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Optical bound states in the continuum (BICs), especially those on periodic structures, have inter-
esting properties and potentially important applications. Existing theoretical and numerical studies
for optical BICs are mostly for idealized structures with simple and perfect geometric features, such
as circular holes, rectangular cylinders and spheres. Since small distortions are always present in
actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances
on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular
cylinders. Our numerical results confirm that symmetries are important not only for the so-called
symmetry-protected BICs, but also for the majority of propagating BICs which do not have a sym-
metry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the
small distortions keep the relevant symmetries, and they become resonant modes with finite quality
factors if the small distortions break a required symmetry.

I. INTRODUCTION

In recent years, optical bound states in the contin-
uum (BICs) have attracted much attention due to their
intriguing properties and potentially significant applica-
tions [1]. A BIC on a periodic structure is a guided mode
above the light line, and it can also be considered as a
special resonant mode with an infinite quality factor. The
so-called symmetry-protected BICs are well known [2–8].
They have a symmetry mismatch with the outgoing ra-
diation waves, and are typically antisymmetric standing
waves. There are also propagating BICs and symmetric
standing waves that do not have the symmetry mismatch,
but are still uncoupled with the outgoing waves [9–22].
Near each BIC, there is a family of resonant modes de-
pending on the wavevector, and their quality factors ap-
proach infinity as the wavevector tends to the wavevector
of the BIC. The strong resonant effect leads to enhanced
local fields around the periodic structures, and it can be
used to develop low-threshold lasers [23] and to enhance
nonlinear and quantum optical effects [24]. The BICs
also give rise to discontinuities in the transmission and
reflection coefficients which can be explored in filtering,
sensing, and switching applications [25, 26].

So far, existing theoretical studies on BICs are mostly
for structures with simple and idealized geometric fea-
tures. Two-dimensional (2D) structures usually consist
of circular or rectangular cylinders or holes [2, 5, 6, 8–
12, 14, 18, 19, 21]. Three-dimensional (3D) biperiodic
structures are typically photonic crystal slabs with cir-
cular holes [3, 4, 7, 13, 17]. Rotationally symmetric
structures consist of spheres or piecewise uniform cir-
cular rods [15, 16, 20, 22]. Since idealized structures
cannot be realized in practice, it is essential to study
non-perfect structures that are slightly distorted from
the perfect ones. In particular, it is important to find out
how small distortions affect the BICs. The existence and
robustness of BICs are important theoretical questions.

The symmetry-protected BICs are well understood [2, 6].
Their existence can be rigorously proved, and in general,
they continue to exist when the structure is perturbed
with the relevant symmetries kept intact. The majority
of propagating BICs are found on structures with cer-
tain symmetries, and their frequencies and wavevectors
satisfy conditions such that there is only one radiation
channel for outgoing waves. It is known that these prop-
agating BICs are robust against variations in the geo-
metric or material parameters of the idealized structures
[9, 12, 13, 27–29]. It has been suggested that these prop-
agating BICs are in fact robust against arbitrary struc-
tural perturbations that preserve the relevant symmetries
[28–30]. It should be pointed out that propagating BICs
do exist when there are more than one radiation channels
[9, 14], but they are less robust.

In this paper, we study BICs and resonances on peri-
odic arrays of dielectric cylinders with slightly noncircu-
lar cross sections. A periodic array of circular cylinders
is probably the simplest structure on which various BICs
exist [5, 6, 8, 14, 19]. Based on a highly accurate nu-
merical method, we show that the symmetry-protected
BICs and the propagating BICs with one radiation chan-
nel are preserved when the distortion retains the relevant
symmetries, and the BICs become resonances with finite
quality factors when the distortion breaks the required
symmetries. Our results are consistent with those re-
ported in [28, 29] and provide a strong support for the
analytic result developed in [30].

