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Resonant modes in photonic crystal microcavities with large quality factors and small mode volumes

are important in many applications, but they are very sensitive to geometric and physical parameters of

the structure. In this paper, we develop an efficient method for computing the partial derivatives of the

complex resonant frequency with respect to parameters such as radii, rafractive indices and positions

of the circular cylinders, for two-dimensional photonic crystal microcavities. Like the adjoint variable

method for sensitivity analysis, our method is capable of rapidly calculating the partial derivatives with

respect to a large number of geometric and material parameters. The method is efficient, since it takes

advantages of the many identical unit cells in photonic crystal devices and the analytic solutions for

circular cylindrical structures.
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1. INTRODUCTION

To understand the effect of fabrication errors and to find opti-
mal designs for useful structures and devices, it is important
to have efficient sensitivity analysis tools [1–7]. A necessary
step of a sensitivity analsysis is to calculate the partial deriva-
tives of a response function with respect to design parameters.
For analyzing photonic devices, the mathematical problems can
roughly be classified as boundary value problems and eigen-
value problems. For boundary value problems, a typical re-
sponse function is the transmission coefficient of normalized
power in an output channel. In that case, the objective is to
calculate the partial derivatives of the transmission coefficient
with respect to the design parameters. Eigenvalue problems are
associated with non-trivial solutions without incident waves or
sources. The “response function” should be replaced by the
propagation constant of a waveguide mode, the wavevector of
a Bloch mode in a peridic medium, or the frequency of a reso-
nant mode in a cavity. It is clearly important to understand how
these quantities vary with geometric or physical parameters of
the device or structure.

Sensitivity analysis for photonic crystal (PhC) devices has
been considered by a number of authors [4, 7, 8]. A particu-
lar important technique is the adjoint variable method which
allows the rapid calculations of first order partial derivatives
with respect to many design parameters using essentially only

two field calculations. Since a typical PhC involves circular
cylinders (dielectric rods or air-holes), it is particularly impor-
tant to study the sensitivity with respect to the radii and loca-
tions of the circular cylinders. Notice that a typical PhC device
has many identical unit cells, even though the periodicity may
have been broken by intensionally introduced defects. In [7],
we developed an efficient second order sensitivity analysis tech-
nique for idealized two-dimensional (2D) PhC devices, where
the response function is the transmission coefficient in an out-
put waveguide and the design parameters are the radii of the
cylinders. This is related to a boundary value problem at a fixed
frequency. The method is efficient, since it takes advantage of
the many identical unit cells and the analytic solutions associ-
ated with circular cylinders.

In this paper, we develop an efficient method for sensitivity
analysis of PhC microcavities in idealized 2D PhCs. The mi-
crocavities are allowed to couple to PhC waveguides, so that
energy can leak out of the microcavity through the waveguides.
A resonant mode in such a cavity is a non-trivial solution of
the homogeneous Maxwell’s equations satisfying proper out-
going radiation conditions, and it usually exists for a complex
frequency. The real part of the complex frequency gives the nor-
mal resonant frequency and the imaginary part gives the damp-
ing rate of the mode. Based on the analytic solutions associ-
ated with circular cylinders and rigorous boundary conditions
for terminating the PhC waveguides, we develop an efficient
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method for computing the partial derivatives of the complex
frequency with respect to the radii, refractive indices, and cen-
ter positions of the cylinders. Like the standard adjoint variable
method [3–5, 7], the partial derivatives with respect to the de-
sign parameters in many different unit cells can be efficiently
calculated. To simplify the presentation, we concentrate on a
2D PhC with a square array of dielectric rods, and analyze a
microcavity coupled to PhC waveguides.

2. WAVEGUIDE-CAVITY SYSTEM

As a simple example for illustrating our method, we consider
the waveguide-cavity system shown in Fig. 1. The background

Fig. 1. A 2D photonic crystal waveguide-cavity system and
the computational domain D with 11 × 5 square unit cells.

PhC is a square array of parallel and infinitely long dielectric
rods surrounded by air, where the lattice constant is L, the
radius and dielectric constant of the rods are a = 0.2L and
ε = 11.4, respectively. A PhC microcavity is formed by remov-
ing one single rod, and it is coupled to two semi-infinite PhC
waveguides along the x axis. The waveguides are formed by re-
moving a row of dielectric rods. In the horizontal direction, the
missing rod at the center of the microcavity is surrounded by K
regular rods in each side. The case of K = 2 is shown Fig. 1.

For the E polarization, the z component of the electric field,
denoted by u in this paper, satisfies the following Helmholtz
equation

∂2
xu + ∂2

yu + k2
0n2(r)u = 0, (1)

where r = (x, y), n(r) is the refractive index function, k0 = ω/c
is the free space wavenumber, ω is the angular frequency, c is
the speed of light in vacuum. The assumed time dependence is
e−iωt where i is the imaginary unit.

