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A bull’s eye structure is a metallic film with a circular subwavelength aperture surrounded by concentric
annular grooves. It is an important structure for realizing applications of the extraordinary optical transmission
phenomenon. The structure is invariant under rotations about the central axis perpendicular to the film. In
this paper, an efficient numerical method is developed for analyzing bull’s eye and other structures that consist
of different annular regions where the material properties are one-dimensional. The method is a new variant
of the recently developed vertical mode expansion method (VMEM) which combines field expansions in one-
dimensional eigenmodes with various techniques for solving scalar two-dimensional Helmholtz equations. The
method exploits the rotational symmetry by solving the different Fourier components separately. For normal
incident waves, the method is particularly efficient, since it is only necessary to solve one Fourier mode. The
method is used to analyze bull’s eye structures with different configurations. In particular, we found that the
normalized transmission coefficient can be larger than 52 for a bull’s eye structure with 22 grooves.

OCIS codes: (050.1220) Apertures; (050.2770) Gratings; (050.6624) Subwavelength structures;
(050.1755) Computational electromagnetic methods.

http://dx.doi.org/10.1364/XX.99.099999

1. Introduction

In recent years, the extraordinary optical transmis-
sion (EOT) phenomenon for subwavelength apertures
in metallic films has attracted much attention [1–3].
The bull’s eye structures (single subwavelength aper-
tures surrounded by annular grooves) are particularly in-
teresting and have potential applications in nanolithog-
raphy and data storage, since the transmitted light can
have very high intensity and be highly focused [4, 5].
The physical mechanism for light transmission through
bull’s eye structures has been thoroughly investigated
[2, 3, 6, 7]. These studies provide valuable information
on choosing some key parameters for bull’s eye struc-
tures, but rigorous numerical simulations based on solv-
ing the full Maxwell’s equations are still needed to opti-
mize the performance of bull’s eye structures in practical
applications [8–11].
Standard computational electromagnetics methods,

such as the finite-difference time-domain (FDTD)
method and the frequency-domain finite element and
boundary element methods, can be used to analyze bull’s
eye structures. FDTD is time consuming, since a small
grid size and a small time step are needed. The fi-
nite element method gives rise to a large complex non-
Hermitian and indefinite linear system which can be
expensive to solve. The boundary element method is
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rather complicated to implement [12]. Another possi-
bility is to use a modal method, such as the one based
on Fourier-Bessel expansions [8] or the Fourier modal
method [13–16]. A modal method expands the electro-
magnetic field in two-dimensional eigenmodes. Unfortu-
nately, a large number of eigenmodes are needed, and
these full-vectorial modes are expensive to calculate.

In a recent work [17], we developed a vertical mode
expansion method (VMEM) for analyzing the transmis-
sion of light through a circular aperture in a metallic
film. The method in related to the early works on pho-
tonic crystal slabs [18–20]. The basic idea is to divide
the structure into different regions where the material
properties depend only on the vertical variable z perpen-
dicular to the film, to expand the electromagnetic field
in each region, and to match the tangential field compo-
nents on the vertical boundaries between these regions.
Extended versions of the VMEM are applicable to more
general cylindrical structures and have been used to an-
alyze metallic nanoparticles on a substrate [21, 22].

In this paper, we develop a special VMEM for struc-
tures with a continuous rotational symmetry, and use it
to analyze bull’s eye structures. The rotational symme-
try gives a major simplification to the method, since the
field can be expanded in Fourier series of θ (the horizon-
tal angle), and the different Fourier components are com-
pletely decoupled and can be solved separately. For a
normal incident plane wave, a further significant simpli-
fication can be realized, since the only non-zero Fourier
components are those corresponding to exp(±iθ). Using
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the special VMEM, we analyze bull’s eye structures for
a few different configurations.

2. Problem formulation

We consider a rotationally symmetric structure with
multiple annular regions, where the material properties
in each region depend only on the vertical variable z. In
a cylindrical coordinate system where a point r is rep-
resented by its horizontal radial distance r, horizontal
angle θ and height z, we have 0 < r1 < r2 < ... < rL,
such that the three-dimensional (3D) regions S0, Sl (for
1 ≤ l < L) and SL are given by r < r1, rl < r < rl+1

(for 1 ≤ l < L) and r > rL, respectively. Notice that
Sl (for 0 ≤ l ≤ L) are 3D regions for all z and all θ.
We denote the two-dimensional (2D) cross section of Sl

by Ωl. Let ε and µ be the relative permittivity and the
relative permeability, respectively, then

