to find κ, such that

||f(x̃)− f(x)||
||f(x)||

≤ κε+O(ε2)

A norm for f is also needed, because f may be vector functions. Meanwhile, κ should be the
smallest number (may depends on x) such that the above is valid. This leads to the following
formal definition for the “relative” condition number:

κ = lim
δ→0

sup
||x̃−x||≤δ

(
||f(x̃)− f(x)||
||f(x)||

· ||x||
||x̃− x||

)
If f(x) is a scalar differentiable function of a scalar x, then

κ =
∣∣∣∣xf ′(x)
f(x)

∣∣∣∣ .
29

If x ∈ Cn, f(x) ∈ Cm and f is differentiable, then

κ =
||x|| · ||J ||
||f(x)||

where J is the Jacobian matrix

J =


∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

...
...

...
∂fm

∂x1

∂fm

∂x2
... ∂fm

∂xn


and ||J || is the induced matrix norm associated with the vector norm in Cn used for x and the
vector norm in Cm for f(x).

If f is the linear function f(x) = Ax for an m × n matrix, then J = A and the condition
number is

κ =
||A|| ||x||
||Ax||

.

Writing down x = A−1Ax and following ||x|| ≤ ||A−1|| ||Ax||, it is easy to show that

κ ≤ ||A|| ||A−1||.

For a given matrix A, the number ||A|| ||A−1|| shows up repeatedly for the conditioning of
various problems with A. We thus call it the condition number of the matrix A, denoted by
κ(A).

For the linear system, Ax = b. If we regard A as fixed, b as the input and x the output, we
have the function

x = A−1b = f(b).

Thus, the condition number for this function is

κ =
||b|| ||A−1||
||x||

≤ κ(A).

For the linear system Ax = b, we can also take b as fixed, A as the input and x the output.
This implies that we consider the function

x = A−1b = f(A)

Assuming A is an m×m matrix, the input space is Cm×m, and the output space is Cm. For Ã
close to A, let us assume that the solution is x̃, i.e. Ãx̃ = b. Let Ã = A+ δA, x̃ = x+ δx. We
have (A+ δA)(x+ δx) = b, or

Ax+ δAx+A(δx) + ... = b

Therefore,
δx ≈ A−1(δA)x

This leads to
||δx||
||x||

≤ ||A−1|| ||δA||+ h.o.t. = ||A−1|| ||A|| ||δA||
||A||

+ h.o.t.

Therefore, κ(A) = ||A−1|| ||A|| is the condition number for f(A) = A−1b. That is, it is the
condition number for the problem of linear system of equations with A as input and b as fixed
constant vector.

30

3.5 Backward stability analysis

3.5.1 Floating point arithmetic

Most computations on computers use finite precision numbers. A single precision number uses
32 bits and a double precision number uses 64 bits. We have the machine epsilon defined as

εM =
{

2−24 for single precision
2−53 for double precision

If x is real number, x will be rounded to fl(x), where fl(x) is the floating number closest to x.
We have |fl(x)− x| ≤ εM |x|, or fl(x) = x(1 + ε) with |ε| ≤ εM .

Now we consider the arithmetic operations between two floating point numbers. Let x and
y be floating point numbers (thus, fl(x) = x and fl(y) = y), we can add them: x + y. The
question is what will we get on a computer for x+ y. It is not difficult to see that x+ y is not
(in general) a floating point number. Therefore, we can not hope to get the exact answer. Most
recent computers are made such that the answer is fl(x + y). That, the computer result for
x+ y is the nearest floating point number to the exact answer. This is clearly the best we can
hope for. However, this does not mean that the computer will actually add the two numbers
exactly, then find the closest floating point number. In any case, for other basic operations
between two floating point numbers (subtraction, multiplication and division), we also assume
that is true. Namely, the computer result for x ∗ y, x− y and x/y are fl(x ∗ y), fl(x− y) and
fl(x/y), respectively.

3.5.2 Backward stability

It is important to notice that if a calculation involves more than 1 operations, we will not
get the nearest floating point number to the exact answer. For example, if x, y and z are all
floating point numbers and we try to add them together on a computer. The computer output
for x+ y + z is not (in general) fl(x+ y + z). What we get will depend on how we add them.
The computer result for (x + y) + z is usually different from that of x + (y + z). In general,
the computer result to calculate a function f(x) (where x may be vector or matrix, involving
floating point numbers) depends on your algorithm. An algorithm is like a computer program,
it specifies a sequence of calculations to find f(x). Since we can not get fl(f(x)) (which is
the best you can hope for using floating point numbers), what can we say about the computer
result for f(x) based on some algorithm, say T? We will denote this computer result by f̃T (x).
In may instances, we can prove that

f̃T (x) = f(x̃)

for x̃ close to x. This means that the computer result based on algorithm T is the exact result
of a slightly different input. In this case, we should be happy with the algorithm T . We say
that the algorithm T for computing the function f(x) is backward stable.

31

Consider the function f(x, y, z) = x + y + z, where x (now a scalar), y and z are floating
point numbers. If the algorithm T is f(x, y, z) = (x+ y) + z, then we get

f̃T (x, y, z) = fl(fl(x+ y) + z).

To prove backward stability, we use fl(a) = a(1 + ε) for |ε| ≤ εM . Here,

f̃T (x, y, z) = [(x+ y)(1 + ε1) + z](1 + ε2)

for |εj | ≤ εM . Therefore,
f̃T (x, y, z) = x̃+ ỹ + z̃

with

x̃ = x(1 + ε1)(1 + ε2)

ỹ = y(1 + ε1)(1 + ε2)

z̃ = z(1 + ε2).

Obviously, ∣∣∣∣ x̃− xx
∣∣∣∣ ≤ 2εM +O(ε2M),

∣∣∣∣ ỹ − yy
∣∣∣∣ ≤ 2εM +O(ε2M),

∣∣∣∣ z̃ − zz
∣∣∣∣ ≤ εM .

Back to the general function f(x). To prove backward stability, we need to show that
f̃T (x) = f(x̃). In the above example, the vector x is replaced by three scalars. The requirement
that x̃ is close to x is replaced by the conditions that each scalar with a tilde is close to the
original one without the tilde. We observe that “close” is measured by a relative error bounded
by a constant multiplied by machine epsilon. For a general case, we may not always want to
do this for each scalar in x. It is often easier to show that

||x̃− x||
||x||

≤ CεM +O(ε2M)

using a suitable vector norm (or a matrix norm, if x is a matrix). The constant C should be
independent of x and should not be too large. In any event, CεM most be much smaller than
1. When x is a vector (matrix), C may depends the length (sizes) of x, say n. If C depends
on n like 2n2 + 10n, then it is not too bad. We will still consider this as backward stable. On
the other hand, if C is like 2n, then, we can no longer accept this as backward stable. Since for
single precision, εM = 2−24. If C = 2n = 224 for n = 24, we may have the relative error (left
hand side) around 1. Thus, we can not say x̃ is close to x anymore.

