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Analyzing Leaky Waveguide Modes by

Pseudospectral Modal Method
Dawei Song and Ya Yan Lu

Abstract—Leaky modes are important when optical waveg-
uides fail to confine light completely. Computing waveguide
modes to high accuracy is challenging if the waveguide has high
index-contrast and sharp corners. The propagation constant of
a leaky mode is complex, its imaginary part is an important
physical quantity (the decay rate along the waveguide axis).
To find complex propagation constants with a small imag-
inary part, high-accuracy numerical solutions are necessary.
The pseudospectral modal method (PSMM), originally developed
for diffraction gratings, has recently been reformulated as a
full-vectorial waveguide mode solver. In this work, the PSMM
is extended to analyze two challenging waveguide benchmark
problems involving leaky modes.

Index Terms—Optical waveguides, waveguide mode solver,
pseudospectral modal method.

I. INTRODUCTION

Optical waveguides appeared in recent years, such as silicon

waveguides, plasmonic or hybrid-plasmonic waveguides, and

photonic crystal fibers, often have high index-contrast, sharp

corners, metallic components, and complicated microstruc-

tures. Over the last several decades, many numerical methods

have been developed for computing guided and leaky modes

of optical waveguides, but accurate solutions are still difficult

to get for waveguides with sharp corners, due to the field

singularities at the corners. Numerical methods for optical

waveguides can be classified as linear and nonlinear ones,

depending on whether the approximate matrix eigenvalue

problems they produce are linear or nonlinear. The finite

difference method [1]–[3], the finite element method [4]–

[7], and the multidomain pseudospectral method [8]–[10] are

linear methods. The boundary integral equation method [11]–

[15] and the mode matching method (MMM) (including its

numerical variants) [16]–[24] are nonlinear methods. The

MMM and its variants are only applicable to waveguides with

vertical and horizontal interfaces, but they can produce accu-

rate solutions, since the resulting nonlinear matrix eigenvalue

problems involve relatively small matrices. In a recent work

[25], we developed a new variant of the MMM based on the

pseudospectral modal method (PSMM) for diffraction gratings
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[26]–[29]. As a mode solver, the PSMM is highly competitive,

since it is easier to implement than the classical analytic MMM

and it is more accurate than the numerical variants based on

Fourier series and finite differences.

In this Letter, we extend the PSMM to compute leaky

waveguide modes. The propagation constant of a typical

leaky mode has a small imaginary part related to the rate of

exponential decay along the waveguide axis. Computing leaky

modes to high accuracy is necessary, since the decay rate can

be very small and it must be determined accurately.

II. PSEUDOSPECTRAL MODAL METHOD

The PSMM was originally developed for in-plane [26]–

[28] and conical [29] diffraction of gratings. The full-vectorial

PSMM waveguide mode solver [25] follows Ref. [29], and

it can be regarded as a new variant of the classical MMM

for waveguide analysis [16]–[19]. Essentially, it only differs

from earlier variants of MMM in how the one-dimensional

(1-D) modes are solved and how the field components are

matched. In this section, we present the necessary changes for

computing leaky modes.

We consider z-invariant waveguides for which the cross

sections (in the xy plane) have only material interfaces parallel

to the x or y axis, where {x, y, z} is a Cartesian coordinate

system. For simplicity, we consider two waveguides with their

cross sections shown in Fig. 1. For both waveguides, we have

three horizontal interfaces at y = y1, y2 and y3, and two

vertical interfaces at x = x1 and x2. The MMM can use either

vertical or horizontal segments. We use the vertical segments

given by x < x1, x1 < x < x2 and x > x2. Since these two

waveguides have a horizontal reflection symmetry, it is only

necessary to match the wave field on one vertical interface at

x = x2.

The MMM expands the wave field in each segments using

1-D transverse electric (TE) and transverse magnetic (TM)

modes. A TM mode in a vertical segment satisfies

ε
d

dy

(

1

ε

dφ

dy

)

+ k20εφ = δ̂2φ (1)

where ε is the relative permittivity and it depends only on

y in the segment, φ is the mode profile (a function of y),

and δ̂ is the propagation constant of the 1-D mode. Since

y is unbounded, it is necessary to truncate y. We assume y
is truncated to y0 < y < y∗ and impose the zero boundary

condition φ = 0 at y = y0 and y∗. To handle leaky modes, it is

usually necessary to use perfectly matched layers (PMLs) [30].