It is known that the PhC waveguide has a single propagating
Bloch mode for 0.305 < ωL/(2πc) < 0.422. In this frequency
range, we may specify an incoming propagating mode as the
incident wave in the left waveguide. That is,

u(i)(r) = ψ1(r)e
iβ1x,

where ψ1 is periodic in x with period L and decays to zero as
y → ±∞, and β1 is the real propagation constant (or Bloch
wavenumber) of the mode. The transmitted wave in the right
semi-infinite PhC waveguide can be expanded as

u(t)(r) =
∞

∑
j=1

Cjψj(r)e
iβ j x, (2)

where Cj is the coefficient of the jth Bloch mode of the PhC
waveguide. Since the waveguide has only one propagating

mode, all other modes are evanescent. Therefore, Im(β j) > 0
for j > 1, and the transmission coefficient (for normalized
power) is simply

T = |C1|2. (3)

Mathematically, the above is a boundary value problem of
Eq. (1).

Without the incident wave, Eq. (1) with outgoing radia-
tion conditions in both left and right waveguides, usually has
only the zero solution for a given real frequency. A resonant
mode is non-trivial solution of Eq. (1) which typically exists
for a complex ω. The imaginary part of ω is negative, since
it must decay with time under the assumed time dependence
e−iωt. The quality factor of the resonant mode is given by Q =
−2Re(ω)/Im(ω). Computing the resonant mode is an eigen-
value problem, where ω (or ω2 or k2

0) is the eigenvalue. How-
ever, it is an improper eigenvalue problem, since the wave field
of a resonant mode (with a complex ω) blows up as x → ±∞.

3. DTN-MAP METHOD

To analyze general 2D PhC devices, the Dirichlet-to-Neumann
(DtN) map method may be used [10]. For the waveguide-cavity
system shown in Fig. 1, the DtN-map method performs the com-
putation in a domain D shown as the rectangle with red bound-
ary in the figure. In addition, the method avoids the interiors of
the square unit cells in D, and formulates a small linear system
for u on the edges of the unit cells only. The main steps of the
DtN-map method are summarized below.

1. Choose an integer M and truncate the domain to 5M unit
cells as shown in Fig. 1 (for the case of M = 11). Denote
the truncated domain by D, and assume it is given by x0 <

x < x5 and y0 < y < yM, where xi = x0 + iL and yj =
y0 + jL.

2. For each unit cell Ωk, calculate its DtN map Λk, such that

∂νu = Λku on ∂Ωk, (4)

where ∂Ωk is the boundary of Ωk, ∂ν is ∂x or ∂y on the ver-
tical or horizontal edges, respectively. If N points are used
to discretize each edge of the unit cell, Λk is approximated
by a (4N)× (4N) matrix.

3. Calculate operators L+ and L− (approximated by (NM)×
(NM) matrices) and a vector g related to the incident wave,
such that the boundary conditions at x0 and x5 are

∂xu = L+u, x = x5, (5)

∂xu = L−u + g, x = x0. (6)

4. Formulate and solve a linear system

Au = f , (7)

where u is a column vector for u on all vertical edges at x0,
x1, ..., x5 and all horizontal edges at y1, y2, ..., yM−1, and f
is a vector related to the incident wave.

5. Find a vector d and then

C1 = dTu. (8)
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In the first step, the integer M is chosen so that u ≈ 0 at
the top and bottom boundaries of the truncated domain D. The
structure has only two distinct unit cells: the one with a rod
and the one without. Therefore, it is only necessary to calcu-
late two DtN maps. For simple unit cells, the DtN maps can be
constructed from analytic solutions, i.e., the cylindrical waves
[11, 12]. Equation (5) is a rigorous nonlocal boundary condition
derived from the Bloch mode expansion (2). Equation (6) is in-
homogeneous, since there is an incident wave in the left semi-
infinite waveguide. Equation (7) is obtained by comparing ∂xu
or ∂yu on the edges of the unit cells in D. When u on the right
boundary of D is known, the expansion coefficients in Eq. (2)
can be calculated. This leads to Eq. (8), where d is a vector with
NM non-zero entries.

The DtN-map method can also be used to find resonant
modes [13]. In that case, there is no incident wave, thus g in
Eq. (6) and f in Eq. (7) vanish. Notice that Λk, L± and A all
depend on ω. The unknown ω can be solved iteratively from a
condition that A is a singular matrix. We use the condition

λ1(A) = 0, (9)

where λ1 is the eigenvalue of A with the smallest magnitude. In
each iteration, we go through the second and third steps above
(with g = 0), formulate the matrix A and find its eigenvalue
λ1. When ω is determined, the linear system (7) (with f = 0)
has a nonzero solution u, then field distributions of the resonant
mode can be constructed. More details can be found in [13].

4. SENSITIVITY OF TRANSMISSION COEFFICIENTS

In a previous work [7], we developed an efficient method for
calculating the first and second order partial derivatives of the
transmission coefficient T with respect to the radii of the rods.
With a simple modification, the method can be used to compute
the partial derivatives of T with respect to the refractive indices
and the center positions of the rods. In the following, we ex-
plain the difference and present some numerical results.

