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ABSTRACT
This paper presents some theoretical and numerical investigations
concerning the fast computation of an exterior wave field to a scatterer by
the Beam Propagation Method (BPM). Different models are presented and
compared. It appears that the approach is able to correctly model the
propagation of the propagative modes of the wave field while inaccuracies
still remain for the evanescent and transition modes.

Keywords: acoustic scattering; beam propagation methods; one-way
equations; fast algorithms; high-frequency

1. INTRODUCTION
The aim of this paper is to prospect the possible application of the Beam
Propagation Method (BPM) for solving high-frequency scattering problems. To
focus our study on special features of the BPM, we rather restrict our
developments to the sound-soft scattering problems but extensions could also
be considered to more general problems like sound-hard or impedance
problems. Hence, the wave field u satisfies the Helmholtz equation in the
unbounded domain exterior to the cylinder and can be decomposed as

u u ui s= +( ) ( ) ,



where u(i) is the given incident wave, u(s) is the unknown scattered wave
solution to the boundary-value problem

where Ω is the cross-section of the cylinder, Ω+ is the domain exterior to Ω,
is the boundary of Ω, r is the radial variable in the polar coordinate system

and k = 2p/λ is the wavenumber. The radiation condition at infinity ensures the
uniqueness of the solution. A brief illustration of the problem is given on
Figure 1.
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Fig.1 scattering by a two-dimensional obstacle

Various numerical methods have been developed over the past decades to
solve the time-harmonic acoustic problem. One well-known possible
approach is to truncate the unbounded domain Ω+ with an Artificial
Boundary Condition (ABC) and to use the Finite Element Method (FEM) in
a bounded domain [1]. This method can handle scatterers with complicated
boundaries. Another important method is the Boundary Integral Equation
(BIE) method [2,3,4]. The problem is then reformulated as an integral
equation defined on and solved through techniques combining an
iterative linear algebra solver [5] and compression algorithms like e.g. the
Fast Multilevel Multipole (FMM) technique [6]. In many applications, the
angular frequency w is extremely high, the wavenumber k = w / c is large and

∂Ω
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the wavelength λ = 2p /k is much smaller than the characteristic length of the
scatterer. Then, both the ABC-FEM and the BIE have difficulties in solving
such large scale problems since, in particular, the associated linear systems
have a very large size. Moreover, these two methods require that an integral
must be evaluated at any exterior point where the solution is desired. Both
these two methods require more than O(N) operations for each point where
N is the number of grid points used to discretize the boundary. When N is
large, this is quite expensive.

The Beam Propagation Method (BPM) is an efficient approximation
method widely used in optical waveguide modelling. Under the assumption
that the wave field is dominated by its forward component, the BPM gives
rise to one-way equations that approximate the Helmholtz equation. It is
useful for waveguides that change slowly in the propagation direction. The
one-way equations have only a first order derivative in the propagation
direction and can be efficiently solved as an initial value problem. Operator
rational approximations are involved in solving the one-way models. There
are various types of rational approximations to the one-way equations. For
example, the BPMs can be solved by rational approximations to the square
root operator [7,8,9] or rational approximations to the exponential of the
square root operator, i.e. the propagator [10,11].

In this paper, an attempt is made to apply the BPM method to the scattering
problem. We develop an approximate method which can efficiently solve the
scattered wavefield. Our method requires only O(1) operations for each point
where the solution is desired.

The plan of the paper is the following. In Section 2, we use a curvilinear
coordinate system to rewite the scattering problem following the parallel
surfaces to the scatterer. We then explain in details in the third Section the
approach by Beam Propagation Methods, developing different models and
approximations as well as rational approximations for more efficiency.
Section 4 proposes some numerical simulations and investigations to see how
the method applies in terms of efficiency and accuracy. Finally, the last
Section gives some conclusions.

2. CURVILINEAR COORDINATES SYSTEM
The scattering problem is different from the propagation problem in
waveguides and in particular, the geometry itself must be treated with special
attention. In the following, we first develop a coordinate transformation to
apply the BPM method in the new coordinate system.



We assume that the boundary of the scatterer is given by 

where s is the arclength and l is the total length of . Using the
counterclockwise direction as the direction of increasing s, we have an outward
unit normal vector given by

(1)

As illustrated in Figure 2, any point (x,y) in the exterior domain Ω+

(assuming that Ω is convex) can be written as
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Fig.2 the curvilinear coordinate transform

for 0 ≤ s ≤ l and 0 ≤ x ≤ + ∞. Under the new coordinate system (x,s), the
Helmholtz equation becomes

where g = 1 + xk (s) and k is the curvature of the boundary . For u =
γ–1/2u, we have
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For convenience, we define an operator L by

(4)

It acts on functions of s and it depends on x as a parameter.

3. THE BPM APPROACH
In the new coordinate system, the scattered wave propagates outwards in the
increasing x direction. This suggests that the scattered field may be
approximated by one-way models that are first order in x. Following the BPM
for optical waveguides, we first approximate equation (3) by one-way equations
and then apply operator rational approximations.

