
Second order sensitivity analysis for a photonic crystal

waveguide bend

Zhen Hu
1, ∗

and Ya Yan Lu
2

1Department of Mathematics, Hohai University, Nanjing, Jiangsu, China
2Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

compiled: November 5, 2014

Sensitivity analysis provides important information on the tolerance to fabrication imperfections for any de-
signed devices. Standard sensitivity analysis relies on the first order partial derivatives of a response function
of the device with respect to the design parameters. These derivatives are also useful in the device optimiza-
tion process when a gradient based optimization method is used. The first order sensitivity analysis becomes
inadequate if the first order derivatives are small or zero. In this paper, an efficient method for computing the
second order partial derivatives is developed for idealized two-dimensional photonic crystal devices with circular
cylinders, where the response function is the normalized power transmission coefficient in an output waveguide
and the design parameters are the radii of the cylinders. Based on that, a second order sensitivity analysis
is performed for a 90◦ photonic crystal waveguide bend at the frequency where the transmission coefficient is
close to 1.
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1. Introduction

For practical applications of photonic crystal (PhC) de-
vices [1–3], it is important to study the sensitivity of
device properties with respect to design parameters [4].
Such a sensitivity analysis gives valuable information
about fabrication tolerance and is also useful in the op-
timal design process [5–7]. For PhC devices, a typical
device property could be the transmission coefficient for
normalized power in an output waveguide, and the de-
sign parameters could be the radii, centers, refractive in-
dices, shape variations of the dielectric rods or air-holes,
etc.
The standard sensitivity analysis [4, 8] is based on the

first order partial derivatives of a response function (such
as the transmission coefficient) with respect to the de-
sign parameters. For design parameters in a small neigh-
borhood of the design point, the response function can
be approximated by its first order Taylor expansion. It
is possible to perform a sensitivity analysis by comput-
ing the response function with each design parameter
(alone) slightly varied away from the design point [5],
and approximating the partial derivatives by difference
formulae. If many design parameters are involved, such
a direct approach is not efficient, since the response func-
tion must be repeatedly calculated when each design pa-
rameter is varied. The adjoint variable method [4, 9–11]
is much more efficient, since it computes all the partial
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derivatives using only two field computations.
The first order sensitivity analysis becomes inade-

quate if the first order partial derivatives are zero or
small. For example, if the transmission coefficient of a
linear device is close to 1 at some frequency, all its par-
tial derivatives with respect to the design parameters
must be nearly zero, since 1 is the absolute maximum.
Notice that even when the first order partial derivatives
are zero, the device may still be quite sensitive to the
design parameters. This happens in devices that exhibit
Fano resonances, where the transmission spectrum can
change rapidly between a maximum and a minimum.
In any case, the response function can be more accu-
rately approximated if second order partial derivatives
are available. Second order derivatives can also be used
in nonlinear programming algorithms [12] for optimal
design of photonic devices.

In this paper, we develop an efficient method for
second order sensitivity analysis of idealized two-
dimensional (2D) PhC devices with circular inclusions
(dielectric rods or air-holes) in square or triangular lat-
tices. To simplify the presentation, we concentrate on a
specific example, namely, the 90◦ PhC waveguide bend
proposed by Mekis et al. [3]. Our method is based
on a frequency-domain computational method (the so-
called DtN-map method) that is particularly efficient
for analyzing 2D PhC devices with circular inclusions
[13, 14]. The DtN-map method relies on the Dirichlet-
to-Neumann (DtN) maps of the unit cells to establish a
small system equation on the edges of the unit cells only.
For PhC devices with circular inclusions, the DtN maps
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are approximated by small matrices based on cylindrical
wave expansions. Our sensitivity analysis takes advan-
tage of the analytic solutions, i.e. the cylindrical waves.