A PML can be regarded as a complex coordinate stretching
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Fig. 1. Two optical waveguides: (a) a silicon wire; (b) a rib waveguide.

that replaces y in Eq. (1) by a complex ŷ. For sp(y) = dŷ/dy,

Eq. (1) is replaced by

ε

sp

d

dy

(

1

εsp

dφ

dy

)

+ k20εφ = δ̂2φ, y0 < y < y∗. (2)

The above gives rise to a discrete sequence of TM modes

{φj , δ̂j} for j = 1, 2, 3, ... Similarly, we have a discrete

sequence of TE modes {ψj , ν̂j} for j = 1, 2, 3, ...

Assuming the time dependence is e−iωt (ω is the angular

frequency), a waveguide mode depending on z as eiβz (β is the

propagation constant) propagates towards z = +∞. In each

vertical segment, assuming β is given, the electromagnetic

field can be expanded using the 1-D TE and TM modes. For

example, in the segment x > x2,

Ey =
1

ε

∞
∑

j=1

aj δ̂
2
j φj(y)e

i[δj(x−x2)+βz], x > x2, (3)

where aj (for j = 1, 2, ...) are unknown coefficients and

δj =
√

δ̂2j − β2. (4)

For computing leaky modes, the above complex square root

must be carefully defined. A leaky mode propagating towards

z = +∞ should attenuate as z is increased, therefore, the

imaginary part of β should be positive. If δ̂j is real and Re[δ̂2j−
β2] > 0, the standard complex square root gives a δj in the

lower half plane, since the negative real axis is the branch cut.

This is incorrect, since δj should change continuously with

Im(β). A simple solution to this problem is to redefine the

complex square root by rotating the branch cut to the negative

imaginary axis. That is,

if v = |v|eiθ for − π

2
< θ ≤ 3π

2
,

then
√
v =

√

|v|eiθ/2.

For the TE modes {ψj , ν̂j}, we similarly define νj =
√

ν̂2j − β2. Consequently, we can expand the four field com-

ponents Ey , Hy , Ez and Hz using the 1-D modes.

In the PSMM [25], the 1-D modes are solved by the Cheby-

shev collocation method. If we discretize Eq. (2) directly, we

can choose the number of points in each interval of y, but

cannot change how these points are distributed. To gain more

flexibility, we introduce a real coordinate transform y = g(ξ),
then Eq. (2) becomes

ε

spsg

d

dξ

(

1

εspsg

dφ

dξ

)

+ k20εφ = δ̂2φ, ξ0 < ξ < ξ∗, (5)

where sg(ξ) = dg/dξ, g(ξ0) = y0 and g(ξ∗) = y∗. Using the

Chebyshev collocation method, if ξ (also y) is discretized by

N points, we solve Eq. (5) with the boundary conditions φ = 0
at ξ0 and ξ∗, and find N numerical TM modes. Similarly, we

find N numerical TE modes. With the four components Ey ,

Hy , Ez and Hz expanded in the numerical 1-D modes in each

vertical segments, we can set up a homogeneous linear system

F(β)x = 0, (6)

by matching these components at all discretization points

on vertical interfaces, where x is a vector for the unknown

coefficients. For the two waveguides shown in Fig. 1, assuming

proper symmetry of the waveguide mode, it is only necessary

to match the components on one vertical interface at x = x2.

In that case, F is a (4N) × (4N) matrix. The propagation

constant β can be solved iteratively from the condition that F

is a singular matrix. We use the condition σ1(F) = 0, where

σ1 is the smallest singular value of the matrix. A more efficient

but less robust method is to solve β from

f(β) =
1

aTw
= 0, (7)

where w is the solution of Fw = b, and a, b are two

randomly chosen column vectors [13]. Typically, using the

secant method or Müller’s method, only a small number of

iterations are needed. The required number of operations in

each iteration is O(N3).