II. FORMULATION AND METHOD

We consider a periodic array of parallel and infinitely
long dielectric cylinders as shown in Fig. 1. The cylin-
ders are placed periodically along the y axis with period
L, are parallel to the z axis and surrounded by air. The
dielectric constant of the cylinders is ǫ1. For the E po-
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FIG. 1. A periodic array of dielectric cylinders with slightly
noncircular cross sections.

larization, the z component of the electric field, denoted
by u, satisfies the following 2D Helmholtz equation

∂2
xu+ ∂2

yu+ k20ǫ(x, y)u = 0, (1)

where k0 = ω/c is the free space wavenumber, ω is the
angular frequency and c is the speed of light in vacuum.
The time dependence is assumed to be e−iωt. The func-
tion ǫ(x, y) is defined such that ǫ = ǫ1 in the cylinders
and ǫ = 1 in the surrounding medium (air). A guided
mode on the periodic array is a solution of Eq. (1) given
in the Bloch form

u(x, y) = eiβyφ(x, y), (2)

where β is a real Bloch wavenumber satisfying |β| ≤ π/L,
φ is periodic in y with period L, and φ → 0 as x → ±∞.
A BIC is a guided mode with the additional condition
k0 > |β|. The case β = 0 gives a standing wave.
Assuming the cylinders are bounded by the vertical

lines at x = ±d for some d > 0, we can expand the
solution for |x| > d in plane waves as

u(x, y) =

∞
∑

m=−∞

c±mei(βmy±αmx), ±x > d, (3)

where

βm = β + 2πm/L, αm =
√

k20 − β2
m. (4)

If αm is real, then the plane waves ei(βmy±αmx) can
propagate to infinity, and they correspond to radiation
channels for outgoing waves. If we further assume that
k0 < 2π/L − |β|, then α0 is positive, and for all m 6= 0,

αm = i
√

βm − k20 is pure imaginary. If u is a BIC, it

must decay to zero as |x| → ∞, thus the coefficients c±0
must vanish.
In the β-ω plane, the BICs correspond to isolated

points, but they belong to families of resonant modes that
depend on β continuously. A resonant mode is a nonzero
solution of Eq. (1) for a complex frequency. It is also
given in the Bloch form as in Eq. (2), but φ does not de-
cay to zero as |x| → ∞. Instead, a resonant mode satisfies

outgoing radiation conditions as x → ±∞. In addition,
the expansion (3) is also valid for resonant modes, but
in general c±0 6= 0. Since ω is complex, α0 has a nonzero
imaginary part, the plane wave exp[i(β0y ± α0x)] blows
up as x → ±∞. The quality factor of a resonant mode is
Q = −0.5Re(ω)/Im(ω), where Re(ω) and Im(ω) denote
the real and imaginary parts of ω.
To find the resonant modes and the BICs, we can fix

β and solve an eigenvalue problem where the eigenvalue
is ω (or k20). This eigenvalue problem is for Eq. (1) in a
2D domain that covers one period of the structure, i.e.,
for −L/2 < y < L/2. Numerical methods that discretize
the 2D domain directly are not very efficient. For our
problem, since the cylinders are slightly distorted from
the perfect circular ones, high accuracy is needed to dis-
tinguish resonant modes with a small imaginary part of
ω from true BICs. We choose to implement a numeri-
cal method that reformulates the eigenvalue problem on
two line segments. These line segments are x = ±d for
|y| < L/2. The eigenvalue problem is written as

Au = 0, (5)

where u is a column vector of u(d, y) and u(−d, y) for
|y| < L/2, A is an operator that depends on β and ω. If
the line segments are discretized byN points, then u(d, y)
and u(−d, y) are approximated by vectors of length N ,
and A is approximated by a (2N)× (2N) matrix. Notice
that this formulation gives a nonlinear eigenvalue prob-
lem. For any given real β, we can solve the complex ω
from

λ1(A) = 0 (6)

where λ1 is the eigenvalue of A with the smallest magni-
tude. A method for computing operator A is described
in Appendix.