Let Ωi be a unit cell in the truncated domain D with a rod
of radius ai located at it center, and Λi be the DtN-map of Ωi.
As shown in [7], using the first and second order derivatives of
the DtN-maps, we can evaluate the partial derivatives of A and
C1, then obtain ∂T/∂ai and ∂2T/∂ai∂aj, where aj is the radius
of the rod in unit cell Ωj. To analyze the sensitivity with respect
to the positions of the rods, we assume the center of the rod in
Ωi moves from ci to ci + pivi, where vi is a unit vector and pi is
the distance, and attempt to calculate ∂T/∂pi and ∂2T/∂pi∂pj

(at pi = 0 and pj = 0), where pj and vj are associated with unit
cell Ωj. These are actually directional derivatives with respect
to the centers of the rods and the related unit vectors. We use
the simple notations ∂T/∂pi and ∂2T/∂pi∂pj, assuming the unit
vectors are fixed.

To calculate the derivatives of Λi with respect to pi, we no-
tice that Λi = ND−1, where D and N are (4N) × (4N) matri-
ces, their entries depend on pi and are known analytically. The
entries of these two matrices and their partial derivatives with
respect to pi are given in Appendix A. The derivatives of Λi can
be evaluated by the following formulas:

∂Λi

∂pi
=

(

∂N

∂pi
− Λi

∂D

∂pi

)

D−1, (10)

∂2
Λi

∂p2
i

=

(

∂2N

∂p2
i

− Λi
∂2D

∂p2
i

− 2
∂Λi

∂pi

∂D

∂pi

)

D−1. (11)

To find the partial derivatives of T, we can follow the procedure
given in [7] with ∂ai and ∂aj replaced by ∂pi and ∂pj, respec-
tively. Similarly, if the refractive index of the rod in unit cell
Ωi is n1i, we first calculate the 1st and 2nd order partial deriva-
tives of D and N with respect to n1i, then evaluate ∂Λi/∂n1i and
∂2

Λi/∂n2
1i, and finally obtain the partial derivatives of T. More

details on given in Appendix B.

For a numerical example, we consider the waveguide-cavity
system of Section 2 for normalized frequency ωL/(2πc) =
0.3795. Since the transmission coefficient T is most sensitive
to the rods near the center of the cavity, we consider the six
marked rods shown in Fig. 2. The calculated derivatives are

Fig. 2. The waveguide-cavity system of Fig. 1 with six rods
near the center marked by integers 1, 2, ..., 6.

listed in Table 1, where the first and second order derivatives

Rod no. i vi L ∂pi T L2 ∂2
pi

T

1 (1,0) 2.856 37.4

2 (1,0) 33.340 5637.8

3 (1,0) -33.340 5637.8

4 (1,0) -2.856 37.4

5 (0,1) -33.082 5593.3

6 (0,1) 33.082 5593.3

Table 1. Partial derivatives of the transmission coefficient T
with respect to the moving distances of six marked rods in hor-
izontal or vertical directions at ωL/(2πc) = 0.3795.

are multiplied by L and L2, respectively. The first four rods are
located along the waveguide axis, and their horizontal deriva-
tives are given in Table 1. It is clear that T is much more sen-
sitive to the two rods (2 and 3) near the center of the cavity.
Although the structure has a horizontal reflection symmetry,
the wave field does not have the same symmetry, since it is ex-
cited by an incident propagating mode in the left semi-infinite
waveguide. However, to the first a few digits shown in Table 1,
the horizontal derivatives for each pair (rods 1 and 4, or rods
2 and 3) are identical or have opposite sign. This is a conse-
quence of the Lorentz reciprocity theorem. The first order verti-
cal derivatives of these four rods are identically zero, since both
the structure and the wave field have a vertical reflection sym-
metry with respect to the waveguide axis. Their second order
vertical derivatives are non-zero. For rod 2, the second order
vertical derivative is ∂2

p2
T = −58.1L−2. For rods 5 and 6, we

show the vertical derivatives in Table 1. Their values reflect the
vertical reflection symmetry. We have also calculated the hori-
zontal derivatives of these two rods. Their first order horizontal
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derivatives are zero, again due to the reciprocity. Their second
order horizontal derivatives are −53.9L−2.

Of course, the partial derivatives can be calculated for any

given direction. For rod 2 and v2 = (
√

2/2,
√

2/2), we ob-
tain ∂p2 T = 23.591L−1 and ∂2

p2
T = 2786.5L−2. Based on

these derivatives, we can estimate the transmission coefficient
T when the rods are moved by a small distance. In Table 2,

p2/L Taylor I Taylor II Exact value

0.002 0.3116 0.3171 0.3176

0.005 0.3824 0.4173 0.4256

0.008 0.4533 0.5425 0.5764

0.010 0.5005 0.6400 0.7003

Table 2. Exact and approximate transmission coefficients of
the waveguide-cavity system at ωL/(2πc) = 0.3795, when rod

2 is moved in the direction of v2 = (
√

2/2,
√

2/2).

we compare the approximate values of T obtained by truncated
Taylor series with the exact value when rod 2 is moved by a
small distance along the direction of v2 given above. Consider-
ing T as a function of p2, Taylor I and Taylor II in Table 2 are the
Taylor series truncated to the first and second order derivatives,
respectively. We observe that the exact T has large changes
when the center of rod 2 is moved slightly, and the Taylor ap-
proximations are not very accurate. This is related to the reso-
nant nature of this waveguide-cavity system. To accurately pre-
dict the shift of the transmission peaks or dips in a PhC device,
we need to calculate the derivatives of the resonant frequencies
with respect to design parameters.