ε = ε(l)(z), µ = µ(l)(z), r ∈ Sl. (1)

It is further assumed that the main part of the structure
is restricted in the vertical direction by 0 < z < D for
some D > 0, and the media in the top (z > D) and
bottom (z < 0) are homogeneous with ε = εt, µ = µt

for z > D, and ε = εb, µ = µb for z < 0, where εt, µt,
εb and µb are real positive constants.
In Fig. 1, we show a vertical cross section of a bull’s eye

Fig. 1. Schematic representation of bull’s eye structure

structure, where r1 is the radius of the circular hole in
the center, r2 and r3 are the inner and outer radii of the
first groove, r4 and r5 are the inner and outer radii of the
second groove, etc. The regions given by r1 < r < r2,
r3 < r < r4, ..., and r > rL (where L must be an
odd integer) correspond to the original metallic film of
thickness D. Furthermore, all grooves are assumed to
have the same width w (w = r3 − r2 = r5 − r4 = ...)
and depth d, and placed periodically in r with period P
(P = r4 − r2 = r5 − r3 = ...). Notice that for such a
bull’s eye structure, there are only three distinct vertical
profiles corresponding to the central hole, the original
metallic film and the groove.
Our starting point is the frequency-domain Maxwell’s

equations

∇×E = ik0µH, ∇×H = −ik0εE, (2)

where k0 is the free space wavenumber, E is the electric
field, and H is the magnetic field multiplied by the free
space impedance. The time dependence is assumed to
be e−iωt for an angular frequency ω. In the top homo-
geneous medium, we specify a plane incident wave with
the wave vector (α, β,−γ), where α and β are real, and
γ = (k20εtµt − α2 − β2)1/2 is positive.

3. VMEM: basic steps

In contrast to the standard modal method [13–16] which
divides the structure into a number of z-invariant lay-
ers, VMEM devides the structure into different regions
where the material properties depend only on z. For
the bull’s eye structure shown in Fig. 1, the modal
method expands the field in four layers (given by z < 0,
0 < z < D − d, D − d < z < D, and z > D, respec-
tively), while VMEM expands the field in regions Sl for
0 ≤ l ≤ L.

In [17], a detailed derivation of field expansions used
in VMEM is presented. In this section, we outline the
basic steps without repeating the details. In region
Sl, we first calculate one-dimensional (1D) eigenmodes

φ
(l,p)
j (z), where p is the polarization index (p = e for a

transverse electric (TE) mode, p = h for a transverse
magnetic (TM) mode), j is the mode index, and l is
the location index. The related propagation constant

is denoted as η
(l,p)
j . The definition of these modes fol-

lows that for planar waveguides. Since z is unbounded,
it is truncated to a finite interval (zb, zt) with perfectly
matched layers (PMLs) near the two endpoints. The

function φ
(l,p)
j and the constant η

(l,p)
j satisfy an eigen-

value equation and zero boundary conditions at z = zb
and zt [17]. Related to the mode φ

(l,p)
j is an unknown

2D function V
(l,p)
j (the expansion “coefficient”) satisfy-

ing the Helmholtz equation

∂2V
(l,p)
j

∂x2
+

∂2V
(l,p)
j

∂y2
+ [η

(l,p)
j ]2V

(l,p)
j = 0 in Ωl, (3)

where Ωl is the 2D cross section of Sl.
For a hypothetical infinite 1D structure with ε =

ε(l)(z) and µ = µ(l)(z), the incident wave {E(i),H(i)}
gives rise to a simple 1D solution which we denote as
{E(l),H(l)}. In region Sl, the vertical mode expansions
are

Hz = H(l)
z +

1

µ(l)

∞
∑

j=1

[η
(l,e)
j ]2φ

(l,e)
j V

(l,e)
j , (4)

Ez = E(l)
z +

1

ε(l)

∞
∑

j=1

[η
(l,h)
j ]2φ

(l,h)
j V

(l,h)
j , (5)

Hτ = H(l)
τ +

1

µ(l)

∞
∑

j=1

dφ
(l,e)
j

dz

∂V
(l,e)
j

∂τ

+ik0

∞
∑

j=1

φ
(l,h)
j

∂V
(l,h)
j

∂ν
, (6)

Eτ = E(l)
τ +

1

ε(l)