III. ANTISYMMETRIC STANDING WAVES

It is easy to find antisymmetric standing waves on a
periodic array of circular dielectric cylinders [5, 8]. These
standing waves are symmetry-protected BICs, where the
relevant symmetry is the reflection symmetry along the y
direction. If the center of one circular cylinder is chosen
to be the origin, then the dielectric function ǫ(x, y) is
even in y, and the antisymmetric standing waves are odd
functions of y. On an array of cylinders with radius a =
0.3L and dielectric constant ǫ1 = 4, two antisymmetric
standing waves can be found, and their frequencies are
ωL/(2πc) = 0.67131588 and 0.92718676, respectively. It
turns out that these two standing waves are even and
odd in x, respectively.
For the same a and ǫ1, we consider an array of slightly

noncircular cylinders with a boundary given by

{

x = a cos(θ + θ0) + δ cos(2θ) sin(θ0)
y = a sin(θ + θ0)− δ cos(2θ) cos(θ0)

(7)
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for 0 ≤ θ < 2π, where θ0 is a rotation angle and δ is
a small parameter. The case for δ = 0.2a is shown in
Fig. 2(a). It is well known that the antisymmetric stand-
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FIG. 2. Cross sections of two noncircular cylinders. (a) Cylin-
der given by Eq. (7) for rotation angle θ0 and δ = 0.2a. (b)
Cylinder given by Eq. (8) for δ = 0.05a.

ing waves are robust against small structural variations
that preserve the reflection symmetry in y [2, 5]. For
θ0 = ±90◦ and δ 6= 0, the reflection symmetry in x is
broken, but the reflection symmetry in y is preserved,
thus the antisymmetric standing waves should continue
to exist when δ is small. As a simple test, we consider
the case for θ0 = 90◦ and δ = 0.005a. Two antisymmet-
ric standing waves are found, and their frequencies are
ωL/(2πc) = 0.67131674 and 0.92718463, respectively.

For θ0 = 0 and δ 6= 0, the periodic array no longer
has the reflection symmetry in y. Our numerical re-
sults confirm that the antisymmetric standing waves dis-
appear and become resonant modes. For δ = 0.005a
and β = 0, we found two resonant modes with com-
plex frequencies ωL/(2πc) = 0.67131418 − i0.00000004,
and 0.92718448 − i0.00000020, respectively. Since the
resonant modes depend continuously on the real Bloch
wavenumber β, we also calculate the resonant modes for
β near zero. In Fig. 3, we show the quality factors of

FIG. 3. Quality factors of the resonant modes (as functions
of wavenumber β) on periodic arrays of distorted cylinders
given by Eq. (7): (a) near the x-even standing wave; (b) near
the x-odd standing wave.

the resonant modes as functions of β, for both circular
and noncircular cylinders. The antisymmetric standing
waves are located at β = 0 where the curves for δ = 0
approach infinity. It is clear that if δ 6= 0 the quality
factor is finite for all β around zero. Therefore, the an-
tisymmetric standing waves are destroyed by the small
distortions that break the reflection symmetry in y, and
the distorted array has only resonant modes for β around
zero.
Since the small distortion turns the antisymmetric

standing waves to resonant modes with large quality fac-
tors, the transmission spectrum exhibits sharp resonant
features. In Fig. 4, we compare the transmission spec-

FIG. 4. Transmission spectra of normal incident waves for
periodic arrays of circular cylinders (a = 0.3L and ǫ1 = 4)
and distorted cylinders given by Eq. (7) for δ = 0.15a and
θ0 = 0◦.

tra of normal incident plane waves for periodic arrays of
circular and distorted cylinders. The distorted cylinders
correspond to δ = 0.15a and θ0 = 0. For the circular
cylinders, the transmission spectrum does not have any
particular feature around the frequencies of the two an-
tisymmetric standing waves, since these standing waves
cannot couple to the normal incident waves. On the other
hand, the transmission spectrum of the distorted array
exhibits two sharp Fano resonance features, each having
an asymmetric line shape with a total transmission and a
total reflection in a very narrow frequency range around
the real part of the complex frequency of the resonant
modes. These resonant features can be explained by the
theoretical models developed in [31, 32].