5. SENSITIVITY OF RESONANT FREQUENCIES

The complex frequency ω of a resonant mode can be deter-
mined from the condition that A is a singular matrix [13]. For
such a frequency, there is a nonzero solution u such that

Au = 0. (12)

There is also a nonzero row vector hT such that

hTA = 0. (13)

Let ai be the radius of the rod in unit cell Ωi, to find the partial
derivative of ω with respect to ai, we take the derivative for
Eq. (12) and obtain

∂A

∂ω

∂ω

∂ai
u +

∂A

∂ai
u = −A

∂u

∂ai
. (14)

Multiplying hT to both sides of Eq. (14), we have

∂ω

∂ai
= −

hT ∂A
∂ai

u

hT ∂A
∂ω u

. (15)

Since we know how to evaluate ∂A/∂ai [7], we concentrate on
∂A/∂ω in the following.

The matrix A is constructed from the DtN maps of the unit
cells in D and the boundary operators L±. To find ∂A/∂ω, we
need to evaluate ∂Λi/∂ω and ∂L±/∂ω. Since Λi = ND−1, we
have a formula similar to Eq. (10). The entries of D and N are
given explicitly, thus their partial derivatives with respect to ω
can be directly evaluated. The details are given in Appendix B.

To find ∂L±/∂ω, we need to recall the procedure for con-
structing the boundary operator L±. The details are given in
[10]. The following steps are involved.

1. Truncate one period of the waveguide given by xl−1 < x <

xl where l ≤ 0 or l > 2K + 1, to a supercell consisiting of
M square unit cells with y given by y0 < y < yM.

2. Find a (2MN)× (2MN) matrix M, such that

M





ul−1

ul



 =





M11 M12

M21 M22









ul−1

ul



 =





∂xul−1

∂xul



 , (16)

where ul and ∂xul are column vectors of length NM for u
and ∂xu at x = xl , etc. M is also written in 2 × 2 blocks
where each block is an (MN)× (MN) matrix.

3. Calculate the Bloch modes, ψj(x, y)e±iβ j x, of the PhC
waveguide by solving the matrix eigenvalue problem




M11 −I

M21 0









ψj

∂xψj



 = µj





−M12 0

−M22 I









ψj

∂xψj



 , (17)

where µj = eiβ j L, ψj and ∂xψj are vectors for ψj and ∂xψj at
x = xl−1.

4. Define an (MN)× (MN) matrix T such that

Tψj = µjψj, j = 1, 2, ..., MN. (18)

The above can be written as

TΨ = ΨB, (19)

where Ψ is the matrix with columns ψj and B is a diagonal
matrix with diagonal entries µj for 1 ≤ j ≤ MN.

5. The boundary operators L± are given by

L+ = M11 + M12T, (20)

L− = M21T + M22. (21)

The matrix M is the DtN map of the supercell of the PhC
waveguide. In [14], the eigenvalue problem, Eq. (17), was first
formulated to solve the Bloch modes of PhC waveguides. The
matrix M is constructed from the DtN maps of the unit cells
assuming the boundary condition u = 0 at y = y0 and y =
yM. Since we know how to evaluate the partial derivative with
respect to ω of the DtN maps of the unit cells, ∂M/∂ω can be
easily evaluated.

To find the derivatives of ψj and µj with respect to ω, we
rewrite Eq. (17) as

Uxj = µjV xj (22)

where U and V are the (2MN)× (2MN) matrices in the left and
right hand sides of Eq. (17), and xj denotes the column vector
for ψj and ∂xψj. The derivative of Eq. (22) gives

(

U − µjV
) ∂xj

∂ω
=

(

− ∂U

∂ω
+ µj

∂V

∂ω

)

xj +
∂µj

∂ω
V xj. (23)

Let yj be the right eigenvector satisfying yT

j (U − µjV) = 0, mul-

tiplying Eq. (23) by yT

j , we obtain

∂µj

∂ω
=

yT

j

(

∂U
∂ω − µj

∂V
∂ω

)

xj

yT

j V xj

. (24)
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Once ∂µj/∂ω is calculated, we can solve ∂xj/∂ω from Eq. (23).
Since U − µjV is a singular matrix, we need to use the method
of QR decomposition [15]. Notice that Eq. (23) is in general solv-
able, since its right hand side, denoted by z satisfies yT

j z = 0.