2. DtN-map method

In order to present our method for second order sensi-
tivity analysis, we include a brief summary for the DtN-
map method below and consider the 90◦ PhC waveguide
bend proposed by Mekis et al. [3] and shown in Fig. 1.
The background PhC is an infinite square lattice of di-

Fig. 1. The 90◦ photonic crystal waveguide bend proposed
by Mekis et al. [3].

electric rods surrounded by air, where the lattice con-
stant is L, the radius and refractive index of the rods
are a = 0.18L and n = 3.4, respectively. For the E po-
larization, the electric field is parallel to the axes of the
rods, and it satisfies the following Helmholtz equation

∂2xu+ ∂2yu+ k20n
2(x, y)u = 0, (1)

where k0 is the free space wavenumber, n(x, y) is the
refractive index function, {x, y, z} is a Cartesian coor-
dinate system, z is the axis parallel to the dielectric
rods, and u is the z component of the electric field.
For this polarization, the PhC has a bandgap given by
0.302 < ωL/(2πc) < 0.443 [3], where ω is the angular
frequency and c is the speed of light in vacuum. As
shown in Fig. 1, the 90◦ bend connects two semi-infinite
PhC waveguides along the negative x (horizontal) and
positive y (vertical) directions. The PhC waveguide is
formed by removing a row of rods, and it has a single
propagating mode for 0.312 < ωL/(2πc) < 0.443 [3].
In the horizontal waveguide, an incident wave is spec-

ified. It is a propagating mode propagating towards the
bend, and it can be written as

u(i)(x, y) = ψ1(x, y)e
iβ1x, (2)

where ψ1 is periodic in x with period L and decays to
zero as y → ±∞. The incident wave gives rise to a

reflected wave and a transmitted wave in the horizontal
and vertical waveguides, respectively. The transmitted
wave can be expanded in the Bloch modes of the PhC
waveguide as

u(t)(x, y) =
∞
∑

j=1

Cjψj(y,−x)eiβjy, (3)

where Cj is the coefficient of the jth Bloch mode. Notice
that we use ψj(x, y) to denote a Bloch mode in the hori-
zontal waveguide, then ψj(y,−x) is a Bloch mode in the
vertical waveguides. Since the PhC waveguide has only
one propagating mode (i.e., β1 is real and Im(βj) > 0 for
all j > 1), the transmission coefficient (the power car-
ried by the transmitted wave, normalized by the power
of the incident wave) is simply T = |C1|2.
Using the DtN-map method [13], the original

Helmholtz equation is replaced by the following linear
system

Au = f , (4)

where u is a column vector for u on the edges of the unit
cells in a truncated domain. The truncated domain is a
square withM×M unit cells around the bend. The case
forM = 11 is shown in Fig. 2. Each edge of a unit cell is

Fig. 2. Truncated domain and square unit cells for analyzing
the 90◦ PhC waveguide bend by the DtN-map method.

discretized by N points, where a typical value is N = 5.
The boundary condition on the lower and right sides of
the truncated domain is simply u = 0, since these sides
are sufficiently far away from the waveguide core. The
boundary conditions on the top and left sides are rigor-
ous nonlocal conditions established based on expanding
the transmitted and reflected waves in Bloch modes of
the PhC waveguides [13]. It is also possible to use ap-
proximate and simpler boundary conditions on the top
and left sides [15], but the truncated domain must be
slightly increased. The boundary condition on the left
side is inhomogeneous, since there is an incident wave in
the horizontal waveguide, and it gives rise to the vector
f in Eq. (4). Notice that u is a vector of length 2NM2,
since it involves only 2N points for each unit cell.
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The DtN-map method relies on the DtN maps of the
unit cells. Let Ωi be a square unit cell with a circular
cylinder of radius ai at its center, its DtN map is an
operator Λi satisfying

Λi u = ∂νu on ∂Ωi (5)

for u satisfying Eq. (1) in Ωi, where ∂Ωi denotes the
boundary of Ωi and ∂ν denotes the normal derivative
operator on ∂Ωi (we take it to be ∂x and ∂y on the ver-
tical or horizontal edges of Ωi, respectively). If each edge
of Ωi is discretized by N points, then Λi is approximated
by a (4N) × (4N) matrix. Equation (4) is established
by matching ∂νu on each edge of the unit cells in the
truncated domain. If Γij is the common edge of two
neighboring unit cells Ωi and Ωj , we can evaluate ∂νu
on Γij by Λi and Λj . If an edge of a unit cell Ωi is on
the left or top sides of the truncated domain, we can
evaluate ∂νu on that edge by Λi and by the nonlocal
boundary condition. In any case, ∂νu evaluated in the
two different approaches must equal to each other.
The DtN-map method can be implemented semi-