∞
∑

j=1

dφ
(l,h)
j

dz

∂V
(l,h)
j

∂τ

−ik0

∞
∑

j=1

φ
(l,e)
j

∂V
(l,e)
j

∂ν
, (7)

where ν = (νx, νy) and τ = (−νy, νx) are a pair of or-
thogonal unit vectors in the horizontal plane, Hτ and Eτ
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are horizontal components in the τ direction, ∂/∂τ and

∂/∂ν are directional derivative operators, H
(l)
z is the z

component of the 1D solution H
(l), etc. The above ex-

pansions are derived from the full Maxwell’s equations
without any approximation, except for a truncation of z

with PMLs. In these equations, the functions V
(l,p)
j are

the unknowns, but they satisfy Eq. (3). More details on
Eqs. (3)-(7) are given in [17].

The approach used in [17, 21] is to solve V
(l,p)
j on

∂Ωl (the boundary of Ωl). Assuming ν and τ are the
unit normal and tangential vectors of ∂Ωl, we can set

up a linear system for all V
(l,p)
j on ∂Ωl by matching Ez,

Hz, Eτ and Hτ on the vertical boundaries between the
different regions. The approach used in [22] is to solve

all ∂νV
(l,p)
j on ∂Ωl, because it is easier to link V

(l,p)
j to

∂νV
(l,p)
j (instead of the other way around) by a boundary

integral equation. In the next section, we present an

efficient procedure to calculate V
(l,p)
j for structures with

a continuous rotational symmetry.

4. VMEM: rotational symmetry

The structures described in Section 2 are invariant un-
der rotations around the z axis. If the electromagnetic
field is expanded in Fourier series of θ, then the different
Fourier modes are completely decoupled and they can be

solved independently. Since V
(l,p)
j satisfies Helmholtz

equation (3) in Ωl, it can be expanded in cylindrical
waves. For 1 ≤ l < L, we have

V
(l,p)
j =

∞
∑

m=−∞

[

a
(l,p)
j,m

H
(1)
m (η

(l,p)
j r)

H
(1)
m (η

(l,p)
j rl)

+b
(l,p)
j,m

H
(2)
m (η

(l,p)
j r)

H
(1)
m (η

(l,p)
j rl+1)

]

eimθ, rl < r < rl+1, (8)

where H
(1)
m and H

(2)
m are mth order Hankel functions of

first and second kinds. In Ω0 and ΩL, we have

V
(0,p)
j =

∞
∑

m=−∞

b
(0,p)
j,m

Jm(η
(l,p)
j r)

Jm(η
(l,p)
j r1)

eimθ, r < r1, (9)

V
(L,p)
j =

∞
∑

m=−∞

a
(L,p)
j,m

H
(1)
m (η

(L,p)
j r)

H
(1)
m (η

(L,p)
j rL)

eimθ, r > rL,(10)

where Jm is the mth order Bessel function of the first
kind. On the circle r = rl, the unit normal and tangen-
tial vectors are ν = (cos θ, sin θ) and τ = (− sin θ, cos θ).
Therefore, Hτ and Eτ are just the θ components of the
electromagnetic field (usually denoted as Hθ and Eθ).

For each fixed m, we can set up a linear system

Amxm = cm, (11)

where

xm =





















b
(0)
m

a
(1)
m

b
(1)
m

a
(2)
m

...

a
(L)
m





















, a
(l)
m =























a
(l,e)
1,m

a
(l,e)
2,m
...

a
(l,h)
1,m

a
(l,h)
2,m
...























, b
(l)
m =























b
(l,e)
1,m

b
(l,e)
2,m
...

b
(l,h)
1,m

b
(l,h)
2,m
...























. (12)

Equation (11) comes from the continuity of Hz, Ez, Hτ

and Eτ at r = rl for 1 ≤ l ≤ L. In the fully discretized
version, the variable z is discretized by Nz points zn for
1 ≤ n ≤ Nz, a numerical method (the pseudospectral

method) is used to calculate the vertical modes φ
(l,p)
j .

We obtain Nz numerical TE modes and Nz numeri-
cal TM modes, then the index j ranges from 1 to Nz,

the vectors a
(l)
m and b

(l)
m are column vectors of length

2Nz, and Am is a (4LNz) × (4LNz) matrix. To obtain
Eq. (11), we match the mth Fourier coefficients of Hz,
Ez, Hτ and Eτ at rl (1 ≤ l ≤ L) and zn (1 ≤ n ≤ Nz),
based on the expansions (4-10). For example, the con-
dition Hz(r

−

l , θ, zn) = Hz(r
+
l , θ, zn) can be written as

1

µ(l−1)(zn)

Nz
∑

j=1

[η
(l−1,e)
j ]2φ

(l−1,e)
j (zn)V

(l−1,e)
j (rl, θ)

−
1

µ(l)(zn)

Nz
∑

j=1

[η
(l,e)
j ]2φ

(l,e)
j (zn)V

(l,e)
j (rl, θ)

= H(l)
z (rl, θ, zn)−H(l−1)

z (rl, θ, zn). (13)

One equation in system (11) is obtained by considering
the mth Fourier coefficient of the above.