The remaining steps are straightforward. Taking the partial
derivatives with respect to ω for Eqs. (19), (20) and (21), we
obtain

∂T

∂ω
=

[

∂Ψ

∂ω
B + Ψ

∂B

∂ω
− T

∂Ψ

∂ω

]

Ψ
−1, (25)

∂L+

∂ω
=

∂M11

∂ω
+

∂M12

∂ω
T + M12

∂T

∂ω
, (26)

∂L−

∂ω
=

∂M21

∂ω
T + M21

∂T

∂ω
+

∂M11

∂ω
. (27)

Therefore, once the partial derivatives of ψj and µj, 1 ≤ j ≤
MN, are obtained, ∂L±/∂ω can be easily evaluated.

The sensitivity with respect to the refractive indices and the
positions of the rods can be similarly studied. If the center of
the rod in unit cell Ωi moves from ci to ci + pivi for a fixed unit
vector vi and a variable distance pi, ∂ω/∂pi at pi = 0 can be
evaluated by the formula

∂ω

∂pi
= −

hT ∂A
∂pi

u

hT ∂A
∂ω u

. (28)

Notice that ∂A/∂pi and ∂A/∂ω appear in the formula, and they
can be evaluated by the methods discussed in Section 4 and in
this section, respectively.

Similar to the standard adjoint variable method for sensitiv-
ity analysis [3–5, 7], our method is efficient for computing a
large number of partial derivatives. From Eqs. (15) and (28),
it is clear that we only need to calculate u, hT and ∂A/∂ω once.
For ∂A/∂ai, ∂A/∂n1i and ∂A/∂pi, we notice that these are very
sparse matrices. As we mentioned earlier, A is constructed by
matching the normal derivative of u on the edges of the unit
cells, and it is related to the DtN maps of the unit cells and the
boundary operators L±. Since ∂L±/∂ai = 0 and ∂Λj/∂ai = 0 if
i 6= j, ∂A/∂ai is only nonzero in a few blocks where Λi appears
in A. The same is true for ∂A/∂n1i and ∂A/∂pi. Since a unit
cell is connected to four neighboring unit cells, Λi only appears
in 4N rows of matrix A, where N is the number of points for
discretizing one edge of the square unit cells. Furthermore, the
DtN maps and their derivatives are identical for identical unit
cells in different locations. Therefore, we only need to calculate
the partial derivatives of the DtN maps for distinct unit cells.

6. NUMERICAL EXAMPLES

In this section, we consider the waveguide-cavity system sim-
ilar to the one shown in Fig. 1, but for K = 3, where K is the
number of regular rods in each side of the cavity center (a miss-
ing rod) along the waveguide axis. All other parameters are
identical to those given in Section 2. In particular, all rods stay
on lattice points of a square lattice, have a fixed dielectric con-
stant ε = 11.4 and a constant radius a = 0.2L, where L is the
lattice constant. A small part of the structure near the center of
the cavity is shown in Fig. 3, where eight rods are marked by
integers 1, 2, ..., 8.

In Fig. 4, we show the transmission spectrum of the struc-
ture (the blue curve with the peak in the middle), where the
incident wave is a propagating mode of the PhC waveguide.
The structure supports a resonant mode with a complex nor-
malized frequency ωL/(2πc) = 0.3788761 − 0.0000417i. The

Fig. 3. A photonic crystal waveguide-cavity system with K =
3 rods on each side of the cavity center (a missing rod), and
with eight rods marked by integers 1, 2, ..., 8.

Fig. 4. Transmission spectra of the waveguide-cavity system
shown in Fig. 3 (blue curve) and perturbed systems where the
radius of rod 3 is changed to 0.21L (red curve) or 0.19L (black
curve).

transmission property of the structure is very sensitive to the
radii of rods near the center. In Fig. 4, the red and black
curves are the transmission spectra when the radius of rod
no. 3 is changed to a3 = 0.21L and a3 = 0.19L, respectively.
For these two values of a3, the complex frequencies of the
resonant modes are ωL/(2πc) = 0.3778499 − 0.0000419i and
ωL/(2πc) = 0.3798165 − 0.0000423i, respectively. The trans-
mission spectra shown in Fig. 4 and the complex resonant fre-
quencies are calculated by the DtN-map method developed in
[10, 13] and summaried in Section 3.

The method described in the previous section is used to cal-
culate the partial derivatives of the complex resonant frequency
with respect to the radii of the rods. Let ai for i = 1, 2, ..., 8,
be the radii of the eight marked rods shown in Fig. 3, we list
∂ω/∂ai (at ai = 0.2L) for rods i = 1, 2, 3 and 7 in Table 3. The re-

Rod no. i L2/(2πc) ∂ω/∂ai

1 -0.0007563-0.0001867i

2 -0.0074756-0.0001540i

3 -0.0971303+0.0000192i

7 -0.0971130+0.0000847i

Table 3. Partial derivatives of the complex resonant frequency
ω with respect to the radii of selected rods as shown in Fig. 3.

sults are given for the dimensionless quantity L2/(2πc)∂ω/∂ai .
The resonant mode has reflection symmetries in both horizontal
and vertical directions, thus the partial derivatives with respect
to a4, a5, a6 and a8 are identical to those with respect to a3, a2, a1

and a7. Notice that the real parts of ∂ω/∂ai are all negative, thus
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increasing the radius of a rod will move the transmission peak
to a lower frequency, consistent with the results shown in Fig. 4.
The magnitudes of Re(∂ω/∂ai) comfirm that the resonant fre-
quency is most sensitive to the rods closest to the center.

