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Abstract

Optical wave-guiding structures that are non-uniform in the propagation di-
rection are fundamental building blocks of integrated optical circuits. Numerical
simulation of lightwaves propagating in these structures is an essential tool to engi-
neers designing photonic components. In this paper, we review recent developments
in the most widely used simulation methods for frequency domain propagation
problems.

1 Introduction

Optical waveguides [1, 2, 3] are structures that guide the propagation of light. They

are fundamental building blocks of optical communications systems [4] and integrated

optical circuits [5]. For a straight waveguide which is invariant along the waveguide

axis (denoted by z in this paper), the basic issue is to analyze the mode structures at

a fixed frequency. A propagating mode of a straight waveguide is a special solution of

the Maxwell’s equations that depends on z as eiβz and decays to zero as the transverse

variables (x and y) tend to infinity. For a lossless medium, the propagation constant β

is real. The problem of computing the modes is an eigenvalue problem where β2 is the

eigenvalue. An optical waveguide is typically an open structure, that is, its cross section

is the entire xy-plane. As a result, a general wave field in a straight waveguide contains

not only the propagating modes, but also a continuum (represented as an integral) of the

radiation and the evanescent modes. A general three-dimensional optical waveguide may

also have complex modes[6, 7]. The propagation constants of these modes are complex
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and their mode profiles decay to zero at infinity. Analytic solutions of waveguides modes

are only available in a few simple cases. Numerical methods[8, 9, 10] are needed for

computing the modes of most practical waveguides.

Optical waveguides (or general wave-guiding structures) that are non-uniform in z are

important for integrated optics [5]. For example, a bent waveguide is used to turn the

propagation direction, an S-bend is used to introduce a lateral displacement, a Y -branch

is used to split one waveguide into two, a taper is needed to connect two waveguides of

different sizes, waveguide gratings are introduced for various purposes such as filters and

reflectors. To simulate the lightwave propagation in these z-varying wave-guiding struc-

tures, accurate and efficient numerical or analytic methods are needed. The problem is

more difficult since the z-variable is no longer separated, except when the structure is a

bent waveguide with a constant bending curvature. In that case, the variable z can be

defined along the bend and be separated again. For a general z-varying wave-guiding

structure, the frequency domain propagation problem is a boundary value problem. As-

suming that the structure is z-invariant for z < 0 and z > a, we can impose boundary

conditions at z = 0 and z = a. The length of the structure a is usually much larger than

the typical wavelength. In some cases, a may be a few millimeters, but the free space

wavelength λ0 is on the order of a micrometer. Since a certain number of grid points

(or basis functions) are needed for each wavelength, standard numerical methods that

discretize the whole wave-guiding structure are prohibitively expensive.

Fortunately, a number of special features are available for typical optical waveguides.

Some efficient numerical and analytical methods have been developed to take advantage

of these features. Firstly, although the cross section of an open optical waveguide is the

entire xy-plane, the size of the waveguide core is on the order of λ0 and it is much smaller

than a. Using the powerful perfectly matched layer (PML) [11, 12] technique, the trans-

verse plane can be truncated to a relatively small region. Therefore, the propagation

problem is formulated in a domain with just one direction (i.e. z) having a particularly

large length. This special geometric feature gives rise to marching methods that refor-

mulate (exactly or approximately) the original boundary value problem as initial value

problems in z. Exact reformulations are developed for pairs of operators and they will be

referred to as the operator marching methods (OMM). Secondly, many structures such as

waveguide tapers, bent waveguides, S-bends and even Y -branches change with z slowly

(i.e. there is little variation on the scale of a wavelength in the z direction). For these

slowly varying waveguides, the beam propagation method (BPM) is widely used. These

are marching methods based on approximate one-way models. Thirdly, many z-varying

wave-guiding structures such as waveguide gratings, are made of piecewise z-invariant

segments. The bidirectional beam propagation methods (BiBPM) are designed to take

advantages of this feature. The mode matching method (MMM) is also widely used for
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piecewise z-invariant structures. Both BiBPM and MMM are aimed at solving the full

boundary value problem while reducing unnecessary computation in each z-invariant seg-

ment. Each of these two methods have two variants depending on whether or not they

are used together with an operator marching method. In the following, we present these

methods after a brief introduction to the basic equations in section 2.

