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Abstract

For optical waveguides with high index contrast and sharp corners, high
order full-vectorial mode solvers are difficult to develop, due to the field sin-
gularities at the corners. A recently developed method (the so-called BIE-
NtD method) based on boundary integral equations (BIEs) and Neumann-
to-Dirichlet (NtD) maps achieves high order of accuracy for dielectric waveg-
uides. In this paper, we develop two new BIE mode solvers, including an
improved version of the BIE-NtD method and a new BIE-DtN method based
on Dirichlet-to-Neumann (DtN) maps. For homogeneous domains with sharp
corners, we propose better BIEs to compute the DtN and NtD maps, and new
kernel-splitting techniques to discretize hypersingular operators. Numerical
results indicate that the new methods are more efficient and more accurate,
and work very well for metallic waveguides and waveguides with extended
mode profiles.

Keywords: Optical waveguides, boundary integral equations,
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1. Introduction

Optical waveguides [1, 2, 3] are structures that can guide the propagation
of light. They are widely used as basic components in integrated optical
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circuits and optical communication systems. In recent years, many com-
plicated optical waveguides have appeared, such as photonic crystal fibers
[4], plasmonic waveguides [5], etc. These new waveguides have attracted
much attention due to their unique abilities in confining light. For an optical
waveguide, the most important mathematical problem is the computation
of waveguide modes. For a waveguide which is invariant along its axis z, a
guided mode is a special solution of Maxwell’s equations that depends on z
as exp(iβz) and decays exponentially away from the waveguide core, where
β is the so-called propagation constant. Open waveguides also have leaky
modes which exhibit outgoing wave behavior away from the waveguide core.
Throughout this paper, we consider only guided modes.

Classical optical fibers can be studied using a scalar model, since the re-
fractive indices of the core and the cladding are nearly equal. There are also
semi-vectorial models that are applicable to some waveguides. For waveg-
uides with high index contrast, such as silicon waveguides, plasmonic waveg-
uides and photonic crystal fibers, full-vectorial methods are necessary. Cur-
rently, there exist many different full-vectorial mode solvers, including the
finite difference method [6, 7, 8, 9, 10, 11, 12, 13, 14], the finite element
method [15, 16, 17, 18, 19, 20, 21, 22], the multi-domain pseudospectral
method [23, 24, 25], etc. However, for waveguides with sharp corners, it is
very difficult to find any high order numerical method, since the electromag-
netic field may be singular at the corners.

Boundary integral equation (BIE) methods have been used to analyze
optical waveguides [26, 27, 28, 29, 30, 31, 33, 32]. They are highly competi-
tive, since they can easily handle general refractive-index discontinuities (i.e.,
interfaces), discretize on the interfaces only, and give rise to small matrices.
Existing BIE methods reported in [26, 27, 28] exhibit low convergence orders
due to their use of boundary elements. For waveguides with smooth inter-
faces, high order BIE methods with exponential convergence are available
[29, 30, 31]. However, these high order methods need to solve four func-
tions on each interface. In a recent work [32], we developed a high order
BIE method that solves only two functions on each interface. Our method
also has exponential convergence, and is almost eight times faster than other
BIE methods. We call this method BIE-DtN method, since it relies on the
Dirichlet-to-Neumann (DtN) map for each homogeneous domain (with a con-
stant refractive index). However, all these high-order BIE methods encounter
difficulties when the waveguide has sharp corners, since the methods used in
these papers for discretizing boundary integral operators could fail. In [33],
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we developed a high order full-vectorial BIE mode solver for waveguides with
sharp corners. We call this method the BIE-NtD method, since it relies on the
Neuman-to-Dirichlet (NtD) map for each homogeneous domain. The method
achieves high order convergence for dielectric waveguides with corners, but
it needs to solve four functions on each interface.

In this paper, we develop new versions for both BIE-DtN and BIE-NtD
methods. The new BIE-DtN method still solves two functions on each in-
terface, but now handles waveguides with sharp corners. The DtN map for
a general domain with corners is computed using a BIE with a hypersin-
gular integral operator and extra terms corresponding to the corners. For
the hypersingular integral operator on a smooth boundary, Kress [34] de-
veloped a high-order kernel-splitting technique for its discretization, but the
method fails on boundaries with corners. We develop a new kernel-splitting
technique to overcome this difficulty. Our new BIE-NtD method still handles
waveguides with sharp corners, but solves three (instead of four) functions on
each interface. Although it still solves one more function than the BIE-DtN
method, the BIE-NtD method is simpler to implement. Furthermore, many
optical waveguides have interfaces extending to infinity, leading to domains of
constant refractive index with unbounded boundaries. We also develop well-
approximated BIEs to compute both DtN and NtD maps for these domains.
Overall, these new BIE mode solvers are more general and solve minimum
number of unknowns on each interface. As illustrated by the numerical ex-
amples, these new methods bring a large saving in the computational cost
and a significant improvement in the accuracy.