Using the partial derivatives, we can estimate the resonant
frequency when the radii of the rods are changed slightly. In Ta-
ble 4, we compare the exact and approximate values of the com-

(a3 − a)/L Taylor I Exact value

0.002 0.3786819-0.0000417i 0.3786800-0.0000417i

0.004 0.3784876-0.0000416i 0.3784801-0.0000417i

0.006 0.3782934-0.0000416i 0.3782754-0.0000417i

0.008 0.3780991-0.0000416i 0.3780656-0.0000418i

0.010 0.3779048-0.0000415i 0.3778499-0.0000419i

-0.002 0.3790704-0.0000418i 0.3790688-0.0000418i

-0.004 0.3792647-0.0000418i 0.3792586-0.0000418i

-0.006 0.3794589-0.0000418i 0.3794462-0.0000420i

-0.008 0.3796532-0.0000419i 0.3796320-0.0000421i

-0.010 0.3798475-0.0000419i 0.3798165-0.0000423i

Table 4. Excat and approximates values of the normalized res-
onant frequency, ωL/(2πc), for a few values of a3.

plex resonant frequency for a few different values of a3, where
the approximate values (denoted as Taylor I) are obtained by a
Taylor series truncated to the first order derivative. We can see
that the approximation is quite accurate.

The partial derivatives of the resonant frequency with re-
spect to the refractive indices of the rods can also be easily cal-
culated. In Table 5, we list the results for four rods shown in

Rod no. i L/(2πc) ∂ω/∂n1i

1 -0.0000511+0.0000068i

2 -0.0005485+0.0000054i

3 -0.0082147+0.0000215i

7 -0.0082206+0.0000015i

Table 5. Partial derivatives of the complex resonant frequency
ω with respect to the refractive indices of selected rods as
shown in Fig. 3.

Fig. 3. For the same reason, the results for rods 4, 5, 6 and 8
are identical to those for rods 3, 2, 1 and 7. Based on the first
order partial derivatives, we can estimate the resonant frequen-
cies when the refractive indices of the rods are slightly changed.
In Table 6, we compare the exact and approximate resonant fre-
quencies when the refractive index n1,3 of the 3rd rod differs

sligthly from its original value n1 =
√

11.4.
We also analyze the sensitivity of the waveguide-cavity sys-

tem with respect to the positions of the rods. In Fig. 5, we
compare the original transmission spectrum (the blue curve)
with the transmission spectra when the 3rd rod is moved for-
ward and backward in the horizontal direction by the distance
p3 = 0.01L. For these two cases, the complex resonant frequen-
cies are ωL/(2πc) = 0.3794832 − 0.0000424i and ωL/(2πc) =

n1,3 − n1 Taylor I Exact value

0.03 0.3786297-0.0000411i 0.3786305-0.0000411i

0.09 0.3781368-0.0000398i 0.3781435-0.0000399i

0.15 0.3776439-0.0000385i 0.3776600-0.0000389i

-0.03 0.3791226-0.0000424i 0.3791235-0.0000424i

-0.09 0.3796155-0.0000436i 0.3796247-0.0000438i

-0.15 0.3801084-0.0000449i 0.3801365-0.0000454i

Table 6. Excat and approximates values of the normalized res-
onant frequency, ωL/(2πc), for a few values of n1,3.

Fig. 5. Transmission spectra of the waveguide-cavity system
shown in Fig. 3 (blue curve) and perturbed systems with rod
3 moved in the horizontal direction by 0.01L (red curve) and
−0.01L (black curve).

0.3782736 − 0.0000410i, respectively. These results are obtained
using the DtN-map method summaried in Section 3. Notice
that the real parts of the complex resonant frequencies corre-
spond exactly to the frequencies of the transmission peaks in
the spectra.

Using the method of Section 5, we calculate the partial
derivatives of the complex resonant frequency with respect to
the positions of the eight rods shown in Fig. 3. Table 7 lists

Rod no. i vi L2/(2πc) ∂ω/∂pi

1 (1,0) 0.0004634-0.0000427i

2 (1,0) 0.0040980-0.0000092i

3 (1,0) 0.0604804-0.0000711i

7 (0,-1) 0.0604966-0.0000185i

Table 7. Partial derivatives of the complex resonant frequency
ω with respect to the moving distances in horizontal or verti-
cal directions of selected rods.

∂ω/∂pi for four rods moving horizontally or vertically towards
the center of the microcavity (if pi > 0). More precisely, we
choose vi = (1, 0) for rods 1, 2 and 3, and v7 = (0,−1) for rod
7. These partial derivatives are evaluated at pi = 0. Since the
real and imaginary parts of ∂ω/∂pi are positive and negative,
respectively, as a rod is moved toward the center, the real res-
onant frequency will increase, the transmission peak will blue-
shift, the imaginary part of ω (which is originally nagative) will
have a larger magnitude, and the Q factor of the resonant mode
will decrease. It is also clear that the resonant frequency is more
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sentitive to the two rods (3 and 7) that are closer to the center.
Due to the reflection symmetries in both x and y directions, the
partial derivatives for rods 4, 5, 6 and 8 are exactly the same as
those for rods 3, 2, 1 and 7, if we choose vi = (−1, 0) for rods 4,
5, 6, and v8 = (0, 1) for rod 8.