2 Basic equations

For time-harmonic lightwaves propagating in a wave-guiding structure composed of linear

isotropic dielectric materials, the governing equations are the frequency domain Maxwell’s

equations:

∇× E = iωµ0H (1)

∇×H = −iωεE (2)

∇ · (εE) = 0 (3)

∇ ·H = 0, (4)

where ω is the angular frequency, the time dependence is e−iωt, µ0 (a constant) is the

magnetic permeability, ε is the permittivity of the medium. Furthermore, ε = ε0n
2, where

ε0 is the permittivity of vacuum, n = n(x, y, z) is the refractive index function. After

eliminating the z-components of the electric and magnetic fields, we obtain a system of

equations for the transverse components of the electric and magnetic fields:

−iωε0
∂Et

∂z
= AHt, −iωµ0

∂Ht

∂z
= BEt, (5)

where

Et =

[
Ex

Ey

]
, Ht =

[
Hy

−Hx

]
,

Ex, Ey, Hx and Hy are the x- and y-components of E and H, A and B are matrix

operators given by

A = k2
0I +

[
∂x(n

−2∂x·) ∂x(n
−2∂y·)

∂y(n
−2∂x·) ∂y(n

−2∂y·)

]
, B = k2

0n
2I +

[
∂2

y −∂2
yx

−∂2
xy ∂2

x

]
, (6)

and k0 = ω
√

µ0ε0 is the free-space wavenumber. Formally, we can write down separate

equations for the electric or magnetic transverse components using the inverses of A and

B. We have

A ∂

∂z

(
A−1∂Et

∂z

)
+ LEt = 0 (7)

B ∂

∂z

(
B−1∂Ht

∂z

)
+MHt = 0, (8)
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where L and M are operators defined as

L =
1

k2
0

AB, M =
1

k2
0

BA.

After some simplifications, we have

L
[
f

g

]
=

[
k2

0n
2f + ∂2

yf − ∂2
xyg + ∂x[n

−2∂x(n
2f)] + ∂x[n

−2∂y(n
2g)]

k2
0n

2g + ∂2
xg − ∂2

yxf + ∂y[n
−2∂y(n

2g)] + ∂y[n
−2∂x(n

2f)]

]
, (9)

M
[
f

g

]
=

[
k2

0n
2f + ∂2

yf − ∂2
yxg + n2∂x(n

−2∂xf) + n2∂x(n
−2∂yg)

k2
0n

2g + ∂2
xg − ∂2

xyf + n2∂y(n
−2∂xf) + n2∂y(n

−2∂yg)

]
, (10)

for any given functions f and g.

In a z-invariant section of the structure, the refractive index function n and the

operators A and B are independent of z, equations (7) and (8) are reduced to

∂2Et

∂z2
+ LEt = 0 (11)

∂2Ht

∂z2
+MHt = 0, (12)

and the wave fields can be decomposed. For example, the transverse electric field can be

written as

Et = E+
t + E−

t ,

where E+
t represents waves propagating in the increasing z direction or evanescent waves

that decay in the increasing z direction. With a suitable definition of the square root

operator
√
L, we have

∂zE
+
t = i

√
LE+

t , ∂zE
−
t = −i

√
LE−

t .

The square root of L is a linear operator and it can be defined based on the spectral

decomposition [68, 69, 70] of the operator L. Let Φ and λ satisfy LΦ = λΦ, then√
LΦ = βΦ, where β =

√
λ is chosen to have Im(β) ≥ 0 and Re(β) ≥ 0 if Im(β) = 0.

This ensures that Φeiβz either decays exponentially as z increases or propagates in the

increasing z direction.

We consider a structure that is is z-invariant for z < 0 and z > a. Let n = n0(x, y)

and n = n∞(x, y) for z < 0 and z > a, respectively. The operator L corresponding to

these two cases are denoted by L0 and L∞ respectively. For z < 0, we assume that an

incident wave E
(i)
t is given and we look for the reflected wave E

(r)
t . Since E

(i)
t and E

(r)
t

correspond to E+
t and E−

t respectively, we have the following boundary condition:

∂zEt + i
√
L0Et = 2i

√
L0E

(i)
t , z = 0− . (13)
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For z > a, we assume that there exist only outgoing waves and evanescent waves that

decay to zero as z →∞. This gives rise to the following condition:

∂zEt = i
√
L∞ Et, z = a + . (14)

The boundary conditions for Ht are similar.

For the 2-D cases, we have a refractive index n that is independent of y. Under the

assumption that E and H are also independent of y, the Maxwell’s equations can be

reduced to scalar Helmholtz equations. We have

∂2
zEy + ∂2

xEy + k2
0n

2(x, z)Ey = 0 (15)

for the transverse electric (TE) polarization and

∂z(n
−2∂zHy) + ∂x(n

−2∂xHy) + k2
0Hy = 0 (16)

for the transverse magnetic (TM) polarization. Boundary conditions at z = 0− and

z = a+ can be similarly posed using square root operators.

3 Operator marching method

For waveguide problems, it is possible to reformulate the boundary value problems of

the frequency-domain Maxwell’s equations (or Helmholtz equations for the 2-D cases)

described in the previous section as “initial” value problems for pairs of operators. These

initial value problems are solved by marching in the z direction. For this reason, we

name this class of methods the operator marching method (OMM). One advantage of

the OMM is that its required computer memory is independent of the total length of the

non-uniform part of the waveguide, i.e., a. Compared with other methods that solves the

boundary value problem directly, the required computer memory of an OMM is much

smaller.