3.5.3 Backward stability of triangular solver

To solve a linear system, Ax = b, we are essentially calculating the function f(A, b) = A−1b. In
this case, the inputs are the matrix A and vector b. The output is x = A−1b. We will consider
the special case, where the coefficient matrix is upper triangular, say R. We assume R is m×m
and we have

rij = 0, if i > j.

32

We also assume that the matrix R is invertible. Thus, rjj 6= 0 for j = 1, 2, ...,m.
There is a trivial algorithm for solving Rx = b. It is called back substitution (BS). From

the last equation
rmmxm = bm

we can solve xm, then we substitute into equation m− 1:

rm−1,m−1xm−1 + rm−1,mxm = bm−1

and we can solve xm−1. We continue to solve xm−2, ..., x2, and eventially, we use the first
equation to solve x1. This is a well defined algorithm. We can prove that this algorithm, say
BS, is backward stable.

For this purpose, we actually assume that the entries of R and b are floating point numbers.
The computer result following algorithm BS will be denoted as

x̃ = f̃BS(A, b)

The point here is to prove that

x̃ = f̃BS(R, b) = f(R̃, b̃)

for R̃ close to R and b̃ close to b. In fact, we can take b̃ = b. The main theorem states that∣∣∣∣ r̃ij − rijrij

∣∣∣∣ ≤ cijεM +O(ε2M).

The coefficients cij are the entries of the following matrix

C =



m 1 2 m− 2 m− 1
m− 1 1 m− 3 m− 2

. . .
...

...
4 1 2 3

3 1 2
2 1

1


.

3.6 Exercises

1. Let A be the following symmetric matrix

A =


4 2 −2 2
2 2 1 1
−2 1 14 −1
2 1 −1 β


find the values of β, such that A is positive definite.

33

2. Let A be a symmetric positive definite matrix, show that A has a decomposition:

A = UUT

where U is upper triangular with positive diagonal entries. Describe an algorithm for
calculating the matrix U .

3. Let A be a tridiagonal matrix, say

A =


a1 c1

b1 a2
. . .

. cm−1

bm−1 am


Thus, A can be stored in three vectors. Describe a method to calculate the LU decom-
position of A, using only three vectors. For LU decomposition of A with partial pivoting,
how many vectors are needed?

4. Gaussian elimination can be used to compute the inverse A−1 of a nonsingular matrix A,
(say m×m), though it is rarely necessary to do so.

(a) Describe an algorithm for computing A−1 by solving m system of equations, and
show that its asymptotic operation count is 8m3/3 flops.

(b) Describe a variant of your algorithm, taking advantage of sparsity, that reduces the
operation count to 2m3 flops.

(c) Suppose one wishes to solve n system of equations AX = B, where B is m×n. What
is the asymptotic operation count for doing this (i) directly from LU decomposition
and (ii) with a preliminary computation of A−1.

5. Let L be a unit lower triangular matrix (lower triangular and diagonal entries are all 1),
consider the problem of solving Lx = b. Describe an algorithm for this (it should be
forward substitution) and show that this algorithm is backward stable for m = 4, where
L is m × m. Namely, the computer result x̃ (obtained using floating point operations)
satisfies L̃x̃ = b̃. Give a precise definition of L̃ and b̃, and show that L̃ is close to L and b̃
is close to b. Is it possible to prove backward stability with b̃ = b?

6. Consider the Cholesky decomposition of a 2× 2 real symmetric positive definite matrix

A =
[
a b

b c

]
= SST =

[√
a

b/
√
a
√
c− b2/a

] [√
a b/

√
a√

c− b2/a

]
.

Let sij be the (i, j) entry of S, we use the following algorithm to calculate S:

s11 =
√
a, s21 = b/s11, s22 =

√
c− s221.

Show that this algorithm is backward stable. Namely, the computer result (using floating
point operations) S̃ satisfies S̃S̃T = Ã for some Ã close to A.

34

Chapter 4

Matrix Eigenvalue Problems

In this chapter, we study numerical methods for matrix eigenvalue problems. The first section
explains why the standard linear algebra method for eigenvalue problems has difficulties with
finite precision calculations. Some relative elementary methods are dsceribed in section 2. The
next three sections present the pwerful method QR method. The last section gives an efficient
new method for symmetric tridiagonal matrices.

4.1 Introduction

Let A be a square matrix, an eigenvalue λ is a solution of

det(A− λI) = 0.

Corresponding to an eigenvalue λ, we have an eigenvector x which is a non-zero solution of

(A− λI)x = 0, or Ax = λx.

The eigenvectors are determined up to an arbitrary constant. This chapter briefly describes
some algorithms for computing the eigenvalues and eigenvectors.

The characteristic polynomial is

p(λ) = det(λI −A).

Classical linear algebra textbooks usually suggest that you can find the polynomial

p(λ) = λn + cn−1λ
n−1 + ...+ c1x+ c0

then find the zeros of p(λ) for the eigenvalues. This works for small (say, 2 × 2 or 3 × 3)
matrices. But remember that we are doing numerical computations. For large matrices, we
only find approximate values for the polynomial coefficients cn−1, ..., c1, c0. What is surprising
is that a small error in polynomial coefficients can lead to very large error in the
zeros of the polynomial.

35

Wilkinson’s Example: For n = 20, p(λ) = (λ − 1)(λ − 2)...(λ − 20) can be regarded as
the characteristic polynomial of the diagonal matrix

A = diag{1, 2, ..., 20}.

We can write down c0 and c19,

p(λ) = λ20 − 210λ19 +− 20!

Now, let us introduce a small error to the coefficient c19, say ε = 10−9, and consider the
polynomial

p̃(λ) = λ20 + (−210 + ε)λ19 + ...− 20! = (λ− 1)(λ− 2)...(λ− 20) + ελ19

Now, if we try to solve p̃(λ) = 0, we will get 3 complex conjugate pairs. In particular, the
original zeros 15, 16 now becomes

15.457790724± 0.899341526i

The conclusion is that the zeros of a polynomial are very sensitive to the its coefficients. If we
only calculate the polynomial coefficients approximately, we can not have accurate eigenvalues
in general. In other words, the approach based on characteristic polynomial is bad.

4.2 Power, inverse power and Rayleigh quotient iterations

Power iterations: Let A be an n× n matrix, λ1, λ2, ..., λn be its eigenvalues. Let λ1 be the
largest (actually dominant) eigenvalue in absolute value. That is

|λ1| > |λj | for j = 2, 3, ..., n.

The power iteration method can be used to calculate the eigenvector corresponding to λ1.

• Set x0 as an arbitrary vector (initial guess);

• For k = 1, 2, ...,

xk =
Axk−1

||Axk−1||

The basic theory is that for almost any initial vector x0, the sequence {xk} “converges” to a
unit eigenvector:

lim
k→∞

[Axk − λ1xk] = 0

Inverse Power Iterations: Let A be n × n and non-singular, λ1, λ − 2, ..., λn be the
eigenvalues of A. We assume

0 < |λ1| < |λj | for j 6= 1.