analytically or fully numerically, depending on how the
DtN maps are approximated by matrices. For unit cells
with a general index profile, the finite element method
and the boundary integral equation method may be used
[16]. But for simple square or hexagon unit cells with
circular inclusions, the analytic method based on cylin-
drical wave expansions is the most efficient [17, 18]. In
that case, the solution of Eq. (1) in Ωi is approximated
by a linear combination of 4N analytic solutions:

u(r) ≈
4N
∑

l=1

clΦl(r) in Ωi, (6)

where r = (x, y), Φl is an exact solution (a cylindrical
wave) given in Appendix, and cl is an arbitrary coeffi-
cient. Let rj for 1 ≤ j ≤ 4N , be 4N discretization points
on ∂Ωi (with N points on each edge equally spaced),
then

u(rj) ≈
4N
∑

l=1

clΦl(rj), (7)

∂u

∂ν
(rj) ≈

4N
∑

l=1

clν(rj) · ∇Φl(rj), (8)

for 1 ≤ j ≤ 4N . If we introduce two matrices D and
N with their (j, l) entries given by Φl(rj) and ν(rj) ·
∇Φl(rj), respectively, then ~u ≈ D~c, ∂ν~u ≈ N~c, and

∂ν~u ≈ ND−1~u, (9)

where ~u and ∂ν~u are column vectors of u(rj) and ∂νu(rj)
for 1 ≤ j ≤ 4N , and ~c is a column vector of cl for
1 ≤ l ≤ 4N . The matrix ND−1 is an approximation to
the DtN map Λi.
Once u is calculated, we can use its values on the top

side of the truncated domain to obtain a numerical ver-
sion of the Bloch mode expansion (3). This leads to a

vector d with only NM nonzero elements correspond-
ing to the discretization points on the top side of the
truncated domain, such that

C1 = dTu, (10)

where the superscript T denotes the transpose operation.
Using the DtN-map method, the transmission and re-

flection spectra of the 90◦ bend are calculated and shown
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Fig. 3. Transmission (T ) and reflection (R) spectra of the
90◦ PhC waveguide bend proposed by Mekis et al. [3].

in Fig. 3. These results are obtained with M = 11 and
N = 5.

3. First order derivatives

The normalized power transmission coefficient T de-
pends on the frequency ω, as well as other physical and
geometric parameters. A sensitivity analysis is to ana-
lyze how T varies with design parameters, such as the
refractive indices, radii, centers of the cylinders in each
unit cell. In the following, we assume the refractive in-
dices of the cylinders and the surrounding medium are
fixed, the cylinders are strictly circular and exactly cen-
tered on lattice points of a square lattice, and consider
only the sensitivity with respect to the radii of the cylin-
ders. While the original 90◦ bend involves either an
empty unit cell with no rod or a regular unit cell with a
circular rod of radius a, where a is fixed at 0.18L, we now
consider a more general structure for which the ith unit
cell Ωi contains a circular rod of radius ai. Consequently,
we have T = T (ω; a1, a2, a3, ...), and our objective is to
calculate the first order partial derivatives ∂ai

T .
Since T = |C1|2, we have ∂ai

T = 2Re(C1 ∂ai
C1),

where C1 is the complex conjugate of C1. Therefore,
we can concentrate on computing the partial derivatives
of C1. In Eq. (10), the vector d is only related to the
Bloch modes of the PhC waveguide (it is independent of
ai), thus

∂C1

∂ai
= dT ∂u

∂ai
. (11)

Similarly, the vector f in Eq. (4) is independent of ai.
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Therefore,

A
∂u

∂ai
= −∂A

∂ai
u. (12)

In principle, we can solve ∂ai
u from Eq. (12) and then

evaluate ∂ai
C1 using Eq. (11). If there are many design

parameters, this approach could be expensive. The key
observation of the adjoint variable method [4] is that if
g satisfies

ATg = d, (13)

then

∂C1

∂ai
= −gT ∂A

∂ai
u. (14)

Consequently, it is only necessary to solve one equation
for g, then all partial derivatives are easily evaluated
from (14).
Since the system matrix A is constructed from the

DtN maps of the unit cells and the boundary conditions
for terminating the waveguides, ∂ai

A depends on ∂ai
Λi.