The formulation based on a pair of scattering operators has been known for many

years. For simplicity, we consider the 2-D Helmholtz equation (15) for the TE polarization

and denote Ey by u in the following. As in section 2, we assume that the structure is

z-invariant for z < 0 and z > a, and there are only outgoing or exponentially decaying

waves for z > a. First, we consider the case where the wave-guiding structure is piecewise

uniform in z. We have

0 = z0 < z1 < ... < zm = a, (17)

such that n(x, z) = nj(x) for zj−1 < z < zj. This is valid even for j = 0 and j = m,

if we define z−1 = −∞, zm+1 = ∞ and nm+1 = n∞. In the segment (zj−1, zj), we can

decompose the wave field as u = u+ + u−, such that

∂u+

∂z
= iΛju

+,
∂u−

∂z
= −iΛju

−, (18)
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for

Λj =
√

∂2
x + k2

0n
2
j(x). (19)

For any z which is not a longitudinal discontinuity, i.e., z 6= zj for j = 0, 1, ...,m, we can

define the reflection operator R(z) and transmission operator T (z) by

R(z)u+(x, z) = u−(x, z), T (z)u+(x, z) = u+(x, a+). (20)

At a discontinuity zj, the operators R and T are discontinuous there. The outgoing wave

condition for z > a gives rise to R(a+) = 0, and it is obvious that T (a+) = I where I is

the identity operator. These two operators can be easily solved from z = a+ to z = 0−
in a sequence of steps. To pass through the discontinuity zj, i.e., from zj+ to zj−, we

have the following formulas

C = Λ−1
j Λj+1[I −R(zj+)][I + R(zj+)]−1 (21)

R(zj−) = (I + C)−1(I − C) (22)

T (zj−) = T (zj+)[I + R(zj+)]−1[I + R(zj−)]. (23)

To march through a z-independent segment from zj− to zj−1+, we have

Pj = exp(i(zj − zj−1)Λj) (24)

R(zj−1+) = PjR(zj−)Pj (25)

T (zj−1+) = T (zj−)Pj. (26)

In a different version, we define z0, z1, ..., zm at continuous points of the refractive

index function. For each zj, we further assume that there is a small neighborhood in which

the refractive index n is z-independent. This allows us to have a wave field decomposition

and define the operators T and R in the neighborhood of zj. On the other hand, n is

allowed to vary with z away from these small neighborhoods. Given the two operators

at zj, we can calculate these two operators at zj−1 by making use of the four scattering

operators r± and t± of the segment. For the segment (zj−1, zj), an incident wave at zj−1,

say v, gives rise to a reflected wave at zj−1 and a transmitted wave at zj and they are r+v

and t+v, respectively. Similarly, an incident wave w at z = zj (coming from z = +∞)

gives rise to the reflected wave r−w at zj and transmitted wave t−w at zj−1. Then, the

operators R and T at zj−1 are given by

R(zj−1) = [I − t−R(zj)r
−]−1[r+ + t−R(zj)t

+] (27)

T (zj−1) = T (zj)[t
+ + r−R(zj−1)]. (28)

The continuous formulation of the scattering operators was developed by Fishman

[13] based on the following wave field decomposition:

u = u+ + u−,
∂u

∂z
= iΛ(z)[u+ − u−] (29)
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and the same definitions of R and T as before. It was found that u+ and u− satisfy the

following system:

∂

∂z

[
u+

u−

]
=

[
iΛ(z)− α(z) α(z)

α(z) −iΛ(z)− α(z)

] [
u+

u−

]
, (30)

where α(z) = Λ−1(z)Λ′(z)/2, and R and T satisfy

dR

dz
= α(z)− [iΛ(z) + α(z)] R−R [iΛ(z)− α(z)]−Rα(z)R, (31)

dT

dz
= −T [iΛ(z)− α(z)(I −R(z))] . (32)

A different operator marching scheme is based on the Dirichlet-to-Neumann (DtN)

map Q and the Fundamental Solution (FS) operator Y [14]. These two operators are

defined at a fixed z by

Q(z)u(·, z) = ∂zu(·, z), Y (z)u(·, z) = u(·, a), (33)

for all solutions of the Helmholtz equation (15) (with u = Ey) satisfying the outgoing

wave condition for z > a. Therefore, we have

Q(a) = i
√

∂2
x + k2

0n
2(x, a+), Y (a) = I. (34)

For a piecewise z-invariant structure described earlier, we have the following marching

formulas from zj to zj−1 [15]:

Λj =
√

∂2
x + k2

0n
2
j(x), (35)

Pj = exp(i(zj − zj−1)Λj) (36)

C = [iΛj + Q(zj)]
−1[iΛj −Q(zj)] (37)

D = PjCPj (38)

Q(zj−1) = iΛj(I −D)(I + D)−1 (39)

Y (zj−1) = Y (zj)(I + C)Pj(I + D)−1. (40)

In a more general setting, we may allow the refractive index n to vary with z for

zj−1 < z < zj. In that case, we can find the marching formulas using a solution operator

for this segment. If the Helmholtz equation has a unique solution in z ∈ (zj−1, zj) for

any given Dirichlet boundary conditions at z = zj−1 and z = zj, then we can find the

Dirichlet-to-Neumann map M of this segment, such that

M

[
u(x, zj−1)

u(x, zj)

]
=

[
∂zu(x, zj−1)

∂zu(x, zj)

]
.