The inverse power iteration method can be used to find the eigenvector corresponding to λ1. It
is mathematically equivalent to the power method applied to A−1 (the eigenvalues of A−1 are
1/λ1, 1/λ2, ..., 1/λn, with the dominant eigenvalue being 1/λ1). But we do not find A−1 first
and then use the power iteration method.

36

• Set x0 as an arbitrary non-zero vector (initial guess).

• For k = 1, 2, 3, ..., solve z from
Az = xk−1

and set xk as
xk =

z

||z||
.

Notice that

xk =
(A−1)kx0

||(A−1)kx0||
.

Rayleigh Quotient Iteration: If x is an eigenvector of the matrix A, how do you calculate
the eigenvalue (when x is given)? We have

Ax = λx, thus xTAx = λxTx.

Therefore,

λ =
xTAx

xTx
.

The term xTAx/(xTx) is the Rayleigh quotient. The Rayleigh quotient iteration method is a
procedure to calculate an eigenvalue and an eigenvector of a matrix. The basic idea is to apply
the inverse power method to A− λI, where λ is the approximate eigenvalue.

• Let x0 = arbitrary initial guess.

• For k = 1, 2, 3, ...,

λ =
xTk−1Axk−1

xTk−1xk−1

solve z from
(A− λI)z = xk−1

set xk as
xk =

z

||z||
.

The method has a very fast convergence. But it is not known which eigenvalue/eigenvector pair
will it converge to, for an arbitrary initial guess x0. The method developed in the next a few
sections allows us to find all the eigenvalues (and eigenvectors) of a matrix in a more systematic
way.

4.3 Reduction to tridiagonal / upper Hessenberg matrices

The eigenvalue problem of a real symmetric matrix can be reduced to the eigenvalue problem
of a real symmetric tridiagonal matrix. We use Householder reflections to find the matrix T

(symmetric and tridiagonal) and an orthogonal matrix Q, such that

A = QTQT .

37

For a general (complex) matrix, we can find a unitary matrix U and an upper Hessenberg
matrix H, such that A = UHU∗. We notice that (for the real symmetric case)

det(λI −A) = det(Q(λI − T)QT) = detQdet(λI − T) detQT = det(λI − T).

In fact, from QQT = I, we obtain det(Q) det(Q)T = (det(Q))2 = 1 or det(Q) = ±1.
To find the decomposition A = QTQT , we actually find

QTAQ = T

and Q is obtained as a product of Householder reflections. To illustrate this, we consider the
case of a 4× 4 matrix A

A =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
The main steps are:

1. Find H1 (Householder reflection), such that

H1AH
T
1 =


∗ ∗ 0 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
2. Find H2 (Householder reflection), such that

H2H1AH
T
1 H

T
2 =


∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

 = T.

Now, the matrix Q is given by

QT = H2H1, or Q = HT
1 H

T
2 = H1H2.

The matrix T is also symmetric, since

T T = QTAT (QT)T = QTAQ = T.

For the matrix H1, we construct this matrix by a Householder reflection that works on rows
2, 3, 4 (keep row 1 unchanged). This will produce two zeros in row 3 and row 4. What about
HT

1 multiplied from the right side of the matrix? It will work on the columns 2, 3 and 4, and
it will not change column 1. Let us write down the matrix A as

A =


a1 a2 a3 a4

a2 ∗ ∗ ∗
a3 ∗ ∗ ∗
a4 ∗ ∗ ∗

 .

38

We construct the 3× 3 Householder reflection H̃1 such that

H̃1

 a2

a3

a4

 =

σ1

0
0


where σ1 = ±

√
a2

2 + a2
3 + a2

4 and

H̃1 = I − 2
vT1 v1

v1v
T
1 , for v1 =

 a2 − σ1

a3

a4

 =

 a2 ∓
√
a2

2 + a2
3 + a2

4

a3

a4

 .
Now the 4× 4 matrix H1 is given by

H1 =
[

1
H̃1

]
.

Now, we have

H1AH
T
1 =


a1 σ1 0 0
σ1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
Let us assume that H1AH

T
1 can be further written as

H1AH
T
1 =


a1 σ1 0 0
σ1 b2 b3 b4

0 b3 ∗ ∗
0 b4 ∗ ∗

 .
Now we find H2 based on the Householder reflection for row 3 and row 4. We have

H2H1AH
T
1 H

T
2 =


a1 σ1 0 0
σ1 b2 σ2 0
0 σ2 ∗ ∗
0 0 ∗ ∗

 ,
where σ2 = ±

√
b23 + b24 and

H2 =

 1
1

H̃2

 , H̃2 = I − 2
vT2 v2

v2v
T
2 , v2 =

[
b3 − σ2

b4

]
=
[
b3 ∓

√
b23 + b24
b4

]
.

Next, we give some details for an efficient implementation of this tridiagonalization process.
Let us denote the matrix A by

A =
[
a1 αT1
α1 Â

]
where αT1 = (a2, a3, a4), and

H1AH
T
1 =

[
a1 βT1
β1 A1

]

39

where βT1 = (σ1, 0, 0). The matrix Â is the given 3×3 matrix obtained from A by retaining the
last three rows and columns. The matrix A1 is what we need to calculate. They are related by

A1 = H̃1ÂH̃
T
1 .

Since H̃1 has a special simple form, we can efficiently evaluate A1. Let γ = 2/(vT1 v1), we have
H̃1 = I − γv1vT1 and

A1 = (I − γv1vT1)Â(I − γv1vT1) = Â− γÂv1 vT1 − γv1 vT1 Â+ γ2v1 v
T
1 Âv1 v

T
1

This can be written as
A1 = Â+ gvT1 + v1g

T

for

g = −γu+
γ2(vT1 u)

2
v1 where u = Âv1.

Thus, the evaluation of A1 follows these steps:

• u = Âv1

• τ = vT1 u,

• g = −γu+ γ2τ
2 v1

• A1 = Â+ gvT1 + v1g
T .

For a general n × n matrix, the first and last two steps require about 2n2 operations each.
Each elements of A1 requires 4 operations to calculate, but A1 is a symmetric matrix and only
about n2/2 entries need to be calculated. The 2nd and 3rd steps require O(n) operations. The
total number of operations required for evaluating H1AH

T
1 is around 4n2. The whole process

of reduction to a tridiagonal matrix requires about 4
3n

3 operations.

4.4 The QR algorithm

The QR algorithm is a widely used method for calculating the eigenvalues and eigenvectors.
Since a general real symmetric matrix A can be reduced to a symmetric tridiagonal matrix T , we
concentrate on the eigenvalue problem of T here. The basic idea is the following transformation:

QR = T − sI

T̂ = sI +RQ.