The right hand side of Eq. (13) is related to the dif-
ference between the 1D solutions in Sl and Sl−1. Notice
that the 1D solutions for regions Sl and Sl−1 are differ-
ent. Therefore, the right hand side of (13) is non-zero in
general. The vector cm can be written as

cm =













c
(1)
m

c
(2)
m

...

c
(L)
m













, c
(l)
m =











c
(l,1)
m

c
(l,2)
m

c
(l,3)
m

c
(l,4)
m











, (14)

where the four blocks of c
(l)
m correspond to Hz, Ez, Hτ

and Eτ , respectively. In particular, if

H(l)
z (rl, θ, zn)−H(l−1)

z (rl, θ, zn) =
∞
∑

m=−∞

c(l,1)m,ne
imθ,

then c
(l,1)
m is the column vector for c

(l,1)
m,n , n = 1, 2, ...,

Nz. The 2nd, 3rd and 4th blocks of c
(l)
m are related to

E
(l)
z −E

(l−1)
z , H

(l)
τ −H

(l−1)
τ , E

(l)
τ −E

(l−1)
τ , respectively.

Inserting the cylindrical wave expansions of V
(l−1,e)
j

and V
(l,e)
j into Eq. (13), the coefficients of eimθ give rise
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to an equation that links the unknowns a
(l−1,e)
j,m , b

(l−1,e)
j,m ,

a
(l,e)
j,m and b

(l,e)
j,m (for 1 ≤ j ≤ Nz) to c

(l,1)
m,n . This equation

corresponds to one row of Eq. (11), i.e., the row with the

right hand side c
(l,1)
m,n . All Nz such equations (for z = zn,

1 ≤ n ≤ Nz) are put together and they correspond the

block c
(l,1)
m in the right hand side of Eq. (11). Similar

equations are established from the continuity of Ez, Hτ

and Eτ at rl and zn, and these equations correspond to
the rows of Eq. (11) where the right hand side elements

are c
(l,2)
m,n , c

(l,3)
m,n and c

(l,4)
m,n , respectively. At rl, a total of

4Nz equations are obtained.
Notice that Am is a banded matrix with a bandwidth

of O(Nz), therefore the system (11) can be solved in
O(LN3

z ) operations. Notice that the dependence on L
is linear. In contrast, if the classical modal method is
used, the coefficient matrix in the final linear system
is essentially a full matrix and the required number of
operations is proportional to L3. Therefore, VMEM has
a major advantage for bull’s eye structures with many
grooves.
For a normal incident plane wave, we assume the elec-

tric field is in the x direction, thus, E
(i)
x 6= 0, H

(i)
y 6= 0,

and all other components are zero. The 1D solutions
{E(l),H(l)} retain this property. The two nonzero com-

ponents E
(l)
x and H

(l)
y depend only on the vertical vari-

able z. Since the z components of the 1D solutions are

zero, the first two blocks of c
(l)
m are zero. For the 3rd

and 4th blocks, we notice that

H(l)
τ (rl, θ, z)−H(l−1)

τ (rl, θ, z)

=
[

H(l)
y (z)−H(l−1)

y (z)
]

cos θ, (15)

E(l)
τ (rl, θ, z)− E(l−1)

τ (rl, θ, z)

= −
[

E(l)
x (z)− E(l−1)

x (z)
]

sin θ. (16)

Therefore, the Fourier coefficients are nonzero only when
m = ±1 [8]. This implies that xm = 0 if m 6= ±1, and
we only have to solve Eq. (11) for m = ±1. In fact, we
only have to solve the equation for m = 1, since the x−1

is related to x1. It can be verified that

a
(l,e)
j,−1 = −a

(l,e)
j,1 , b

(l,e)
j,−1 = −b

(l,e)
j,1 , (17)

a
(l,h)
j,−1 = a

(l,h)
j,1 , b

(l,h)
j,−1 = b

(l,e)
j,1 . (18)

Therefore, expansions (8), (9) and (10) can be drastically
simplified. As a result, Hz and Ez simply depend on θ
as sin θ and cos θ, respectively.