Since Λi = ND−1, we take the partial derivative with
respect to ai for both sides ΛiD = N, and get

∂Λi

∂ai
=

(

∂N

∂ai
−Λi

∂D

∂ai

)

D−1. (15)

The entries of D and N are related to the special solu-
tions Φl (1 ≤ l ≤ 4N) of the Helmholtz equation (1) in
the unit cell Ωi. Clearly, Φl depends on the radius ai of
the rod. If we write Φl as Φl(r; ai), then the (j, l) entries
of D and N are

Djl = Φl(rj ; ai), Njl = ν(rj) · ∇Φl(rj ; ai), (16)

where rj (for 1 ≤ j ≤ 4N) are the discretization points
on four edges of Ωi, ν(rj) is a unit normal vector at
rj . The partial derivatives of Djl and Njl with respect
to ai can be explicitly evaluated and they are given in
Appendix.

4. Second order derivatives

For second order sensitivity analysis, we need to calcu-
late the second order partial derivatives of T with respect
to ai and aj , where ai and aj are the radii of rods in unit
cells Ωi and Ωj . From T = |C1|2, we have

∂2T

∂ai∂aj
= 2Re

[

C1
∂2C1

∂ai∂aj
+
∂C1

∂ai

∂C1

∂aj

]

. (17)

Since we already know how to evaluate the first order
derivatives, we concentrate on ∂2ai,aj

C1 which can be
written as

∂2C1

∂ai∂aj
= dT ∂2u

∂ai∂aj
. (18)

Taking the partial derivative with respect to aj for
Eq. (12), we obtain

A
∂2u

∂ai∂aj
= − ∂2A

∂ai∂aj
u− ∂A

∂ai

∂u

∂aj
− ∂A

∂aj

∂u

∂ai
. (19)

Multiplying A−1 and dT to the above, we have

∂2C1

∂ai∂aj
= −gT ∂2A

∂ai∂aj
u−gT ∂A

∂ai

∂u

∂aj
−gT ∂A

∂aj

∂u

∂ai
. (20)

Unlike the adjoint variable method for first order sen-
sitivity analysis, it appears impossible to avoid solving
the linear systems for ∂ai

u. We use the following steps
to evaluate the first and second order partial derivatives
of C1.

1. Solve the original system (4) and the adjoint sys-
tem (13) for u and g.

2. For each i, evaluate ∂ai
A, and

hT
i = gT ∂A

∂ai
pi =

∂A

∂ai
u,

∂C1

∂ai
= −hT

i u.

3. Solve ∂ai
u for all i from the following system with

multi-column right hand side

A

[

∂u

∂a1
,
∂u

∂a2
, ...

]

= −[p1,p2, ...].

4. For each pair (i, j), evaluate ∂2ai,aj
A, and

∂2C1

∂ai∂aj
= −gT ∂2A

∂ai∂aj
u− hT

i

∂u

∂aj
− hT

j

∂u

∂ai
.

The second order partial derivatives of the system ma-
trix A appear in the above equations. For the case i 6= j,
if the two unit cells Ωi and Ωj are neighbors, ∂2ai,aj

A is

directly related to ∂ai
Λi and ∂aj

Λj , otherwise ∂
2
ai,aj

A is
the zero matrix, because A is constructed by matching
the normal derivative of u on common edges of neighbor-
ing unit cells. If i = j, ∂2ai

A is related to ∂2ai
Λi. Taking

the second order derivatives for the equation ΛiD = N,
we get

∂2Λi

∂a2i
=

(

∂2N

∂a2i
−Λi

∂2D

∂a2i
− 2

∂Λi

∂ai

∂D

∂ai

)

D−1. (21)

Therefore, we need to evaluate the matrices ∂2ai
D and

∂2ai
N. Since the entries of D and N are known explicitly,

the second order derivatives can be evaluated explicitly
and they are given in Appendix.

5. The 90◦ bend

In this section, we perform a second order sensitivity
analysis for the 90◦ PhC waveguide bend described in
Section 2. From the transmission spectrum shown in
Fig. 3, it is clear that T ≈ 1 for ωL/(2πc) = 0.35. For
this frequency, the first order derivatives are small and
the second order derivatives are important.