If the operator M is partitioned as 2× 2 blocks, we can easily derive the following

Q(zj−1) = M11 + M12[Q(zj)−M22]
−1M21, (41)

Y (zj−1) = Y (zj)[Q(zj)−M22]
−1M21. (42)
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The continuous formulation based on the DtN and FS operators was developed in

[14]. We have the following differential equations for Q and Y :

dQ

dz
= −Q2 − [∂2

x + k2
0n

2(x, z)], (43)

dY

dz
= −Y Q. (44)

The operators Q and Y may fail to exist at some particular values of z. In that case, we

can use use the Neumann-to-Dirichlet map or the more general Robin-to-Dirichlet (RtD)

map J . For a constant α, the RtD map is defined by

J

(
∂u

∂z
− αu

)
= u

for all solutions of the Helmholtz equation satisfying the outgoing wave condition for

z > a. Similar to the operator Y , we need the operator W given by

W

(
∂u

∂z
− αu

)
= u|z=a.

The marching formulas for J and W can be similarly derived. There are also simple

formulas that switches between (Q, Y ) and (J, W ).

In a practical implementation, the operators must be represented by matrices. If we

discretize the transverse operators by a finite difference or a finite element method, we

obtain matrix approximations of the operators. However, these matrices tend to be very

large. On the other hand, it is often much more efficient when the operator marching

schemes are used with a local eigenfunction expansion.

4 Local eigenfunction expansion

One of the most widely used methods for modeling optical waveguides is the mode match-

ing method [16, 17, 18]. The method is particularly suitable for 2-D piecewise z-invariant

wave-guiding structures. Consider the TE case and the piecewise uniform structure de-

fined in section 3. For zj−1 < z < zj, the wave field can be decomposed as forward and

backward components and expanded in the eigenfunctions of the transverse operator, i.e.,

∂2
x + k2

0n
2
j(x), with unknown coefficients. The method completely avoids a discretization

of z in the interval (zj−1, zj). A set of equations for the coefficients in all z-invariant

segments can be established by the continuities of u and uz (again for (15)) and the

boundary conditions at z = 0− and z = a+. For a continuously z-varying structure,

a discretization in z is necessary. If z0, z1, ..., zm are the discretization points, we can

approximate the refractive index in each segment by its midpoint value:

n(x, z) ≈ n
(
x,

zj−1 + zj

2

)
= nj(x), zj−1 < z < zj. (45)
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For a slowly varying waveguide, n varies with z slowly, the grid size in z can be relatively

large.

For open waveguides where the transverse variables are unbounded, the PML tech-

nique has been applied to the mode matching method [20]. When the transverse variable

x is terminated by a PML [20, 19], the set of eigenfunctions of the transverse opera-

tor is discrete. A number of methods are available to compute the eigenmodes in the

presence of a PML [21, 22, 23, 24, 25, 26]. If the wave-guiding structure has a large

length in the propagation direction (i.e. a large a), the operator marching techniques

are useful. Earlier mode matching methods [17, 18] for optical waveguides are developed

based on the “transfer matrix” operator and they suffer from numerical instability. Sta-

ble mode matching schemes can be developed in connection with a scattering operator

[19] or a DtN-FS formalism [14, 15]. Consider a z-invariant segment zj−1 < z < zj, let

{φ(j)
k , k = 1, 2, ...} be the eigenfunctions of the transverse operator modified by the PML,

we can expand the function R(z)φ
(j)
k , where R(z) is the reflection operator, as

R(z) φ
(j)
k =

∞∑
l=1

rlk φ
(j)
l .

The matrix (rlk) can be truncated and used to represent the operator R. For the trans-

mission operator, we have

T (z) φ
(j)
k =

∞∑
l=1

tlk φ
(m+1)
l ,

where φ
(m+1)
l (k = 1, 2, ...) are the eigenfunctions of the transverse operator for z > a.

Matrix representations of Q and Y are similarly defined.

The mode matching method is particularly advantageous for 2-D waveguides with a

piecewise constant refractive index profile. In that case, the eigenfunctions have piecewise

analytic formulas while the eigenvalues can be solved from a nonlinear algebraic equation.

Unfortunately, for 3-D waveguides without rotation symmetry, analytic solutions are not

available. A large number of modes are often needed in the mode expansion method, but

computing the eigenmodes in each segment becomes a prohibitive task. Nevertheless,

the mode matching method can still be useful if many of the segments are identical.