5. Numerical results

In this section, we apply the VMEM developed in the
previous sections to analyze bull’s eye structures in a
gold film of thickness D = 280 nm for a normal incident
wave with wavelength 800 nm. The refractive index of
gold is assumed to be n = 0.1808+ 5.117i. The medium
surrounding the film and in the hole is air. Yamada and
Terakawa [11] proposed a near optimal bull’s eye struc-
ture with three grooves, where the radius of the central

hole is r1 = 200 nm, the inner radius of the first groove is
r2 = 540 nm, the width, depth and period of the grooves
are w = 300 nm, d = 90nm and P = 780 nm, respec-
tively. Using FDTD, Yamada and Terakawa [11] found
a normalized transmission coefficient T = 9.74, where
T is defined as the ratio between the total transmitted
power and the power of the incident wave impinging on
the hole. Using VMEM and Nz = 166 points to dis-
cretize z, we obtain T = 9.7742. The agreement with
the result of [11] is quite good. Numerical convergence
with respect to Nz has been observed. For Nz = 94, 118
and 142, we obtain T = 9.795, 9.778, 9.7747, respec-
tively.

For the above bull’s eye structure with three grooves,
we investigate the influence of some key parameters on
the normalized transmission coefficient. In Fig. 2(a) and
2(b), we show the dependence of T on the hole radius r1
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Fig. 2. Dependence of the normalized transmission coefficient
T on, (a) hole radius r1, (b) first groove inner radius r2, for
a bull’s eye structure with three grooves.

and the first groove inner radius r2, respectively. It can
be seen that T reaches local maxima at approximately
r1 = 200 nm and r2 = 540 nm, respectively. These re-
sults support the conclusion of [11] that the above bull’s
eye structure with three grooves is near optimal. Many
authors have studied the influence of the inner radius
of the first groove. We notice that our result shown
Fig. 2(b) is quite similar to the experimental result of
Carretero-Palacios et al. [7]. It is also quite similar to
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the 2D result of Cui and He [23] for a slit-groove struc-
ture. For the 2D case, the local maxima appear to de-
crease as r2 is increased [23], but for the 3D bull’s eye
structure, the local maxima appear to increase as r2 is
increased. Therefore, high transmission is still possible
with only three grooves, if the grooves are put at some
proper locations far away from the hole.

Next, we analyze the dependence of T on the number
of grooves Ng. For a bull’s eye structure with the pa-
rameters given above (r1 = 200 nm, r2 = 540 nm, P =
780 nm, etc), we obtain the result shown in Fig. 3(a).
Notice that a very high transmission can be achieved if
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Fig. 3. Dependence of the normalized transmission coefficient
on the number of grooves Ng for (a) P = 780 nm, (b) P =
700, 750, 800 and 820 nm.

more grooves are used. In particular, T reaches a maxi-
mum about 52.56 for Ng = 22. The period P = 780 nm
appears to be a good choice. In Fig. 3(b), we show the
results for a few different values of P . Notice that a dif-
ferent vertical scale is used in Fig. 3(b). The normalized
transmission T is less than 35 for all four values of P
and for all Ng ≤ 30.

Our method is efficient for bull’s eye structures with
many grooves. On an iMac with a 3.4 GHz CPU, the
computation time for a few different values of Ng are
listed in the following table:

Ng 1 2 3 30 50

Time (sec) 1.7 3.4 5.4 89 172

Table 1. Time required for analyzing bull’s eye structures
with Ng grooves.

6. Conclusion

The VMEM is a rigorous computational method for solv-
ing the frequency-domain Maxwell’s equations. It is
applicable to structures consisting of a number of re-
gions where the material properties depend only on z.
The method combines field expansions in 1D eigenmodes
with a suitable method for solving 2D scalar Helmholtz
equations. The special variant developed in this paper is
suitable for rotationally symmetric structures with an-
nular regions. The method is efficient because it solves
the different Fourier modes (in θ) separately for a general
incident wave, and solves only one Fourier mode for a
normal incident plane wave. Using the newly developed
VMEM, we analyzed some bull’s eye structures in a gold
film, and found a particular structure with 22 grooves
for which the normalized transmission is greater than
52. Our method is very efficient and relatively simple
to implement, and it should be useful in the design and
optimization of rotationally symmetric photonic struc-
tures.
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