Instead of analyzing the sensitivity to all rods, we con-
sider ten rods near the center of the waveguide bend
as shown in Fig. 4, since they are the most important
ones. Let ai for 1 ≤ i ≤ 10, be the radii of these
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Fig. 4. Ten rods near the center of the 90◦ PhC waveguide
bend.

Rod No. i ∂ai
T in L−1 ∂2

ai
T in L−2

1 0.000031 -0.0150

2 0.000030 -0.0150

3 0.005782 -7.2801

4 -0.003039 -1.7304

5 0.005800 -7.2793

6 0.000271 -10.489

7 0.000275 -10.489

8 0.004195 -3.6595

9 0.004200 -3.6592

10 -0.000860 -0.1422

Table 1. The first and second order partial derivatives of
transmission coefficient T with respect to the radii of ten
selected rods at ωL/(2πc) = 0.35.

ten rods, we calculate the first and second order partial
derivatives ∂ai

T and ∂2ai
T for the normalized frequency

ωL/(2πc) = 0.35. The results at ai = a = 0.18L (i.e.
the design point) are listed in Table 1. The first and
second order derivatives are given in scaled units 1/L
and 1/L2, respectively. It can be seen that the first or-
der derivatives are close to zero. Thus, the second order
derivatives are needed in the sensitivity analysis. Notice
that T is particularly sensitive to the 3rd and 5th rods,
since the first order derivatives with respect to a3 and
a5 have the largest magnitudes. The second order mixed
derivatives are also available, but not listed.

Based on the partial derivatives above, we can pre-
dict the transmission coefficient T (ω; a1, a2, ..., a10) near
the design point by Taylor expansions. We consider the
special case where the radius of only one rod (the 3rd
rod in Fig. 4) is varied. In Table 2, we compare the
“exact” value of T (ω; a, a, a3, a, ..., a) with its Taylor ex-
pansions truncated to first and second order derivatives.
Notice that the Taylor approximation based only on the
first order derivative gives some T values larger than 1
and it is physically impossible. On the other hand, the
Taylor approximation based on both first and second

(a3 − a)/L Taylor I Taylor II Exact value

0.002 1.000009 0.999994 0.999995

0.005 1.000026 0.999935 0.999940

0.008 1.000044 0.999811 0.999831

0.010 1.000055 0.999691 0.999729

0.050 1.00029 0.99118 0.99250

Table 2. Transmission coefficients obtained by first and sec-
ond order Taylor expansions and the DtN-map method, for
a few values of a3.

order derivatives gives accurate results when |a3 − a| is
small. Hence, this is an additional good reason for using
a second order sensitivity analysis. The “exact” value is
calculated using the DtN-map method for the given a3
directly.

Based on the first and second order partial derivatives
of T , we can find the approximate probability distribu-
tion of T if the radii are regarded as random variables.
For simplicity, we only consider the effect of varying the
radius of one rod ai. To simplify the notations, we de-
note the transmission coefficient as T (ai) (i.e., hide its
dependence on all other parameters), and denote ∂ai

T
and ∂2ai

T by T ′ and T ′′, respectively. If ai is a random
variable with mean a and standard deviation σ, then the
second order Taylor expansion gives

T (ai) ≈ T (a) + T ′(a)X +
1

2
T ′′(a)X2

=
T ′′(a)

2

[

X +
T ′(a)

T ′′(a)

]2

+ T (a)− [T ′(a)]2

2T ′′(a)
,

where X = ai − a ∼ N(0, σ2) is a random variable fol-
lowing the normal distribution with zero mean and stan-
dard deviation σ. Clearly, Y = [X + T ′(a)/T ′′(a)]/σ
is a normal distribution with mean T ′(a)/[σT ′′(a)] and
unit standard derivation. According to the definition of
non-central χ2 distribution, Y 2 is a non-central χ2 dis-
tribution with degrees of freedom 1 and non-centrality
λ = {T ′(a)/[σT ′′(a)]}2, i.e., χ2(1, λ). Therefore,

T (ai) ∼
σ2T ′′(a)

2
χ2(1, λ) + T (a)− [T ′(a)]2

2T ′′(a)
. (22)

The probability density function of χ2(1, λ) is

f(z; 1, λ) =
e−(z+λ)/2

2

( z

λ

)

−1/4

I−1/2(
√
λz), (23)

where I−1/2 is a modified Bessel function of the first
kind.