IV. PROPAGATING BICS

It is known that propagating BICs with a nonzero
wavenumber β exist on periodic arrays of circular dielec-
tric cylinders [14, 19]. If the radius of the cylinders is
a = 0.35L and the dielectric constant is ǫ1 = 11.56, then
the periodic array supports two propagating BICs, and
they are even and odd in x, respectively. The x-even
BIC has a frequency ωL/(2πc) = 0.4854 and a wavenum-
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ber βL/(2π) = 0.0776. The x-odd BIC appears when
ωL/(2πc) = 0.6702 and βL/(2π) = 0.2483. Notice that
the periodic array of circular cylinders has reflection sym-
metries in both x and y directions. It has been suggested
that the propagating BICs are robust against small struc-
tural changes that keep all relevant symmetries, and they
become resonant modes with finite quality factors when
the changes break a required symmetry [13, 28, 29]. How-
ever, existing numerical results supporting this conclu-
sion are mostly for idealized structures with simple and
perfect geometric features such as circular holes, circular
rods, rectangular cylinders and spheres. In the follow-
ing, we present numerical results for distorted structures
involving slightly noncircular cylinders.
First, we consider a periodic array of distorted cylin-

ders with a boundary given by Eq. (7) for a = 0.35L and
δ 6= 0, and study three cases corresponding to θ0 = 0◦,
45◦ and 90◦. The dielectric constant of the cylinders is
kept at ǫ1 = 11.56. For all three cases, the reflection
symmetries in one or both directions are broken. Our
numerical results reveal that the BICs are indeed turned
to resonant modes. In Fig. 5, we show the quality fac-
tors of the resonant modes as functions of wavenumber
β for a few different δ. The curves for δ = 0 diverge
at wavenumbers corresponding to the BICs. It is also
clear that the quality factors are finite on the curves for
δ 6= 0. Therefore, the two propagating BICs have been
destroyed by the small distortions.
Next, we consider a periodic array of distorted cylin-

ders that retains the reflection symmetries in both x and
y directions. The array consists of noncircular cylinders
with a boundary given by

{

x = a cos(θ)− δ cos(4θ) cos(θ)
y = a sin(θ)− δ cos(4θ) sin(θ)

(8)

for 0 ≤ θ < 2π and a = 0.35L. The case for δ = 0.05a is
shown in Fig. 2(b). The dielectric constant of the cylin-
ders is also ǫ1 = 11.56. For a few small values of δ, we
calculate the complex frequencies of the resonant modes
for β near the wavenumbers of the two propagating BICs.
The quality factors of the resonant modes are shown in
Fig. 6. The top and bottom panels correspond to the
x-even and x-odd modes, respectively. It is clear that
for each δ, there are two BICs (one x-even and one x-
odd), since all curves diverge for some real β. For δ =
0.005a, we found an x-even BIC with βL/(2π) = 0.0886
and ωL/(2πc) = 0.48753358, and an x-odd BIC with
βL/(2π) = 0.2628 and ωL/(2πc) = 0.67101142. Their
electric field patterns are shown in Fig. 7. These nu-
merical results indicate that the propagating BICs are
robust against small distortions that keep the reflection
symmetries in both x and y directions.

V. CONCLUSION

On periodic structures, BICs are guided modes that
belong to the families of resonant modes, and they can

FIG. 5. Quality factors of the resonant modes (as functions
of wavenumber β) on periodic arrays of distorted cylinders
given by Eq. (7): (a,b) θ0 = 0◦; (c,d) θ0 = 45◦; (e,f) θ0 = 90◦;
(a,c,e) near the x-even propagating BIC; (b,d,f) near the x-
odd propagating BIC.

be regarded as special resonant modes with infinite qual-
ity factors. Existing theoretical and numerical works on
BICs are mostly for structures with simple and perfect
geometric features, such as circular holes, rectangular
rods and spheres. Since perfect structures can not be
fabricated in practice, it is essential to study slightly dis-
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FIG. 6. Quality factors of the resonant modes (as functions
of wavenumber β) on periodic arrays of distorted cylinders
given by Eq. (8): (a) near the x-even propagating BIC; (b)
near the x-odd propagating BIC.

FIG. 7. Electric field patterns of the x-even (left) and x-
odd (right) propagating BICs on a periodic array of distorted
cylinders given by Eq. (8) for δ = 0.005a.

torted structures. In particular, it is important to find
out whether a BIC is preserved or destroyed by a small
distortion. This is related to the robustness of BICs.