III. BENCHMARK PROBLEMS

In this section, we consider two waveguide benchmark

problems. The first waveguide is a silicon wire as shown in

Fig. 1(a). The silicon core has a 0.5µm×0.22µm rectangular

cross section. It is placed on a 1µm thick SiO2 buffer layer

below which is the infinite silicon substrate. The waveguide is

considered for free space wavelength λ = 1.55µm, assuming

the refractive indices of silicon, SiO2 and air cladding are

nb = 3.5, nc = 1.45 and nt = 1, respectively. Since the

SiO2 layer is finite, power can leak to the substrate, thus the

waveguide has no guided modes. Our objective is to calculate

the fundamental leaky mode with a complex propagation

constant β. Since Im(β) is an important physical quantity and

it is very small, numerical solutions with high accuracy are

necessary.

Assuming the interface between the silicon substrate and

the SiO2 buffer layer is y = y1 = 0, we have y2 = 1µm and

y3 = 1.22µm. We truncate the y variable to y0 < y < y∗,
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where y0 = −1.5µm and y∗ = 5.22µm. The bottom substrate

layer y0 < y < y1 is turned to a PML with function

sp(y) = 1 + iα

(

y − y1
y0 − y1

)3

, y < y1,

where α = 80. The top layer y3 < y < y∗ is further divided

into an air layer y3 < y < y4 = 3.72µm and a PML y4 <
y < y∗ with

sp(y) = 1 + iα

(

y − y4
y∗ − y4

)3

, y > y4,

for the same α. The entire y-interval (y0, y∗) is discretized

following the Chebyshev points on five subintervals, with a

total of N points (excluding the end points of the subintervals).

The eigenvalue problems for the TE and TM modes are then

approximated by matrix eigenvalue problems involving N×N
matrices.

In Table I, we list the propagation constant β calculated

TABLE I
PROPAGATION CONSTANT β OF THE FUNDAMENTAL LEAKY MODE OF THE

SILICON WIRE CALCULATED BY THE PSMM MODE SOLVER FOR

DIFFERENT NUMBER OF DISCRETIZATION POINTS N .

N Re(β/k0) Im(β/k0)
220 2.4123719902 2.47635×10−8

240 2.4123719882 2.79235×10−8

260 2.4123719863 2.88768×10−8

280 2.4123719850 2.91019×10−8

300 2.4123719842 2.91414×10−8

320 2.4123719836 2.91378×10−8

340 2.4123719831 2.91365×10−8

360 2.4123719828 2.91365×10−8

380 2.4123719825 2.91355×10−8

400 2.4123719823 2.91346×10−8

420 2.4123719821 2.91331×10−8

440 2.4123719819 2.91345×10−8

460 2.4123719818 2.91347×10−8

480 2.4123719817 2.91348×10−8

500 2.4123719816 2.91347×10−8

using PSMM for different values of N . Keeping 10 and 5 sig-

nificant digits for the real and imaginary parts, respectively, we

obtain Re(β/k0) = 2.412371982 and Im(β/k0) = 2.9135 ×
10−8. This result agrees perfectly with two previous calcula-

tions [31] based on the classical MMM [20] and the aperiodic

Fourier modal method (FMM) [22] (a numerical variant of

MMM based on Fourier series). These authors reported the real

part with 7 significant digits: Re(β/k0) = 2.412372. For the

imaginary part, they reported 5 or 6 digits, that is Im(β/k0) =
2.9135×10−8 or Im(β/k0) = 2.91348×10−8. Other methods

have been used to analyze this waveguide [31], but the results

appear to be less accurate. Wang et al. [10] studied this waveg-

uide by a multidomain pseudospectral method. Their result is

Re(β/k0) = 2.412374 and Im(β/k0) = 2.9198 × 10−8. For

N = 500, it takes about 5s on a current iMac to find the

singular values of the complex (4N) × (4N) matrix F. The

solution converges in a few iterations, and the total required

time is less than half a minute.

The second benchmark problem is the classical rib waveg-

uide studied by many authors [22], [24], [30], [32]–[34]. A

schematic of the waveguide is shown in Fig. 1(b). The width

and the height of the rib are w = 3µm and h1 = 1µm,

respectively. The thickness of the slab is h2 and it varies

from 0.1µm to 0.9µm. The waveguide is considered for free

space wavenumber λ = 1.15µm. The refractive indices of the

guiding layer, the substrate and the air cladding are nc = 3.44,

nb = 3.4 and nt = 1, respectively.