To test the validity of Eq. (22), we consider the 90◦

waveguide bend with a random perturbation on the
radius of the 3rd rod. For the normalized frequency
ωL/(2πc) = 0.35, we have T (a) = 0.99999741, T ′(a) =
0.005782L−1 and T ′′(a) = −7.2801L−2, where T ′ and
T ′′ are derivatives with respect to a3 and evaluated at
a3 = a = 0.18L. Assuming a3 follows a normal distri-
bution with mean a and standard deviation σ = 0.006L,
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then the non-centrality parameter is λ = 0.01752. No-
tice that σ corresponds to a 3.3% relative error in the
rod radius. If L = 542.5 nm, then the wavelength is
1.55µm, the radius a is 97.7 nm, and σ = 3.26 nm. We
take 20, 000 random samples of a3, calculate the trans-
mission coefficient T (a3) by the DtN-map method, and
estimate the distribution of

Z =
2

σ2T ′′(a)

{

T (a3)− T (a) +
[T ′(a)]2

2T ′′(a)

}

, (24)

and compare it with the probability density function of
χ2(1, λ) in Fig. 5. For each simulation, the main work is

Fig. 5. Red curve: the probability density function of χ2(1, λ)
for λ = 0.01752, i.e., f(z; 1, λ) given in Eq. (23). Blue bars:
estimated distribution (i.e., normalized histogram) of Z given
in Eq. (24) based on 20, 000 samples.

to solve the linear system (4), where A is a 1210× 1210
matrix and it is somewhat sparse. To solve 20,000 such
linear systems, the time required on a current iMac is
about 45 minutes. However, this can be significantly im-
proved. Let A0 be the matrix of the unperturbed struc-
ture, andA be the matrix where one unit cell is changed,
then A = A0 +E, where E is a low rank matrix. After
A−1

0 is calculated, we can use the Sherman-Morrison-
Woodbury formula to quickly evaluate A−1f . The red
curve in Fig. 5 is just the probability density function
f(z; 1, λ) for λ given above. The blue bars show the nor-
malized histogram of 20,000 samples of Z. We observe
that excellent agreement is obtained. This indicates that
the distribution of T (ai) given by Eq. (22) is correct.

6. Conclusion

In this paper, an efficient second order sensitivity anal-
ysis technique for 2D PhC devices is developed and
demonstrated using a 90◦ PhC waveguide bend. A sec-
ond order sensitivity analysis requires the computation
of first and second order partial derivatives of a response
function with respect to design parameters. For the
waveguide bend, the response function is the normalized
power transmission coefficient, and the design parame-
ters are chosen as the radii of dielectric rods around the
center of the bend. Standard sensitivity analysis involv-
ing only the first order derivatives may have limitations

near extreme points of the response function where the
first order derivatives are nearly zero. The second or-
der theory produces more accurate predictions when the
structure is perturbed, avoids unphysical results such as
T > 1 (transmitted power is larger than the incident
power), and gives rise to well-known probability distri-
butions for the response function if the design param-
eters are assumed to be random variables. While the
standard first order sensitivity analysis is sufficient in
most cases, the second order sensitivity analysis should
be highly relevant in resonant structures where the ex-
treme points of the response function are more sensitive
to structural variations.

The method presented in this paper is based on the
DtN-map method for 2D PhC devices [13]. The partial
derivatives of the response function are related to the
partial derivatives of the system matrix A, and are fur-
ther related to the partial derivatives of the DtN maps of
the unit cells. For PhC devices with circular inclusions,
the DtN maps are usually constructed from cylindrical
wave expansions, and their derivatives can be calculated
analytically. For PhC devices with arbitrary unit cells,
the general procedure is still applicable, but a fully nu-
merical method for computing the derivatives of the DtN
maps is needed. In this work, we assume the radii of
rods are the design parameters, but our method can be
extended to study the sensitivity of PhC devices with
respect to other parameters, such as the centers of the
rods and distortions of the circular shape.

Acknowledgment

This work was partially supported by the National Natu-
ral Science Foundation of China under Project 11101122,
and City University of Hong Kong Project 7004068.