For a given tridiagonal matrix T , we choose a real number s, then find the QR factorization of
the matrix T − sI. This gives T = sI + QR, but we calculate the new matrix T̂ = sI + RQ.
Since in general QR 6= RQ, we expect T̂ 6= T . However, we have

• T̂ is also symmetric tridiagonal;

• T̂ has the same eigenvalues as T .

40

Since T̂ = sI +QTQRQ = QT (sI +QR)Q = QTTQ, we obtain the symmetry T̂ T = T̂ and the
fact of same eigenvalues (see similar arguments in the previous section for A and T). The fact
that T̂ is also tridiagonal, can be proved.

If we denote the original matrix T (obtained in the previous section through the reduction
from A) as T0 and T̂ by T1, then we can repeat the above transformation for T1 to obtain T2,
etc. That is, for k = 0, 1, 2, ...

• find a real number sk (somehow), and find the QR factorization of Tk − skI,

QR = Tk − skI

• calculate Tk+1

Tk+1 = skI +RQ.

The hope is that

Tk →


∗ ∗
∗

. ∗
∗ ∗ 0

0 λ1

 =
[
T̃0

λ1

]

as k →∞, where λ1 is an eigenvalue of A (also T0, T1, ...), but it is not necessarily the largest
or smallest eigenvalue. More precisely, we hope the (n, n) entry of Tk converges to an eigenvalue
and the (n− 1, n) entry (which is the same as the (n, n− 1) entry) converges to 0. If this works
out, we find one eigenvalue λ1 and then we continue with the (n− 1)× (n− 1) matrix T̃0.

The number s (or sk) is called the shift. One possible choice is to choose sk as the (n, n)
entry of Tk. The Wilkinson shift is to choose sk as the eigenvalue of the trailing 2 × 2
matrix of Tk which is closer to the (n, n) entry. More precisely, we denote

Tk =


α

(k)
1 β

(k)
1

β
(k)
1

.

. . . α
(k)
n−1 β

(k)
n−1

β
(k)
n−1 α

(k)
n


Thus, sk is an eigenvalue of

(
α

(k)
n−1 β

(k)
n−1

β
(k)
n−1 α

(k)
n

)
. Since this matrix has two eigenvalues, we choose

sk to be the eigenvalue that is closer to α(k)
n .

4.5 Givens rotation

For given a and b, we can have a 2× 2 orthogonal matrix

G =
[
c s

−s c

]

41

(where c2 + s2 = 1), such that

G

[
a

b

]
=
[∗

0

]
One possible solution is

c =
a√

a2 + b2
, s =

b√
a2 + b2

In that case, we actually have

G

[
a

b

]
=
[√

a2 + b2

0

]
.

The orthogonal matrix G is called Givens rotation, since it can be regarded as a plane rotation
of angle θ, where c = cos(θ) and s = sin(θ).

For a general vector x, say

x =



...
a
...
b
...


where the i-th and j-th elements of x are a and b, respectively. We can take

Gij =



. . .

c s
. . .

−s c
. . .

 ,

such that

Gijx =



...√
a2 + b2

...
0
...


The matrix Gij is the same as the identity matrix, except the four entries (i, i), (i, j), (j, i) and
(j, j). The formulas for c and s are the same as before. The vector Gijx has the same elements
as x, except the i-th and j-th elements.

The QR algorithm for matrix eigenvalue problem requires the QR factorization of a tridi-
agonal matrix T − sI in each step. Since the tridiagonal matrix has many zero entries, it is
important to minimize the required computation by taking advantage of this. Givens rotation
can be used here.

Let us consider the following 4× 4 case.

T − sI =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 .

42

In the first step, we produce a zero at the location (2, 1). This can be achieved by a Givens
rotation for rows 1 and 2 (based on the entries at (1,1) and (2,1)), say G12.

G12(T − sI) =


♠ ♠ ♠
0 ♠ ♠
∗ ∗ ∗
∗ ∗

 ,
where ♠ is a new entry (in general non-zero) calculated in this step. Next, we use the two
entries at (2,2) and (3,2) to define a Givens rotation and produce a zero at (3,2).

G23G12(T − sI) =


∗ ∗ ∗
♠ ♠ ♠
0 ♠ ♠
∗ ∗

 ,
Finally, we use the two entries at (3,3) and (4,3) to define the Givens rotation G34. We have

G34G23G12(T − sI) =


∗ ∗ ∗
∗ ∗ ∗
♠ ♠
0 ♠

 = R

Now, we let QT = G34G23G12 or Q = GT12G
T
23G

T
34, we have T − sI = QR.

This is followed by calculating the tridiagonal matrix T̂ in T̂ − sI = RQ = RGT12G
T
23G

T
34.

We can minimize our computation effort by multiplying GT12, GT23 and GT34 one-by-one. We have

R =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗


Then

RGT12 =


♠ ♠ ∗
♠ ♠ ∗ ∗

∗ ∗
∗


where ♠ is a new entry calculated in this step. Next,

RGT12G
T
23 =


∗ ♠ 0
∗ ♠ ♠ ∗
♠ ♠ ∗

∗


Actually, because of symmetry, the (1, 2) entry must equal the (2, 1). Thus, only 4 entries have
to be calculated in this step. Finally,

RGT12G
T
23G

T
34 =


∗ ∗
∗ ∗ ♠ 0
∗ ♠ ♠
♠ ♠

 = T̂ − sI

43

Again, the (2,3) entry should be equal to (3,2) entry and only 4 new entries need to be calculated.
In general, for an n × n matrix T , the new matrix T̂ can be obtained in O(n) operations.

There are n− 1 Givens rotations. When a Givens rotation (or its transpose) is multiplied from
left (or right), only 5 (or 4) new entries have to be calculated, requiring O(1) operations.

4.6 Divide and conquer method

This is a method for the eigenvalue problem of symmetric tridiagonal matrices. It was orig-
inally developed by J. J. M Cuppen in 1981 and later enhanced by others. It is suitable for
calculating all eigenvalues and eigenvectors of a symmetric tridiagonal matrix. The QR method
with Wilkonson’s shift is an excellent method, but it is not as efficient as this method if all
eigenvectors (and eigenvalues) are required. However, if only the eigenvalues are needed, the
QR method is more efficient.

Let T be the following symmetric tridiagonal matrix:

T =


a1 b1

b1 a2
. . .

. bm−1

bm−1 am

 ,
we take k ≈ m/2 and write T as

T =
[
T1

T2

]
+ bkvv

T

where

T1 =


a1 b1

b1 a2
. . .

. bk−1

bk−1 ak − bk

 , T2 =


ak+1 − bk bk+1

bk+1 ak+2
. . .

. bm−1

bm−1 am


and

vT = [0, ..., 0, 1, 1, 0, ..., 0].