5 One-way models

One-way models are widely used for modeling wave propagation in slowly varying waveg-

uides. They are derived as as approximations to the original governing equations and they

involve only first order derivatives in the propagation direction z and can be efficiently

solved as “initial value problems” by marching forward in z. For underwater acoustics,

the first one-way model was introduced by Tappert [27] in the 70’s. At about the same

time, a similar model was introduced by Feit and Fleck [28] for optical waveguides. A
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more accurate one-way model was introduced later by Clarebout [29] for geophysical

applications and Greene [30] for underwater acoustics. These one-way models for field

propagation are actually closely related to the one-way operator introduced by Engquist

and Majda [31, 32] for terminating unbounded domains. The higher order one-way mod-

els based on the diagonal Padé approximants of the square root operator were developed

by Zhang [33] and Bamberger et al [34]. They were applied to underwater acoustics by

Collins [35] and to optics by Hadley [36]. For historical reasons, the one-way modeling

techniques are called Parabolic Equation (PE) method and Beam Propagation Method

(BPM) in acoustics and optics, respectively.

We consider the Helmholtz equation (15) for the TE polarization. If the waveguide

is z-invariant, we have a decomposition u = u+ + u−, where u = Ey. The forward

component u+ satisfy the one-way Helmholtz equation

∂zu
+ = iΛu+

exactly, where Λ =
√

∂2
x + k2

0n
2 is the square root operator. For a slowly varying waveg-

uide, n = n(x, z) changes with z slowly. If we are interested in waves that propagate

in the positive z direction, we approximate the original Helmholtz equation (15) by the

following ideal one-way model:

∂zu = iΛ u. (46)

The above is often called the one-way Helmholtz equation. Since n depends on z, so does

the operator Λ. Compared with the original Helmholtz equation (15), the ideal one-way

equation (46) is easier to solve, because it gives rise to an “initial value problem” in z.

This is true, especially when the square root operator is properly approximated.

For the transverse magnetic polarization, the ideal one-way model can also be written

as (46), if we let

u = Hy, Λ =
√

n2∂x(n−2∂x·) + k2
0n

2. (47)

For 3-D waveguides, we can use the transverse components of the electric or magnetic

fields. If the transverse components of E are used, we have the one-way equation (46)

with

u = Et, Λ =
√
L, (48)

where L is given in (9). Similarly, if we use the transverse magnetic components, we need

to define

u = Ht, Λ =
√
M, (49)

for M given in (10). One-way models based on (46) and (48) or (49) give rise to the

full-vectorial beam propagation methods [50].

For practical numerical implementations, it is expensive to evaluate Λ rigorously using

its definition by the spectral decomposition. Instead, we use various approximations.
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Consider the 2-D TE case again, we introduce a reference refractive index n∗, such that

∂2
x + k2

0n
2(x, z) = k2

0n
2
∗(1 + X), X =

1

k2
0n

2
∗
∂2

x +
n2

n2
∗
− 1. (50)

Therefore, Λ = k0n∗
√

1 + X. If can let u = veik0n∗z, then

∂v

∂z
= ik0n∗(

√
1 + X − 1) v. (51)

The simplest approximation is

√
1 + X − 1 ≈ X

2
. (52)

This is the paraxial approximation which gives rise to the early one-way models [27, 28].

More accurate one-way models are derived from the [p/p] Padé approximants:

√
1 + X − 1 ≈

p∑
l=1

alX

1 + blX
, (53)

where p is a positive integer and al, bl are given explicitly as follows:

al =
2

2p + 1
sin2 θl, bl = cos2 θl for θl =

lπ

2p + 1
. (54)

The case p = 1 was first proposed by Claerbout [29]. The general case corresponds to

the higher order one-way models developed in [33, 34, 35, 36].

While we can insert (53) into (46) and try to solve the resulting equation by operator-

splitting and Crank-Nicolson’s method, Collins [37] realized that it is more efficient to

approximate the one-way propagator directly. Consider the step from z0 to z1 = z0 +∆z

(of course, the other steps are similar), we can formally solve (51) by

v1 = P v0, P = P (X) = eis(
√

1+X−1) for s = k0n∗∆z, (55)

where P (X) is the one-way propagator (exponential of the square root operator) and X

is evaluated at z = z1/2 = z0 + ∆z/2. Collins’ idea is to approximate P (X) directly by a

rational function of X. For example, if we have

P (X) ≈ c0 +
p∑

l=1

cl

X + dl

(56)

(the coefficients depend on s and an integer p), then

v1 = c0v0 +
p∑

l=1

clwl, (57)

where wl can be solved from

(X + dl)wl = v0. (58)
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For 2-D waveguides (both TE and TM cases), solving wl from (58) is extremely simple.

Since the operator X involves derivatives only in x, its discretization leads to a simple

banded matrix. For the full-vectorial BPM, X is a 2 × 2 operator matrix involving

partial derivatives in both x and y and it becomes expensive to solve wl from (58). One

possibility is to use the iterative ADI (alternating direction implicit) method developed

in [53]. On the other hand, the full-vectorial paraxial model can be efficiently solved with

a non-iterative ADI scheme [51, 52]. For this reason, the paraxial full vector BPM is still

widely used.