Appendix

Consider a square unit cell Ωi containing a circular rod of
radius ai with the center of the rod located at the origin.
The unit cell Ωi is given by −L/2 < x, y < L/2, where L
is its side length. The rod is given by r < ai, where (r, θ)
is the polar coordinate system. In Eq. (6), a general
solution of Helmholtz equation (1) is approximated by a
sum of 4N special solutions Φl(r) for 1 ≤ l ≤ 4N , where
r = (x, y) and N is the number of discretization points
on each edge of Ωi. The solution Φl(r) depends on the
radius ai and is a cylindrical wave given by

Φl(r) = φm(r, ai)e
imθ, m = l − 2N − 1,

where

φm(r, ai) =

{

Jm(k0n1r), r < ai,

AJm(k0n2r) +BYm(k0n2r), r > ai.

The coefficients A and B depend on ai, and they satisfy

Jm(α2)A+ Ym(α2)B = Jm(α1)

J ′

m(α2)A+ Y ′

m(α2)B = ρJ ′

m(α1),
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where ρ = n1/n2, α1 = k0n1ai, α2 = k0n2ai, Jm and
Ym are Bessel functions, J ′

m and Y ′

m are their derivatives.
The explicit formulas for A and B are

A =
ρs′q − sq′

D
, B =

sp′ − ρps′

D
, (25)

where

D = qp′ − pq′,

p = Jm(α2),

p′ = [Jm−1(α2)− Jm+1(α2)]/2,

p′′ = [Jm−2(α2)− 2Jm(α2) + Jm+2(α2)]/4,

p′′′ = [Jm−3(α2)− 3Jm−1(α2) + 3Jm+1(α2)

−Jm+3(α2)]/8,

q, q′, q′′ and q′′′ are defined as above with Jm replaced
by Ym, and s, s′, s′′ and s′′′ are defined with Jm but
with α2 replaced by α1. The terms with double and
triple primes will be used below.
The DtN map Λi of Ωi is related to two matrices D

and N. The entries of D are just Φl evaluated at 4N
points on the boundary of Ωi, and the entries of N are
related to ∇Φl(r). We have

∇Φl =

[

φ′m

(

cos θ

sin θ

)

+
imφm
r

(

− sin θ

cos θ

)]

eimθ,

where φ′m denotes the derivative with respect to r.
The derivative of the DtN map Λi is related to the

derivatives of D and N with respect to ai. Clearly, they
are further related to the derivatives of φm and φ′m with
respect to ai. Since these functions are evaluated at the
boundary of Ωi, we use the expression of φm(r, ai) for
r > ai. Therefore, ∂ai

φm(r, ai) is reduced to partial
derivatives of A and B with respect to ai. We have

∂A

∂ai
=
f

g
,

∂B

∂ai
=
h

g
(26)

where

f = k0(ρn1s
′′q − n2sq

′′)D−
k0n2(ρs

′q − sq′)(qp′′ − pq′′),

h = k0(n2sp
′′ − n1ps

′′)D−
k0n2(sp

′ − ρps′)(qp′′ − pq′′),

g = D2.

Notice that for r > ai

φ′m(r, ai) = k0n2 [AJ
′

m(k0n2r) +BY ′

m(k0n2r)] .

Therefore ∂φ′m(r, ai)/∂ai is also related to the first order
derivatives of A and B.
Similarly, the process of taking the second order

derivative of the DtN map Λi is passed to the matri-
ces D and N, to functions φm(r, ai) and φ

′

m(r, ai), and
finally to the two coefficients A and B. We have

∂2A

∂a2i
=
f ′g − fg′

g2
,

∂2B

∂a2i
=
h′g − hg′

g2
, (27)

where

f ′ = k20
(

ρn21s
′′′q + n21s

′′q′ − n1n2s
′q′′ − n22sq

′′′
)

D

−k20n22 (ρs′q − sq′) · (q′p′′ + qp′′′ − p′q′′ − pq′′′) ,

h′ = k20
(

n22p
′′′s− n1n2p

′′s′ + n21p
′s′′ − ρn21ps

′′′
)

D

−k20n22 (sp′ − ρps′) · (q′p′′ + qp′′′ − p′q′′ − pq′′′) ,

g′ = 2k20n
2
2 (qp

′′ − pq′′)D.
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