There are a few different one-way models used in the BPM. One

possibility is to approximate equation (3) by using the square

root operator . Here, we adopt the Energy-Conserving model
[12,13,14] which gives improved accuracy for slowly varying waveguide.
The energy-conserving model can be derived from the continuity of the
power flux and it involves a transform using the fourth root of the operator
L. We have

(5)

In terms of the original function u, the energy-conserving one-way model is

Notice that the original boundary value problem of the Helmholtz equation
for u is now approximated by an initial value problem for f. As in the standard
BPM, the square root (and the fourth root) of L must be approximated. For this
purpose, we introduce the operator X by
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where k0 is a reference wavenumber. Then, equation (5) becomes

Formally, for the step from xj to xj+1= xj + h, we have

(6)

where P is the one-way propagator and X is evaluated at the midpoint x =
xj + h/2.

The propagator P can be approximated by rational functions of X. For
waveguide problem, the standard [p/p] Padé approximation provides a good
approximation for the propagating modes but fails to suppress the evanescent
modes, while the [(p − 1)/p] Padé approximant can damp the evanescent modes
but gives less accurate results for the propagating modes. For the current
scattering problem, a proper treatment of the evanescent modes appears
necessary. The propagator-q method [15] combines the [p/p] and [(p − 1)/p]
Padé approximants by a parameter q. With a suitable choice of p and q, the
propagator-q method gives a better balance for approximating both the
propagating and evanescent modes.

The propagator-q approximant of degree p takes the following form

(7)

(8)
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The coefficients can be solved from a linear

system of equations assuming that the Taylor coefficients of the function is

available. The coefficients can be calculated from 

where The expression (9) is more convenient for
numerical implementation than the standard form (7). The coefficients ck and bk
are first obtained by factorizations of the dominator and numerator of (7).
Coefficients ak and dk can be calculated from 

(12)

(13)

With the rational approximation (9), the propagation step (6) is approximated by

(14)

where wk is solved from

(15)

Since X is related to L as in (4), the discretized form of (15) is a periodic
tridiagonal system. If N is the number of grid points for discretizing the s
variable, the required number of operations in each step is O(N). Therefore, the
number of operations required for each point is only of O(1).

The 4-th root operator must be evaluated when the unknown
function u is transformed to f, or vice versa. If the scattered wave field is
required in the entire computational domain, this operator should be evaluated
after each marching step of f. In order to keep O(1) operations, a rational

approximation for is used.
For a constant n, the function q(x) = (1 + x)n has a continued fraction

expansion as
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where σ1 = n and

(17)

for k = 1, 2, . . .. Let qm(x) be the truncation of (16) up to the term σmx, we
have

(18)

where Rm,m is the [m,m] Padé approximant of q(x). Furthermore, the sequence
{q2m(x)} converges to q(x) for all complex x, except for − ∞ < x < −1 [8].

For practical computation we rearrange q2m(x) as

(19)

(20)

The coefficients can be calculated from a tridiagonal matrix
related to the coefficients {σk}, and we can use the same formulas (12) and (13)

to calculate coefficients 

For our case, we set n = 1/4. The initial value of f can be approximately
evaluated by

, (21)
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can be implemented similarly. As in (14) and (15), the total number of operations
needed in these approximations is also of O(N). As far as the scattered wave
field is concerned, the number of operations spent on each point is only of O(1).

4. NUMERICAL RESULTS
We consider the scattering problem of a circular cylinder centered at the origin
with radius a as shown in Figure 3. The boundary of the circular cross-section
is given by x = a cos q and y = a sin q. The outward unit normal vector is (s) =
(cos q, sinq). In terms of x and s, the coordinate of a point (x, y) in Ω+ are

r
n

Note that r = a + x for this case. The operator L(x) becomes

(24)

The incident plane wave u(i) is given by

(25)

where y is the incident angle. In the following, we assume that a = 1, y = 0
and k = 35. Numerical results at x = 8, i.e. r = 9, calculated by BPM are given
in Figure 4. These results are obtained with N = 400, h = 0.1, p = 3, q = 0.8 and
m = 6. The analytic solution given in the Mie series is plotted for comparison.
It is clear that the BPM solution is a good approximation in the interval where
the scattered wave is strong, and it is less accurate in other locations. In
particular, the BPM solution has some undesirable oscillations.
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Fig.3 the scattering problem of a circular cylinder
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For another example, we consider the scattering of an elliptical cylinder.
The incident plane wave has an incident angle y = 35° (as shown in Figure 5).
The cross-section of the elliptical cylinder has semi-axis a = 1 and b = 0.25. The
boundary is discretized by N = 1600 points. A reference solution is obtained by

Fig.4 magnitude of the scattered wave of a circular cylinder at r = 9

Fig.5 the scattering problem of an elliptic cylinder for plane incident wave with an
incident angle y



the BIE method. In figure 6, we compare the reference solution with the BPM
solutions at r = 9. The BPM solutions are obtained with two different stepsizes:
h = 0.1 and h = 0.01. Both BPM solutions are good approximations when the
scattered wave is strong, but they produce incorrect oscillations when the
scattered wave is weak.