The first order derivatives allow us to estimate the complex
resonant frequency when a rod is moved by a small distance.
In Table 8, we compare the exact and approximate values of ω

p3/L Taylor I Exact value

0.002 0.3789971-0.0000419i 0.3789972-0.0000419i

0.004 0.3791181-0.0000420i 0.3791184-0.0000420i

0.006 0.3792390-0.0000421i 0.3792398-0.0000421i

0.008 0.3793600-0.0000423i 0.3793614-0.0000423i

0.010 0.3794809-0.0000424i 0.3794832-0.0000424i

-0.002 0.3787552-0.0000416i 0.3787553-0.0000416i

-0.004 0.3786342-0.0000414i 0.3786346-0.0000414i

-0.006 0.3785133-0.0000413i 0.3785141-0.0000413i

-0.008 0.3783923-0.0000411i 0.3783938-0.0000412i

-0.010 0.3782713-0.0000410i 0.3782736-0.0000410i

Table 8. Exact and approximate values of the normalized res-
onant frequency, ωL/(2πc), for a few values of p3 with fixed
v3 = (1, 0).

when rod 3 is moved slightly in the horizontal direction. The
approximate values are obtained by the first order Taylor ex-
pansion, and they appear to be quite accurate.

The numerical results of this section are obtained using N =
13 points on each edge of the unit cells, and they are validated
by additional calculations with even larger N.

7. CONCLUSION

In the previous sections, an efficient method is developed to
compute the partial derivatives with respect to geometric and
physical parameters for complex frequencies of resonant modes
in PhC microcavities. The method is specially designed for
idealized 2D photonic crystal devices with circular cylinders
(dielectric rods or air-holes), and the relevant parameters are
the radii, refractive indices and positions of the cylinders. The
method relies on the so-called DtN-map method for PhC de-
vices [10, 13] to take advantage of the identical unit cells and
the analytic solutions for circular cylindrical structures, and to
solve the problems in very small truncated domains. In partic-
ular, our method is capable of rapidly computing the partial
derivatives with respect to the parameters of many different
unit cells. To simplify the presentation, we concentrate on sim-
ple microcavities in a PhC with a square lattice of dielectric rods
for the E polarization, but the method is applicable to more com-
plicated structures and to the H polarization, including those in
PhCs with a triangular lattice of air-holes [16].

Practical PhC microcavities are often fabricated on PhC slabs.
Unfortunately, the DtN-map method has only limited success
for analyzing three-dimensional devices on PhC slabs [17–19].
An important reason is that the rigorous boundary conditions
for terminating the PhC waveguides, i.e., Eqs. (5) and (6), are
too expensive to construct for 3D structures. However, in the

case when the out-of-plane radiation loss is small, 2D models
for PhC slab devices can capture some physics at least qualita-
tively, and our method may be used to gain a basic understand-
ing about the sensitivity of resonant modes in PhC slab struc-
tures. Another limitation of our method is the requirement for
circular cylinders in the PhC devices, since we used analytic so-
lutions to construct the DtN maps of the unit cells and to calcu-
late their derivatives. It is clearly important to develop a more
general method so that the effect of noncircular deformations
to cylinders in PhC devices can be easily analyzed.

APPENDIX A

For a square unit cell Ωi given by |x| < L/2 and |y| < L/2,
containing a circular rod given by r < a, where r and θ are the
polar coordinates and a is the radius of the rod, the DtN map of
Ωi for Eq. (1) is approximated by a (4N) × (4N) matrix Λi =
ND−1, where D and N are related to 4N analytic solutions

Φl(r) = φm(r)e
imθ , l = 1, 2, ..., 4N, (29)

for m = l − 2N − 1, and

φm(r) =







Jm(k0n1r), r < a,

AJm(k0n2r) + BYm(k0n2r), r > a.
(30)

In the above, n1 and n2 are the refractive indices of the rod and
the medium outside the rod, respectively, coefficients A and B
satisfy

Jm(k0n2a)A + Ym(k0n2a)B = Jm(k0n1a), (31)

J′m(k0n2a)A + Y′
m(k0n2a)B = ρJ′m(k0n1a), (32)

where ρ = n1/n2 for the E polarization and ρ = n2/n1 for the
H polarization, Jm and Ym are Bessel functions, J′m and Y′

m are
their derivatives. The entries of D and N are simply Φl(r) and
ν(r) · ∇Φl(r), evaluated at 4N points on the boundary of Ωi

and ν(r) is a unit normal vector of the boundary [11, 12].