The important feature here is that the matrix bkvvT is a rank-1 matrix. Now, we assume that
the eigenvalue decomposition of T1 and T2 are already calculated:

Ts = QsDsQ
T
s , s = 1, 2

where Q1, Q2 are orthogonal, D1 and D2 are diagonal. We have

T = Q
[
D + bkzz

T
]
QT

where

Q =
[
Q1

Q2

]
, D =

[
D1

D2

]
, z = QT v.

44

Therefore, the eigenvalue problem of T is related to the eigenvalue problem of D+bkzz
T . More

precisely, let (λ,w) be an eigenpair of T , i.e., Tw = λw, then

[D + bkzz
T]u = λu

where
u = QTw.

Let D = diag(d1, d2, ..., dm), zT = (z1, z2, ..., zm), we have bkzzTu = λu−Du or

bk(zTu)z =


(λ− d1)u1

(λ− d2)u2
...

(λ− dm)um


Thus, the vector in the right hand side is proportional to z. Let

bk(zTu) = γ

then
γzj = (λ− dj)uj

Solve uj and insert into bk(zTu) = γ, we get

bk

m∑
j=1

z2
j

λ− dj
= 1. (4.1)

In summary, we can solve the nonlinear equation (4.1) for the eigenvalue λ. We should get
m eigenvalues. For each eigenvalue, the corresponding unit eigenvector is given by

u =
(λI −D)−1z

||above||2
(4.2)

The method is supposed to be recursive. The eigenvalue problem for the smaller tridiagonal
matrices T1 and T2 are obtained in a similar fashion by breaking the matrices into even smaller
matrices. The total number of operations required for this method is 4m3/3. If the original
matrix A is a general symmetric matrix, then a step to reduce A to tridiagonal T is required.
It is also necessary to keep the orthogonal matrix for this reduction step and to transform the
eigenvectors of T to those of A. This requires the additional of 8m3/3 operations. Therefore,
the total required number of operations is 4m3 for computing all m eigenvalues and eigenvectors
of A.

To solve m eigenvalues from (4.1), we need to assume that zj 6= 0 for all j and the m diagonal
entries of D are distinct. What happens if these conditions are not satisfied? If zj = 0, then we
get an eigenvalue λ = dj , the corresponding eigenvector is ej (the j-th column of the identity
matrix). If some di equals dj , then we introduce an orthogonal matrix G, such that

G(D + bkzz
T)GT = D + bk(Gz)(Gz)T

45

and the j-th (or i-th) component of Gz is zero. The matrix G is a Givens rotation for rows i
and j and it differs from the identity matrix in only four entries. In particular, GDGT = D.

A main problem is that the eigenvectors calculated from (4.2) are not necessarily orthogonal
to each other, when the eigenvalues are calculated approximately and when some eigenvalues
are close to each other. This is the reason that the method is not widely used for more than 10
years after the publication of Cuppen’s paper. This problem was solved by Gu and Eisenstat
(1995). While the calculated eigenvalues are approximate eigenvalues of D + bkzz

T , they are
the eact eigenvalues of D + bkz̃z̃

T for some z̃. From this, you can get the exact eigenvectors of
D + bkz̃z̃

T , which should be orthogonal to each other.

4.7 Exercises

1. Let A be a 3× 3 real symmetric matrix. Let the eigenvalues of A be λ1, λ2 and λ3, and
the corresponding unit eigenvectors be q1, q2 and q3. We assume that λ1 6= λj for j = 2, 3.
Furthermore, we can assume that the eigenvectors are orthogonal to each other. Let x0

be a vector that is close to q1:

x0 = q1 + ε2q2 + ε3q3,

where ε1, ε2 are small constants. Calculate x1 by one step of the Rayleigh quotient
method.

2. For the following symmetric matrix A, find a symmetric tridiagonal matrix T , such that
A and T have the same eigenvalues.

A =


2 1 0 0
1 1 2 2
0 2 0 −1
0 2 −1 4

 .

3. (Relation between QR method and the Rayleigh quotient iteration) Let A be a real n×n
symmetric (non-singular) matrix and en = [0, 0, ..., 0, 1]T be the last column of the identity
matrix. Define vector x1 by

Az = en, x1 = z/||z||.

Show that x1 = ±qn, where qn is the last column of the matrix Q and A = QR is the QR
factorization of A. If Â = RQ, show that the (n, n) entry of Â is the Rayleigh quotient
xT1Ax1 = xT1Ax1/(xT1 x1).

4. Find the QR factorization of

T =

 0 1 0
1 2 ε

0 ε 0


then find T̂ = RQ.

46

5. Let A be a real symmetric n × n matrix, δA be a small real symmetric perturbation.
Let the eigenvalues and the unit eigenvectors of A be λ1, λ2, ..., λn and q1, q2, ..., qn,
respectively. Assume further that λ1 is a single eigenvalue. Let λ1 + δλ be the eigenvalue
of A + δA which is close to λ1 and q1 + δq be the corrresponding eigenvector. Since
eigenvectors are up to a constant, we assume δq is orthogonal to q1. Find an approximate
formula for δλ. If we write down δq = σ2q2 + σ3q3 + ... + σnqn, find an approximate
formula for σj .

6. Suppose we have a 3 × 3 matrix and wish to introduce zeros by left- and/or right-
multiplications by unitary matrices Qj such as Householder reflectors or Givens rotations.
Consider the following three matrix structures:

(i)

 ∗ ∗ 0
0 ∗ ∗
0 0 ∗

 (ii)

 ∗ ∗ 0
∗ 0 ∗
0 ∗ ∗

 (iii)

 ∗ ∗ 0
0 0 ∗
0 0 ∗


For each one, decide which of the following situations holds, and justify your claim.

(a) Can be obtained by a sequence of left-multiplications by matrices Qj ;

(b) Not (a), but can be obtained by a sequence of left- and right-multiplications by
matrices Qj ;

(c) Cannot be obtained by any sequence of left- and right-multiplications by matrices
Qj .

7. Let T be a real symmetric tridiagonal matrix, T = QR is its QR factorization. Which
entries of R and Q are in general non-zero? Show that T̂ = RQ is also symmetric
tridiagonal. Explain how Givens rotations or 2 × 2 Householder reflections can be used
in the computation of the QR factorization of T , reducing the operation count to O(m),
if T is m×m.

8. To compute the SVD of a matrix A, we can first reduce A to a bi-diagonal matrix. Starting
with the QR factorization of the matrix A, i.e. A = QR, describe a method to factor the
upper triangular matrix R as

R = U∗BW

where B is bi-diagonal (only (i, i) and (i, i + 1) entries are non-zero) and W and U are
unitary. If you have found the SVD of B, what is the SVD of A?

9. How many eigenvalues does

A =


1 1 0 0
1 1 1 0
0 1 2 1
0 0 1 3


have in the interval [1, 2]?