To understand the limitation of our method, we expand the plane incident
wave u(i) in a series of Bessel functions as follows:

where

with c0 = 1 and cm = 2 for m = 1, 2, . . . . For this scattering problem, each
term gives rise to its scattered waveum
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Fig.6 magnitude of the scattered wave of an elliptic cylinder for a plane incident wave
with y = 35°



where is the Hankel function of the first kind. Therefore, the exact scattered
wave for the plane incident wave can be written in the following Mie series:

(26)

The above infinite sum can be truncated as follows:

In Figure 7, we plot the absolute values of for q = 0, m = 0, . . . , 60 and at
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um
s( )

u u us s M
m
s

m

M
( ) ( ), ( ) .≈ =

=
∑

0

u us
m
s

m

( ) ( ) .=
=

+∞

∑
0

Hm
( )1

u c
J ka

H ka
H kr mm

s
m

m

m
m

( )
( )

( )( )

( )
( ) ( )= −

1
1 cos( θ ψ )),

158 Computing High-Frequency Scattered Fields by Beam 
Propagation Methods: A Prospective Study

Fig.7 the magnitude of um
(s) for m = 0,..., 60 at r = 2 (the upper one) and r = 9 

(the lower one)
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terms are significant. Therefore, M should be at least 40 if u(s),M is to be a good
approximation of u(s). This suggests that to obtain a BPM solution with acceptable
accuracy at least the same number of terms should be properly modelled.

For this example, the E-C model can be solved analytically. In fact, the exact
solution um = is separable and

That is, the operator L(x ) becomes a scalar multiplicator on um. Thus, its
square root can be evaluated directly (without using rational approximations).
Following the decomposition of the exact solution (26), we can decompose f
(of the E-C model) as

Then, the propagation step from xj to xj+1 is reduced to:

The transformation between f and u can be implemented in a similar manner.
Next, we compare the truncated analytic solution u(s),M with the analytic

solution (E-C) of the E-C model and the fully numerical E-C BPM solution
(RAtoEC). The solution E-C is also truncated to M terms and the numerical
solution RAtoEC follows a starting field corresponding to the incident field
truncated to M terms. These solutions are compared for M = 30 and M = 40. For
M = 30, Figure 8 indicates that both E-C and RAtoEC coincide with the exact
solution u(s),30 at r = 2 and r = 9. This, however, is not the case for M = 40 as
shown in Figure 9. It appears that the one-way E-C equation cannot accurately
model the modes for large m.

To gain a better understanding, we compare the solutions for a single m. That
is, we compare with the corresponding analytic solution of the E-C model
and the fully numerical E-C BPM solution (with a single mode incident wave).
In Figure 10-12, we compare these solutions for m = 32, 34, 35, 36, 37 and
40 for r ∈ [1,9]. It is clear that the solutions of the E-C model are quite different
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Fig.8 magnitude of the scattered wave of a circular cylinder for the incident field
truncated to 30 terms
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Fig.9 magnitude of the scattered wave of a circular cylinder for the incident field
truncated to 40 terms
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Fig.10 magnitude of the scattered waves (along a certain direction) for a circular
cylinder with m = 32 and 34
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Fig.11 Magnitude of the scattered waves (along a certain direction) for a circular
cylinder with m = 35 and 36
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Fig.12 magnitude of the scattered waves (along a certain direction) for a circular
cylinder with m = 37 and 40

um
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from for m = 34 and m = 35, and the rational approximations used with the
E-C model give poor results for m ≥ 36. A possible explanation is that has
a strong evanescent behavior near the scatterer and this is difficult to model by
the E-C equation and rational approximations. In conclusion, the accuracy of 
E-C one-way model is limited, since it fails to approximate all the modes that
are important in the scattered wave. Nevertheless, the method does give a rough
approximation very efficiently.

5. CONCLUSION
In this paper, we develop and implement the Beam Propagation Method for 2-D
scattering problems associated with acoustic sound-soft cylinders. This is an
approximate method for scattering problems in the high frequency regime. The
method is very efficient, since the required number of operations is O(1) for each
point where a solution is calculated. However, the accuracy of this method is
limited. The BPM approach cannot accurately compute the scattered wave from
a circular cylinder. Nevertheless, the methods may be useful to large scale
scattering problems for which a more accurate solution is difficult to get.
Moreover, these new propagation models can be helpful in building efficiently
an approximate exterior wave field used in the background of FEM for reducing
pollution effects like e.g. in [16, 17]. In particular, access to high-order one-way
exterior models would be valuable for accuracy improvement.
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