In a z-invariant waveguide, the evanescent waves (corresponding to eigenvalues of X

that are less than −1) should decay as z increases. However, in the paraxial approx-

imation (52) or a diagonal Padé approximation of
√

1 + X, the evanescent waves will

be incorrectly propagated. Since the coefficients in (54) are real,
√

1 + µ, for µ < −1,

will be approximated by a real number using (53). For slowly varying waveguides, the

evanescent waves are not very important, but they should certainly be damped. This

issue, first realized by Wetton and Brooke [38], becomes more serious for one-way mod-

eling using the elastic wave equations [38] and the full vector Maxwell’s equations [50].

For example, the operators L and M are not self-adjoint and there may be pairs of com-

plex conjugate eigenvalues [6]. Using the paraxial or the diagonal Padé approximants,

one of the complex eigenvalues will always increase exponentially in z and this leads to

instability. To damp the evanescent waves, we can develop complex coefficient rational

approximants of
√

1 + X. A rotating branch-cut procedure was developed in [39], but

it does not always give rise to stable one-way models. A modified Padé procedure that

gives rise to truly stable one-way models was developed in [40].

For the propagator-based one-way models (56,57,58), we also have the difficulty with

the evanescent waves. If we use a diagonal Padé approximant of P (X), the evanescent

waves will again be incorrectly propagated. For elastic wave equations and the full-

vectorial Maxwell’s equations, the complex modes give rise to instabilities. Since the

propagator-based one-way models are more efficient, it is important to develop stable

rational approximants of P that are accurate for the forward propagating waves, but

can also suppress the evanescent waves and complex modes. Yevick [41] developed some

approximants of P (X) in connection with the approximants of
√

1 + X in [39] and [40].

In [42], it is shown that we can use the [(p− 1)/p] Padé approximants of P (X). To avoid

too much damping (especially when p is small), it was proposed in [43] to use a rational

approximation that connects the [(p − 1)/p] and [p/p] Padé approximants. Similar to

the θ-method (for the heat equation) which combines the backward Euler method with

the Crank-Nicolson method, a parameter θ is introduced for connecting the two rational

approximants of P (X). More precisely, let Rp−1,p and Rp,p be the [(p − 1)/p] and [p/p]

12



Padé approximants of P = eis(
√

1+X−1) given by

Rp,p(X) =
Fp(X)

Gp(X)
, Rp−1,p(X) =

Sp−1(X)

Tp(X)
, (59)

where Sp−1 is a polynomial of degree p − 1, Fp, Gp and Tp are polynomials of degree p.

We assume that the four polynomials are scaled such that they all equal 1 at X = 0.

Then, we approximate P (X) by the following rational function of X:

Rp(X; θ) =
(1− θ)Sp−1(X) + θFp(X)

(1− θ)Tp(X) + θGp(X)
. (60)

For practical use, we re-write Rp(X; θ) as the right hand side of (56) with suitable coef-

ficients.

Notice that the one-way Helmholtz equation (46) is only an approximation of the

Helmholtz equation (15) when n varies with z slowly. It is desirable to develop one-way

models that are more accurate than (46), but are still easy to solve. To understand the

limitation of (46), we consider the simplest 1-D model. Let the exact equation be the

1-D Helmholtz equation
d2u

dz2
+ k2

0n
2(z)u = 0, (61)

then, the one-way Helmholtz equation corresponds to the following first order ODE:

du

dz
= ik0n(z)u. (62)

The exact solution of the above is

u(z) = u(0)eik0

∫ z

0
n(ξ)dξ.

For Eq. (61), we do not have a general expression for its solutions, but a WKB analysis

gives rise to the following approximate solution:

u(z) ≈ u(0)

√√√√n(0)

n(z)
eik0

∫ z

0
n(ξ)dξ.

Notice that

|u(z)| ≈ |u(0)|

√√√√n(0)

n(z)
.

This is very different from the solution of (62) which satisfies |u(z)| = |u(0)|.
To improve the accuracy of BPM, two different approaches can be used. The first is

to use the so-called energy-conserving improvement [44, 45, 46, 47]. The idea is to solve

φ = 4

√
∂2

x + k2
0n

2(x, z) u

13



assuming that φ satisfies the one-way Helmholtz equation

∂zφ = iΛ φ.

In terms of the original function u, we have

∂zu =

(
iΛ− Λ−1/2d

√
Λ

dz

)
u. (63)

Another approach is to use the single scatter approximation. The original idea of single

scatter approximation was introduced for 1-D Helmholtz equation by Bremmer in the

50’s. It has been used in a discrete form by some authors to improve the BPM. A

continuous version of the single scatter approximation has been developed[48, 49]. This

implies that we solve u from

∂zu =
[
iΛ(z)− 1

2
Λ−1(z)Λ′(z)

]
u. (64)

Although it does not look very simple, this equation can be discretized with a suitable

operator rational approximation. The improved one-way models are also available for

the TM case. Unfortunately, they are not available for full-vectorial cases.