47

Chapter 5

Iterative Methods

In this chapter, we consider two iterative methods. The first section (conjugate gradient
method) is about the linear system Ax = b, where A is large sparse symmetric positive definite.
Here the size of A is large, thus a direct method by Cholesky decomposition is expensive. But A
is sparse — only very few non-zeros for each row or each column, thus it is efficient to multiply
A with any given vector. Iterative methods produce a sequence of approximate solutions x1,
x2, In section 2, we introduce the Lanczos method, it is mainly used as an iterative method
for the eigenvalue problems Ax = λx, where A is a large sparse symmetric matrix. Actually,
the Lanczos method is another method that reduces A to a symmetric trodiagonal matrix, but
the process can be truncated to give approximate solutions of the eigenvalue problem.

5.1 The Conjugate Gradient Method

5.1.1 Background

The conjugate gradient method is a method for solving Ax = b, where A is a symmetric positive
definite matrix. It is an iterative method that produces the sequence of approximations: x1,
x2, x3, Let A be m×m, define the Krylov space by

Kn =< b,Ab,A2b, ..., An−1b >

This is the vector space spanned by the vectors b, Ab, ..., An−1b. It is the “column space” of
the Krylov matrix

Kn = [b, Ab,A2b, ..., An−1b].

The conjugate gradient method finds xn ∈ Kn which solves the minimization problem

min
x∈Kn

(x− x∗)TA(x− x∗)

where x∗ = A−1b is the exact solution. However, since

(x− x∗)TA(x− x∗) = 2φ(x)− bTA−1b, for φ(x) =
1
2
xTAx− xT b.

It is equivalent to say that xn solves
min
x∈Kn

φ(x).

48

5.1.2 1-D optimization problem

For a given point xn−1 and a given direction pn−1, we have a line that passes through xn−1

along the direction of pn−1. The points on the line are given by

xn−1 + αpn−1 for α ∈ R

Alternatively, we denote this line by

xn−1+ < pn−1 >

where < pn−1 > is a 1-D vector space. We can minimize the function φ along this line

min
x∈xn−1+<pn−1>

φ(x) = min
α∈R

φ(xn−1 + αpn−1)

Now, φ(xn−1 + αpn−1) is a quadratic polynomial of α, its minimum is reached at

αn =
rTn−1pn−1

pTn−1Apn−1

The minimum is obtained at xn−1 + αnpn−1.
If xn−1 happens to be a conjugate gradient iteration, i.e., xn−1 minimizes φ(x) in Kn−1.

The above procedure gives
x̃n = xn−1 + αnpn−1

Of course, x̃n is usually not xn which minimizes φ in Kn. However, we will find a special way
of choosing pn−1, such that x̃n = xn.

5.1.3 Subspace minimization problem

We now look for xn ∈ Kn such that

φ(xn) = min
x∈Kn

φ(x)

We assume that Kn has the following basis

p0, p1, ..., pn−1

Now,
min
x∈Kn

φ(x) = min
α1,α2,...,αn∈R

φ(α1p0 + α2p1 + ...+ αnpn−1)

To find the minimum, we solve the system

∂φ

∂αi
= 0 for i = 1, 2, ..., n.

In fact,
∂φ

∂αi
= pTi−1A(α1p0 + α2p1 + ...+ αnpn−1)− pTi−1b

49

Therefore, we have the system for α1, α2, ..., αn:

C


α1

α2
...
αn

 =


pT0 b

pT1 b
...

pTn−1b


where the (i+ 1, j + 1) entry of C is pTi Apj .

If we assume that
pTi Apj = 0 if i 6= j

then the matrix C is diagonal and αi is easily solved

αi =
pTi−1b

pTi−1Api−1
.

Furthermore, if we assume that {p0, p1, ..., pi−1} is a basis for Ki for all i (we only assume that
for i = n earlier), then

xn−1 = α1p0 + α2p1 + ...+ αn−1pn−2

is the conjugate gradient iteration that minimizes φ in Kn−1 and

xn = xn−1 + αnpn−1

Indeed, you can show that the formula for αn here is equivalent to the formula in last section.
Therefore, the subspace minimization problem can be solved by 1-D optimization process under
these assumptions on the search vectors p0, p1, ..., pn−1.

5.1.4 Orthogonal residual

Clearly, we need a simple way to find these vectors p0, p1, It turns out that the following
property on the residual is very important.

Let xn be the n-th conjugate gradient iteration, rn = b−Axn be the residual, then

rn ⊥ Kn.

To prove this, we need a result for least squares problem. Let B be m×n (assuming m ≥ n
and rank(B) = n), if yn solves the least squares problem

||Byn − d||2 = min
y∈R

n
||By − d||2

then
Byn − d ⊥ By for any y ∈ Rn

It can be easily shown by using the formula yn = (BTB)−1BTd.
Now, xn solves the subspace minimization problem

min
x∈Kn

√
(x− x∗)TA(x− x∗)

50

we need to change this to a standard least squares problem, then use the above result. We let

x = Kny, xn = Knyn

where Kn is the Krylov matrix (which we assume is full rank) and also introduce a Cholesky
decomposition A = STS for some non-singular upper triangular matrix S, then√

(x− x∗)TA(x− x∗) = ||By − d||2

where
B = SKn, d = Sx∗

Since yn solves the least squares problem min ||By − d||, we have

Byn − d ⊥ By for any y ∈ Rn

This is the same as
rn ⊥ x for any x ∈ Kn

5.1.5 The next conjugate direction

Suppose xj is the conjugate gradient iteration that solves the subspace minimization problem
minx∈Kj φ(x), it is not difficult to realize that

Kn =< x1, x2, ..., xn >=< r0, r1, ..., rn−1 >

where r0 = b−Ax0 = b. We also assume that

Kj =< p0, p1, ..., pj−1 > for j ≤ n

The question now is how to choose pn, such that

• Kn+1 =< p0, p1, ..., pn >;

• pTnApj = 0 for n = 0, 1, 2, ..., n− 1.

To satisfy the first condition, we realize that rn = b − Axn is in Kn+1 (and not in Kn),
therefore, we can choose

pn = rn + a component in Kn

to satisfy the second condition. The component in Kn can be written as

βnpn−1 + (∗)pn−2 + ...+ (∗)p0

since {p0, p1, ..., pn−1} is a basis of Kn. We use the condition pTj Apn = pTnApj = 0 (since
A = AT) to find the coefficients. For j ≤ n− 2, we have

0 = pTj Apn = pTj Arn + (∗)pTj Apj

Now, pTj Arn = rTn (Apj) = 0, since pj ∈ Kn−1 or Apj ∈ Kn (and rn ⊥ Kn as in the last section),
therefore, (∗) = 0. Meanwhile, we obtain

pn = rn + βnpn−1 for βn =
rTnApn−1

pTn−1Apn−1

51

5.1.6 The conjugate gradient iteration

We now have the following conjugate gradient method:

• Let x0 = 0, r0 = b, p0 = r0.

• For n = 1, 2, 3, ...