If the center of the rod is shifted to pivi, where vi is a fixed
unit vector, then we need to replace Φl(r) by Φl(r − pivi) in the
construction of the DtN map. Notice that

∂Φl

∂pi
(r − pivi)

∣

∣

∣

∣

pi=0

= − (vi · ∇)Φl(r),

∂∇Φl

∂pi
(r − pivi)

∣

∣

∣

∣

pi=0

= − (vi · ∇)∇Φl(r),

∂2Φl

∂p2
i

(r − pivi)

∣

∣

∣

∣

∣

pi=0

= (vi · ∇)2
Φl(r),

∂2∇Φi

∂p2
i

(r − pivi)

∣

∣

∣

∣

∣

pi=0

= (vi · ∇)2 ∇φl(r).

Therefore, to evaluate the first and second order derivatives of
D and N, we need the partial derivatives of Φl up to the third
order.

The gradient of Φl is

∇Φl =



φ′
m





cos θ

sin θ



+
imφm

r





− sin θ

cos θ







 eimθ ,
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where φ′
m is the derivative of φm with respect to r. We need to

use the expression of φm for r > a, thus the partial derivatives
of Φl are

∂Φl

∂x
(r) = k0n2 ps − imqt,

∂Φl

∂y
(r) = k0n2 pt + imqs,

∂2Φl

∂x2
(r) = k0n2 (p1s + ps1)− im (q1t + qt1) ,

∂2Φl

∂y2
(r) = k0n2 (p2t + pt2) + im (q2s + qs2) ,

∂2Φl

∂x∂y
(r) = k0n2 (p2s + ps2)− im (q2t + qt2) ,

∂3Φl

∂x3
(r) = k0n2 (p3s + 2p1s1 + ps3)− im (q3t + 2q1t1 + qt3) ,

∂3Φl

∂y3
(r) = k0n2 (p4t + 2p2t2 + pt4) + im (q4s + 2q2s2 + qs4) ,

∂3Φl

∂x2∂y
(r) = k0n2 (p5s + p1s2 + p2s2 + ps5)

−im (q5t + q1t2 + q2t1 + qt5) ,

∂3Φl

∂x∂y2
(r) = k0n2 (p5t + p1t2 + p2t1 + pt4)

+im (q5s + q1s2 + q2s1 + qs5) ,

where

p = AJ′m(k0n2r) + BY′
m(k0n2r),

q = [AJm(k0n2r) + BYm(k0n2r)]/r,

s = eimθ cos(θ),

t = eimθ sin(θ),

and the subscripts 1, 2, 3, 4 and 5 (of p, q, s and t) are used
to denote the partial derivatives corresponding to ∂x, ∂y, ∂2

x, ∂2
y

and ∂2
xy, respectively.

APPENDIX B

The partial derivative of Λi with respect to ω is related to the
corresponding partial derivatives of D and N, and they are
further related to the partial derivatives of φm and φ′

m with re-
spect to ω. For simplicity, we define the normalized frequency
ω̂ = ωL/(2πc) = k0L/(2π), then

∂φm

∂ω̂
(r) =

∂A

∂ω̂
Jm(z) +

∂B

∂ω̂
Ym(z) + br[AJ′m(z) + BY′

m(z)],

∂φ′
m

∂ω̂
(r) = k0n2

[

∂A

∂ω̂
J′m(z) +

∂B

∂ω̂
Y′

m(z)

]

+bA[J′m(z) + zJ′′m(z)] + bB[Y′
m(z) + zY′′

m(z)],

where b = 2πn2/L and z = k0n2r. Notice that the coefficients
A and B depend on ω. From Eqs. (31) and (32), we obtain

A =
ρs′q − sq′

C
, B =

sp′ − ρps′

C
, (33)

where

p = Jm(k0n2a),

p′ = [Jm−1(k0n2a)− Jm+1(k0n2a)] /2,

p′′ = [Jm−2(k0n2a)− 2Jm(k0n2a) + Jm+2(k0n2a)] /4,

q, q′ and q′′ are defined as above with Jm replaced by Ym, s, s′,
s′′ are defined with Jm but with n2 replaced by n1, and C =
qp′ − pq′. Then,

∂A

∂ω̂
=

F

G
,

∂B

∂ω̂
=

H

G
,

where

F = abC(ρ2s′′ − sq′′)− ab(ρs′q − sq′)(qp′′ − pq”),

H = abC(sp” − ρ2 ps”)− ab(sp′ − ρps′)(qp” − pq”),

G = C2.

The partial derivatives with respect to the refractive index n1

can be similarly evaluated. We have

∂φm

∂n1
(r) =

∂A

∂n1
Jm(z) +

∂B

∂n1
Ym(z),

∂φ′
m

∂n1
(r) = k0n2

[

∂A

∂n1
J′m(z) +

∂B

∂n1
Y′

m(z)

]

,

where A and B are given in Eq. (33). Simple calculations lead to

∂A

∂n1
=

M

C
,

∂B

∂n1
=

N

C

for the E polarization, where C is defined above and

M =
1

n2
s′q + k0a(ρs′′q − s′q′),

N = k0a(s′p′ − ρps′′)− 1

n2
ps′.
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