6 Bidirectional Beam Propagation Method

Optical wave-guiding structures that are piecewise uniform in z are important, because

they correspond to actual fabricated photonic devices, such as waveguide gratings. Due

to the discontinuity of the refractive index function at multiple values of z, reflections

are important for these structures and the traditional BPM one-way models that ignore

reflections are not suitable. The mode matching method [17, 18, 19] is a good choice for

such a structure, but the bidirectional beam propagation method (BiBPM) is often more

efficient.

Let us first consider a single waveguide discontinuity at z = 0 for TE polarized waves.

Such a discontinuity can be the end facet of an optical waveguide or the junction between

two different waveguides. We assume n(x, z) = n0(x) for z < 0 and n(x, z) = n1(x)

for z > 0. If the mode matching method is used, the eigenmodes of the transverse

operator (modified with a PML) must be calculated. On the other hand, BiBPM applies

rational approximation techniques developed for traditional BPM in an iterative scheme

for solving the reflection and transmission at the discontinuity. If an incident wave u(i)

is given for z < 0, the reflected wave and the transmitted wave satisfy

(Λ0 + Λ1)u
(r)|z=0− = (Λ0 − Λ1)u

(i)|z=0−, (65)

(Λ0 + Λ1)u
(t)|z=0+ = 2Λ0u

(i)|z=0−. (66)
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When x is discretized, say by N points, the transverse operator ∂2
x+k2

0n
2
j is approximated

by a sparse matrix, but the square root operator Λj can only be approximated by a

dense matrix. With an eigenvalue decomposition of the transverse operator, a matrix

approximation of the square root operator Λj can actually be written down, but the

computation is expensive, since the required number of operations is O(N3). A much

more efficient approach is to use rational approximations for the square root operator

as in the beam propagation method. For a reference refractive index n∗, we write Λj as

Λj = k0n∗
√

1 + Xj for an operator Xj, then approximate
√

1 + Xj by a rational function

of Xj. This leads to

Λj ≈ Sj = k0n∗a0

p∏
k=1

1 + ckXj

1 + bkXj

.

The coefficients a0, bk, ck above depend on the degree p and other parameters. Therefore,

the equation for u(r)|z=0− can be approximated by

(S0 + S1)u
(r) = (S0 − S1)u

(i). (67)

Since Xj is approximated by a sparse matrix, the action of Sj or S−1
j on a given function

of x can be efficiently evaluated. A number of iterative schemes are developed in [54],

[55] and [56]. To speed up the convergence, we can multiply (67) by S−1
0 or S−1

1 or S−1
1/2,

then use a Krylov subspace iterative method [57]. Here, S1/2 is a rational approximant

of
√

∂2
x + k2

0n
2
1/2 for n2

1/2 = (n2
0 + n2

1)/2.

Consider a piecewise z-invariant structure given by 0 = z0 < z1 < ... < zm = a,

where zj is a longitudinal discontinuity of the refractive index function. The BiBPMs

are designed to take advantage of the z-independence in each segment by using operator

rational approximations as in the traditional BPM. BiBPMs are first proposed based on

the transfer matrix operator [58, 59], but these methods are numerically unstable, unless

the evanescent modes are intentionally treated incorrectly. However, the evanescent

modes are excited at the longitudinal discontinuities and a correct modeling of these

modes is essential to the accuracy of the simulation results. A stable BiBPM[60, 61] was

developed based on the scattering operators. The idea is to use rational approximants

of the square root operators Λj and Λj+1 to speed up the computation of operator C in

(21), and similarly, to use a rational approximant of one-way propagator Pj in (24) to

speed up the calculations of R(zj−1+) and T (zj−1+) in (25) and (26). Stable rational

approximants for the square root operator and the one-way propagator that suppress

the evanescent modes can be used. Although the method still requires manipulations

of matrices representing the scattering operators, but it is much more efficient than a

direct method that computes the square root operator and the one-way propagator by an

eigenvalue decomposition of the transverse operator. Compared with the mode matching

method, the scattering operator BiBPM is highly competitive. Another BiBPM [62]
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was developed based on iteratively solving a linear system for wave field components at

the longitudinal discontinuities. At a discontinuity zj, we have four unknown functions

u+(·, zj+), u+(·, zj−), u−(·, zj+) and u−(·, zj−). It turns out that we can eliminate two of

them and setup a system for u+(·, zj−) and u−(·, zj+) at all longitudinal discontinuities.

The coefficient matrix is sparse and its non-zero entries are related to the square root

operators Λj and the one-way propagator Pj, but these operators need not be explicitly

formed. If a Krylov subspace method is used to solve this system, we only need to find

the multiplication of the coefficient matrix with a given vector in each iteration. This can

be reduced to the actions of Pj and (Λj +Λj+1)
−1 on given functions. The action of Pj can

be efficiently evaluated by its rational approximant. The action of (Λj +Λj+1)
−1 is closely

related to the scattering problem at a single waveguide discontinuity and it can also be

efficiently evaluated using the iterative method described earlier in this section. This

iterative BiBPM can be very efficient if the structure does not vary too much between

different segments. Unfortunately, the method may fail to converge if the refractive index

profiles of segments are very different.