αn =
rTn−1rn−1

pTn−1Apn−1

xn = xn−1 + αnpn−1

rn = rn−1 − αnApn−1

βn =
rTn rn

rTn−1rn−1

pn = rn + βnpn−1

We notice that the formulas for αn and βn are different. But they are equivalent to the formulas
in previous sections. One step of this algorithm requires

• Evaluate v = Apn−1;

• 2m operations for pTn−1v = pTn−1Apn−1;

• 2m operations for xn = xn−1 + αnpn−1;

• 2m operations for rn = rn−1 − αnv = rn−1 − αnApn−1;

• 2m operations for rTn rn;

• 2m operations for pn = rn + βnpn−1

This is a total of 10m operations, plus one matrix vector multiplication.

5.1.7 Optimal polynomial problem

Let A be an m×m positive definite matrix, we can define a norm by:

||y||A =
√
y∗Ay

for any vector of length m. We already know that the CG solution xn solves the following
minimization problem:

min
x∈Kn

φ(x).

It turns out that φ(x) is closely related to ||x − x∗||2A, where x∗ = A−1b is the exact solution.
Therefore, xn also solves

min
x∈Kn

||x− x∗||A.

In other words,
||xn − x∗||A ≤ ||x− x∗||A for any x ∈ Kn. (5.1)

52

We also introduce the error:
en = x∗ − xn.

In particular, e0 = x∗ since x0 = 0. If we write down xn as

xn = c1b+ c2Ab+ ...+ cnA
n−1b

then
en = [I − c1A− c2A2 − ...− cnAn]A−1b = pn(A)e0

where pn is a polynomial of degree n and pn(0) = 1. While xn is related to the polynomial pn,
a vector in Kn can be related to a polynomial q. Then (5.1) can be written as

||pn(A)e0||A ≤ ||q(A)e0||A (5.2)

for any polynomial q with degree ≤ n and q(0) = 1.

5.1.8 Rate of convergence

The inequality (5.2) gives us a way to establish an estimate for the rate of convergence. We
can try to choose some q, such that the right hand side of (5.2) is small. It turns out that
the Chebyshev polynomial is useful for this purpose. The left hand side of (5.2) is just ||en||A.
After some calculation with the Chebyshev polynomials, we can establish the following:

||en||A
||e0||A

≤ 2
[√

κ− 1√
κ+ 1

]n
(5.3)

where κ = λ1/λm is the condition number of A (λ1 and λm are the largest and smallest
eigenvalues of A).

5.2 Lanczos method

5.2.1 Lanczos tridiagonalization process

Let A be an m×m real symmetric matrix, we can find an orthgonal matrix Q, such that

AQ = QT

where T is real symmetric tridiagonal. The first method is based on Householder reflections (or
Givens rotations). The Lanczos method is an alternative. As a matter of fact, the matrix Q is
not unique. The first column can be any unit vector. But if the first column of Q is fixed, the
other columns are determined up to a plus or minus sign (Q is real here) in the general case.
Let us write the columns of Q:

Q = [q1, q2, ..., qm]

and write down the entries of T

T =


α1 β1

β1 α2
. . .

. βm−1

βm−1 αm



53

We can obtain an algorithm for computing Q and T by comparing columns of AQ = QT . For
the first column, we have

Aq1 = α1q1 + β1q2.

As we have mentioned earlier, q1 is an arbitrary (but unit) vector. We know that q2 is orthgonal
with q1 (i.e., q∗1q2 = 0). Thus,

q∗1Aq1 = α1q
∗
1q1 + 0 = α1

Next, we define
w = Aq1 − α1q1.

It is possible that w is a zero vector (when q1 is an eigenvector of A and α1 is the corresponding
eigenvalue). But in general, w 6= 0. Then we define

β1 = ||w||2

and
q2 = w/β1.

Next, we compare the second columns of AQ = QT . That is

Aq2 = β1q1 + α2q2 + β2q3

This gives rise to

α2 = q∗2Aq2

w = Aq2 − β1q1 − α2q2

β2 = ||w||2
q3 = w/β2 if β2 6= 0

If β2 = 0, we can continue with an arbitrary q3 which is a unit vector orthogonal to q1 and q2.
The above is basically the general step, if you change the subscripts 1, 2 and 3 to n− 1, n and
n+ 1, respectively.

For symmetric matrices, the methods discussed in a previous chapter on matrix eigenvalue
problems require such a tridiagonalization process. However, the Lanczos method is not com-
petitive with the Householder method, because the columns of Q are not always orthgonal to
each other due to round off errors. However, the Lanczos method becomes useful when A is
large and sparse and when we truncate the Lanczos process and use approximation. For some
n much less than m, we have

AQn ≈ QnTn

where Qn is the matrix of first n columns of Q, Tn is the leading n × n block of T . If you
think about the above equation, you can see that the first n− 1 columns are exact, but the last
column is

Aqn ≈ βn−1qn−1 + αnqn

54

The exact relationship is
Aqn = βn−1qn−1 + αnqn + βnqn+1

When this truncation is used, we can use the eigenvalues of Tn to approximate a few largest
and smallest eigenvalues of A, we can also use it to approximate

f(A)b

where f(A) is some matrix function, b is a given vector. As a special case, when f(A) = A−1

we are actually finding approximate solutions of Ax = b. It turns that this is related to the
conjugate gradient method.

We first notice that
Q∗nAQn = Tn.

For a non-zero vector b, we can also introduce the Krylov matrix

Kn = [b, Ab,A2b, ..., An−1b].

Now, if we start the Lanczos process with q1 = b/||b||2, then

Kn = QnRn

is a reduced QR factorization of Kn. If you use the relationship AQ = QT , and re-write the
columns as

b = ||b||2q1
Ab = ||b||2(Aq1) = ||b||2(α1q1 + β1q2) = (∗)q1 + (∗)q2

and we can also see that
Ab2 = (∗)q1 + (∗)q2 + (∗)q3

This gives rise to the reduced QR factorization.

55

5.2.2 Approximating eigenvalues

For a real symmetric matrix A (of size m×m, m may be large), we can use the Lanczos method
to find a few largest and smallest eigenvalues. We start with an initial vector b, let q1 = b/||b||2
and calculate the coefficients of tridiagonal matrix T . We may terminate at step n and calculate
the eigenvalues of Tn, then the extreme eigenvalues of Tn are the approximate eigenvalues of A.

Let λ1 is the smallest eigenvalue of A, then

λ1 = min
x 6=0

xTAx

xTx
= min
||x||=1

xTAx.

Associated with the vector b, we have the Krylov subspace:

Kn =< b,Ab, .., An−1b > .

Let λ(n)
1 be the smallest eigenvalue of Tn, then we can prove that

λ
(n)
1 = min

0 6=x∈Kn

xTAx

xTx
.

This means that λ(n)
1 is the best result we can get by minimizing the Rayleigh quotient in the

Krylov subspace. This is in analog to the conjugate gadient method, where the n-th iteration
xn solves the minimization problem of φ(x) in Kn.