For the symmetry-protected BICs, the existence and
robustness are well understood. The propagating BICs
are not symmetry-protected in the usual sense, since they
do not have a symmetry mismatch with the outgoing
radiation waves. Most propagating BICs are found on
symmetric structures for frequencices that are not too
large, so that there is only one outgoing radiation chan-
nel. It has been realized that these BICs crucially depend
on symmetries [12, 13]. Using topological concepts, the
existence and robustness of propagating BICs on a pho-

tonic crystal slab and an array of spheres have been an-
alyzed [28, 29]. These studies provide a clear descrition
for the generation, evolution and annihilation of the BICs
as some parameters such as the radius of the holes, the
refractive index and the thickness of the slab, are var-
ied. Notice that although the parameters can change,
the structure keep the symmetries, and the perfect geo-
metric features. In this work, we analyzed periodic arrays
of slightly noncircular cylinders. Our numerical results
indicate that if the cylinders are slightly distorted so that
the reflection symmetry with respect to either the x axis
or the y axis is broken, then the propagating BICs dis-
appear, that is, they turn to resonant modes. On the
other hand, if the distortion does not break the reflec-
tion symmetries, then the propagating BICs continue to
exist at slightly different frequencies and slightly different
wavenumbers. This is consistent with existing results for
different periodic structures [28, 29], and gives a strong
support to the theoretical result of [30]. Finally, it should
be pointed out that BICs can turn to resonant modes for
many different reasons, including, for example, when the
periodic structure is truncated to a finite one [35], and
when the homogeneous media in the two sides of the
structure are no longer the same [36].
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APPENDIX

The eigenvalue problem for BICs and resonant modes
has been written as Eq. (5) for an operator A. To find A,
we need two operators T and Λ, where T is used to write
down exact boundary conditions at x = ±d and Λ (the
so-called Dirichlet-to-Neumann or DtN map) is used to
link u and its normal derivative on the boundary of the
rectangular domain S given by |x| < d and |y| < L/2. All
operators are approximated by small matrices in practice.

Based on βm and αm given in Eq. (4), if we define a
linear operator T such that T eiβmy = iαmeiβmy for all
integers m, then u, given in Eq. (3), must satisfy the
following boundary conditions

±∂u

∂x
= T u, x = ±d. (9)

For a slightly noncircular cylinder with cross section Ω,
if the radius a of the original circular cylinder is not too
large (i.e., not close to 0.5L), we may choose d = L/2,
then S is a square of side length L. For any u satisfying
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Eq. (1) in S, we have

u(x, y) =
∞
∑

m=−∞

cmφm(x, y), (10)

where cm is an unknown coefficient, and φm is a special
solution satisfying

φm(x, y) =

∞
∑

q=−∞

amq

Jq(k0n1r)

Jq(k0n1a)
eiqθ

for (x, y) ∈ Ω, and

φm(x, y) =
Jm(k0n0r)

Jm(k0n0a)
eimθ +

∞
∑

q=−∞

bmq

Yq(k0n0r)

Yq(k0n0a)
eiqθ

for (x, y) outside Ω. In the above, r and θ are the ra-
dial and angle variables of the polar coordinate system,
n1 =

√
ǫ1 and n0 = 1 are the refractive indices of the

cylinder and the surrounding medium (air), respectively,
Jq and Yq are Bessel functions of order q, amq and bmq are
unknown coefficients. To find these coefficients, we can
truncate the sums in q, choose a finite number of points

on the boundary of Ω, set up a linear system for these
coefficients by matching u and its normal derivative at
these points. After obtaining the special solutions φm,
we can construct the DtN map Λ as in [33, 34]. Notice
that Λ satisfies

Λ







u(−d, y)
u(x, L/2)
u(d, y)

u(x,−L/2)






=







∂xu(−d, y)
∂yu(x, L/2)
∂xu(d, y)

∂yu(x,−L/2)






, (11)

where u and its normal derivative are evaluated on the
boundary of S.

For u given in the Bloch form, we have the quasi-
periodic conditions u(x, L/2) = eiβLu(x,−L/2) and
∂yu(x, L/2) = eiβL∂yu(x,−L/2). These conditions can
be combined with Eq. (11) to find an operator M satis-
fying

M
[

u(−d, y)
u(d, y)

]

=

[

∂xu(−d, y)
∂xu(d, y)

]

. (12)

Finally, Eqs. (9) and (12) are used to eliminate ∂xu and
obtain the operator A.
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