Using the PSMM, we calculate the fundamental quasi-TE

and quasi-TM modes of the rib waveguide for a few values of

h2, and list the normalized propagation constant B defined as

B =
(β/k0)

2 − n2b
n2c − n2b

in Table II. For comparison, we also list the results obtained

TABLE II
NORMALIZED PROPAGATION CONSTANTS B OF THE FUNDAMENTAL

QUASI-TE AND QUASI-TM MODES OF THE RIB WAVEGUIDE.

h2 PSMM: TE MMM: TE PSMM: TM MMM: TM

0.1 0.30190788 0.30191 0.26745459 0.26745
0.3 0.31104338 0.31105 0.27514225 0.27513
0.5 0.32701401 0.32702 0.28899995 0.28899
0.7 0.35117264 0.35118 0.31070288 0.31070
0.9 0.38830976 – 0.34549570 –

by Selleri et al. [33] using the classical MMM. Although

these authors only show five significant digits, the difference

with our result is less than 10−5 for all cases. We have

confidence that our results are accurate to the 7th digit after the

decimal point. The results of many other numerical methods

are summarized in [34].

As pointed by Vassallo [32], the fundamental quasi-TM

mode is leaky when h2 = 0.9µm. Therefore, the number in

Table II for this particular case is actually the real part of B.

Many authors have studied this case, but failed to calculate

the imaginary part. Using the aperiodic FMM, Hugonin et al.

[22] obtained Im(β/k0) = 6.71×10−7. We consider this case

by truncating the y variable to (y0, y∗) where y0 = −8µm

and y∗ = 2.1µm. The horizontal interfaces are located at

y1 = 0, y2 = h2 = 0.9µm, and y3 = h1 = 1µm. Although

the quasi-TM mode in this case is leaky, it only leaks in

the horizontal directions (as x → ±∞). Therefore, it is not

necessary to use PMLs in the y direction. In Table III, we show

TABLE III
PROPAGATION CONSTANT β OF THE QUASI-TM LEAKY MODE OF THE RIB

WAVEGUIDE WITH h2 = 0.9µm, CALCULATED USING THE PSMM MODE

SOLVER FOR DIFFERENT NUMBER OF DISCRETIZATION POINTS N .

N Re(β/k0) Im(β/k0)
100 3.4138744414 3.2856×10−7

140 3.4138713456 8.5942×10−7

184 3.4138693667 8.6521×10−7

220 3.4138728239 6.7188×10−7

260 3.4138728220 6.7186×10−7

300 3.4138728210 6.7184×10−7

340 3.4138728204 6.7184×10−7

380 3.4138728199 6.7180×10−7

420 3.4138728196 6.7181×10−7

460 3.4138728194 6.7182×10−7

500 3.4138728192 6.7178×10−7

540 3.4138728191 6.7178×10−7

the complex propagation constant β computed by the PSMM



4

with different values of N . If we keep 10 and 4 significant

digits for the real and imaginary parts, then our result is

Re(β/k0) = 3.413872819 and Im(β/k0) = 6.718 × 10−7.

It agrees well with the result of Hugonin et al. [22].

IV. CONCLUSION

For optical waveguides with horizontal and vertical material

interfaces only, the MMM and its numerical variants are

popular. Compared with the classical MMM that calculates

the 1-D modes analytically, the numerical variants are easier

to implement and can still achieve high accuracy. The PSMM

and the FMM are originally developed for diffraction grating

problems, but they are in fact numerical variants of the MMM

when used as full-vectorial waveguide mode solvers [22], [25].

The PSMM has outperformed the FMM for grating problems

[28], [29], and delivers high-accuracy results for guided modes

of optical waveguides. In this Letter, we use two benchmark

problems to show that PSMM is capable of computing leaky

modes to high accuracy. For leaky modes, the imaginary part

of the propagation constant is an important physical quantity

and it is often very small. Therefore, highly accurate numerical

solutions are really needed.
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