More efforts are needed for 3-D wave-guiding structures with longitudinal discontinu-

ities. Even for a single waveguide discontinuity, an efficient and rigorous 3-D full-vectorial

treatment is not available.

7 Higher Order Operator Marching Methods

As we have seen in section 3, it is possible to reformulate the propagation problem in

waveguides as initial value problems for a pair of operators. Marching formulas for the

scattering operators R and T , or the DtN map Q and FS operator Y are given in section

3. In this section, we present some higher order marching formulas for slowly varying

waveguides.

For structures such as a taper, a Y-branch, a S-bend and waveguide couplers, the

refractive index varies with z continuously (at least in part of the structure). In this case,

it is necessary to approximate the z-varying structure by a piecewise z-invariant structure.

In the segment from zj to zj+1 = zj + ∆z, the refractive index profile n(x, z) is usually

replaced by its profile at the midpoint. That is, n(x, z) ≈ nj+1/2(x) = n(x, zj+1/2), where

zj+1/2 = zj + ∆z/2. This introduces a second order error in the solution. Therefore, it is

necessary to use a relatively small ∆z to maintain the overall accuracy of the solution.

Notice that the second order error of the piecewise z-invariant approximation is very

different from the error in a second order finite difference (or finite element) method for

solving the Helmholtz equation directly. In the latter case, the error exists even when

the structure is actually z-invariant. A number of fourth order (in z) methods have

been developed based on the DtN and FS formalism. These fourth order methods have
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a similar advantage as the second order piecewise uniform approximation, namely, the

errors are small when the variation in z is weak.

Consider the Helmholtz equation for the TE polarization, it can be written as a first

order system

∂

∂z

[
u

∂zu

]
= A(z)

[
u

∂zu

]
, A(z) =

[
0 1

−∂2
x − k2

0n
2(x, z) 0

]
, (68)

where u = Ey is the y-component of the electric field. Although the above system is

unstable if it is solved as an initial value problem in z, we can use it to derive relationships

between the Q and Y operators at zj and zj−1, and then propagate the operators from

z = a+ to z = 0−. In fact, the second order marching formulas (35-40) are related to

the following second order mid-point exponential method for (68):[
u

∂zu

]
z=zj

= e∆z Aj−1/2

[
u

∂zu

]
z=zj−1

, (69)

where Aj−1/2 = A(zj−1/2). Now, instead of (69), we can use other higher order exponential

methods [63]. The fourth order operator marching scheme developed in [15] was derived

from the following fourth order exponential method:[
u

∂zu

]
z=zj

= Q−1PQ

[
u

∂zu

]
z=zj−1

, P = e
∆z Aj−1/2+∆z3

24
A′′

j−1/2 , Q = e
−∆z2

12
A′

j−1/2 , (70)

where A′
j−1/2 = A′(zj−1/2), etc. The derivatives A′ and A′′ can also be avoided [64].

Another possibility is to use an approximate Magnus method [65]. The operator marching

method in [66] was derived from the following fourth order Magnus method [67]:[
u

∂zu

]
z=zj

= eΩj

[
u

∂zu

]
z=zj−1

, Ωj =
∆z

2
(Aj,1+Aj,2)+

√
3∆z2

12
(Aj,2Aj,1−Aj,1Aj,2), (71)

where

Aj,k = A(zj−1 + ck∆z) for k = 1, 2 and c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
.

In [15] and [66], the fourth order operator marching methods are implemented with a local

eigenfunction expansion and they give more accurate solutions with very little computing

overhead. These methods are suitable for continuously z-varying waveguides.

8 Concluding Remarks

For modeling and simulation of lightwaves propagating in optical wave-guiding structures,

we have identified three key ideas. The first is to reformulate the boundary value problem
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(of the frequency domain propagation problem) as initial value problems for a pair of

operators and march these operators along the waveguide axis. The second is to approx-

imate the square root operator or the exponential of the square root operator by rational

functions of the transverse differential operator for efficient propagation of one-way wave

field components. The third idea is to use a local eigenfunction expansion for writing

down the wave fields in each z-invariant segments. These ideas give rise to some powerful

methods for simulating waves propagating in slowly varying waveguides and piecewise z-

invariant structures. However, much work is still needed for 3-D wave-guiding structures.

In the 3-D case, the wide-angle full-vectorial BPM is relatively inefficient and improved

one-way models have not been developed yet. For a 3-D waveguide discontinuity, an

efficient full-vectorial treatment is still lacking and the mode matching method becomes

much too expensive. Since 3-D waveguides are the fundamental building blocks of inte-

grated photonic circuits, it is clearly important to develop more efficient simulation tools

for lightwave propagation in these structures.
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tion, IEEE Photon. Technol. Lett., Vol. 12, pp. 1636-1638, 2000.

[42] Y. Y. Lu and P. L. Ho, Beam propagation method using a [(p− 1)/p] Padé approx-
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