To prove the above result, we start with a vector x in Kn:

x = y1q1 + y2q2 + ...+ ynqn = Qny.

This is so, because the Lanczos vectors {q1, q2, ...qn} is a basis for Kn. This is related to the
earlier result that the Krylov matrix Kn has a reduced QR factorization Kn = QnRn. For this
vector x,

xTAx

xTx
=
yTQTnAQny

yTQTnQny
=
yTTny

yT y
.

Thus,

min
06=x∈Kn

xTAx

xTx
= min

y 6=0

yTTny

yT y
= λ

(n)
1 .

Corresponding to the eigenvalue λ(n)
1 of Tn, we have an unit eigenvector y, then the approximate

eigenvector for A is x = Qny. Therefore, the Lanczos method gives the best approximation to
the eigenvector, if the approximation is restricted in the Krylov subspace Kn.

All this is true, if we change the smallest eigenvalue to the largest eigenvalue and change the
minimum to maximum for the Rayleigh quotient xTAx/(xTx). In reality, the Lanczos method
is used to find the approximations of a few largest and smallest eigenvalues of A.

Similar to the case of conjugate gradient method, the Lanczos method also has related to an
optimal polynomial problem. For the original matrix A, we have its characteristic polynomial
p(λ) = det(λI −A). The degree of p(λ) is m and the leading term is λm. The coefficient of the
leading term is 1. This is called a monic polynomial. In linear algebra, we know that p(A) = 0
which is the m×m zero matrix. If we have a vector b, of course, p(A)b = 0 (the 0 vector). Now,

56

for n < m, we can look for a monic polynomial of degree n, say pn(λ) (here, the superscript
does not mean power), such that ||pn(A)b|| is minimized. The answer is

pn(λ) = det(λI − Tn).

That is, pn(λ) is the characteristic polynomial of Tn, where q1 = b/||b||2 is used to start the
Lanczos tridiagonalization process as before. More precise, we can prove that

||pn(A)b||2 ≤ ||qn(A)b||2 (5.4)

where qn is an arbitrary monic polynomial of degress n. Monic means that the coefficient of λn

in qn(λ) is 1. That is
qn(λ) = λn + (∗)λn−1 + ...+ (∗)λ+ (∗).

Of course, pn is also a monic polynomial of degree n.
As a special application of the above result, we consider A a m×m matrix with only three

distinct eigenvalues (assuming m > 3), say

λ1, λ2, λ3.

Now, if we start with a vector b which has non-zero components in eigenvectors of all three
eigenvalues, then we claim that

p3(λ) = (λ− λ1)(λ− λ2)(λ− λ3).

This is so, because if we choose q3(λ) = (λ− λ1)(λ− λ2)(λ− λ3), then we have

||q3(A)b||2 = 0

This leads to
||p3(A)b||2 = 0.

Therefore, p3 = (λ − λ1)(λ − λ2)(λ − λ3), because other monic polynomials of degress 3 can
not produce a zero. In other words, if a matrix A has only three distinct eigenvalues, we can
always find the three eigenvalues using T3.

To prove (5.4), we need to re-write

min
qn∈Pn

||q(A)b||2

as a least squares problem involving Qn (the reduced QR factorization of Kn is useful here),
where Pn is the set of all monic polynomials of degree n, then show that pn is related to the
solution of that least squares problem.

57

5.2.3 Approximating f(A)b

To approximate f(A)b, we start a Lanczos process with q1 = b/||b||2, then truncated at some n
steps. From the approximate relationship:

AQn ≈ QnTn

we generalize to
f(A)Qn ≈ Qnf(Tn).

Thus,
f(A)q1 ≈ Qnf(Tn)e1

where e1 = (1, 0, ..., 0)∗ is the first column of the n× n identity matrix. Therefore,

f(A)b ≈ ||b||2Qnf(Tn)e1

This has a lot of applications. Consider the heat equation

ut = ∆u

If we discretize the spatial variables in a suitable way, we have a vector U approximating the
values of u at various spatial grid points, and the partial differential equation is changed to

dU

dt
= −AU

where A is symmetric, sparse (if finite difference or finite element methods are sued) and positive
definite. The exact solution is

U(t) = e−AtU(0)

assuming that initial condition is given as t = 0. Similarly, we consider the Schrödinger equation
(fundamental in quantum mechanics)

iut = (∆− q)u

If we discretize the spatial variables first, we can replace the operator −∆ + q by a symmetric
matrix A, then the equation is changed to

dU

dt
= iAU

The exact solution is
U(t) = eiAtU(0).

This might be the first case where the Lanczos method is shown to be useful.
Another example is the wave equation:

utt = ∆u

58

If we discretize the spatial variables, we end up with

d2U

dt2
= −AU

where A replaces the operator −∆. It turns out that we have a two step method:

U(t2) + U(t0) = 2 cos(h
√
A)U(t1)

where tj = t0 + jh and h is the step size. Assume U(t0) and U(t1) are known, we can then
calculate U(t2) based on a Lanczos approximation for cos(h

√
A)U(t1).

5.3 Exercises

1. Using the standard notations for the Conjugate Gradient method, where xn is the n-th
iteration of the approximate solution (for Ax = b, assuming x0 = 0), rn is the residual,
pn is the n-th A-conjugate direction, show that

(a)

αn =
pTn−1b

pTn−1Apn−1
=

rTn−1pn−1

pTn−1Apn−1
=

rTn−1rn−1

pTn−1Apn−1

(b)

βn = − rTnApn−1

pTn−1Apn−1
=

rTn rn

rTn−1rn−1
.

2. If A is not symmetric, then the Lanczos method should be replaced by the Arnoldi method.
It is a method for reduction of A to upper Hessenberg matrix H, i.e., AQ = QH, where
Q is unitary and H is upper Hessenberg. Starting from an arbitrary unit vector as the
first column of Q, write down an algorithm for calculating other columns of Q and the
entries of H. Demonstrate this for matrix

A =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 .
If Qn is the matrix of first n columns of Q, Hn is the n×n leading block of H, show that

Hn = Q∗nAQn

Can you generalize it to
p(Hn) = Q∗np(A)Qn

where p(x) is a polynomial of x?

3. Let T be an m×m symmetric tridiagonal matrix (m > 3), T3 is the 3× 3 leading block
of T . Let p3(λ) be a polynomial of degree 3. Compare the matrix p3(T3) with the 3 × 3
leading block of p3(T). Which entries are the same?

59

4. We have derived the conjugate gradient method as an iterative minimization of φ(x) =
1
2x

TAx− xT b. Another way to minimize the same function — far slower, in general — is
by the method of steepest descent.

(a) Find a formula for ∇φ(x), the steepest descent method uses pn = −∇φ(xn) as the
direction for 1-D minimization.

(b) Determine the formula αn for the 1-D minmization

min
α
φ(xn−1 + αpn−1)

(c) Write down the full steepest descent algorithm.

60