2. Problem formulations

To illustrate the basic ideas clearly, we start with a simple case where
the optical waveguide involves a finite core surrounded by a homogeneous
medium (the cladding) as shown in Fig. 1. The waveguide structure is in-
variant in the z-direction, and its cross-section in the xy-plane consists of two
homogeneous domains, a bounded domain Ω1 with refractive index n1 and
an unbounded domain Ω2 with refractive index n2, which share a common
boundary Γ. Both the core and the cladding are assumed to be non-magnetic.
For dielectric waveguides, the refractive indices satisfy n1 > n2. We also
consider metallic waveguides for which n1 is complex. Here {x, y, z} is the
standard Cartesian coordinate system. In the following, we only consider
homogeneous domains with Lipschitz and piecewise smooth boundaries. For
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Figure 1: Waveguides with a single core surrounded by a homogeneous medium: (a) a
dielectric waveguide with a trapezoidal core; (b) a metallic waveguide with a rectangular
core.

time harmonic waves with the time dependence exp(−iωt) where ω is the
angular frequency, the governing Maxwell’s equations are

∇×E = ik0H , (1)

∇×H = −ik0εE. (2)

In the above, ∇ denotes the gradient operator, E is the electric field, H is
the magnetic field multiplied by the freespace impedance, k0 = ω/c = 2π/λ
is the freespace wavenumber, c is the speed of light in vacuum, λ is the
free space wavelength, ε = n2 is the dielectric function, and it is piecewise
constant and independent of z. On the interface Γ, the four components Ez,
Hz, Hx and Hy are continuous where Ez denotes the z-component of E, etc.

A guided mode of the waveguide is a special solution of Eqs. (1) and
(2) such that both E and H depend on z as exp(iβz) and decay exponen-
tially to zero as

√
x2 + y2 → ∞, where β is called the propagation constant.

To find β, BIE methods typically work on only two components: {Ez, Hz}
or {Hx, Hy}. For waveguides with non-magnetic media and domains with
corners, we prefer to use {Hx, Hy}, since they are smoother than other com-
ponents, and finite even at corners. In each domain Ωj, both Hx and Hy

satisfy the following Helmholtz equation

∂2xu+ ∂2yu+ γ2ju = 0, (3)

where γ2j = k20εj − β2 and εj = n2
j for j = 1, 2. On the interface Γ, Hx and

Hy themselves are continuous. From Maxwell’s equations, the continuities of
Ez and Hz imply that

∂xHx + ∂yHy and
1

ε
(∂xHy − ∂yHx) (4)
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are also continuous. Writing (4) as linear combinations of the tangential and
normal derivatives of Hx and Hy, it is easy to see that

νx∂νHx + νy∂νHy and
1

ε
[(νx∂νHy − νy∂νHx)− (νy∂τHy + νx∂τHx)] (5)

are continuous across Γ, where ν = (νx, νy) denotes the unit normal vector
of Γ pointing to the exterior domain Ω2, and τ = (−νy, νx) denotes the unit
tangential vector along Γ.

Existing waveguide mode solvers based on BIE formulations can be clas-
sified as indirect methods (see [29, 30, 31]) and direct methods (see [26, 27,
28, 32, 33]). In an indirect method, each of the two components (such as Hx

and Hy) is written as layer potentials with two (exterior and interior) density
functions defined on the interface Γ. These methods are not so convenient for
computing tangential derivatives and need to solve four functions on Γ. We
prefer to use direct methods, since they are more convenient for computing
the tangential derivatives and may lead to less functions on Γ.

Before presenting the direct BIE formulations, we define some operators
for each homogeneous domain Ωj and the corresponding Helmholtz equation
(3). The DtN operator Λj maps u to ∂νu, i.e., Λju = ∂νu, on Γ for all u
satisfying Eq. (3). The NtD operator Nj maps ∂νu to u, i.e., Nj ∂νu = u, on
Γ for all u satisfying Eq. (3). Clearly, Nj is the inverse of Λj, and both are
related to β. In the following, we also need the tangential derivative operator
∂τ on Γ.

In [32], we developed a two-function BIE-DtN formulation for waveguides
with smooth interfaces. When Γ has corners, the formulation can still be used
provided that both Λ1 and Λ2 are calculated accurately. More specifically,
from (5), we have

[

νxΛ2 − νxΛ1 νyΛ2 − νyΛ1

ρνx∂τ + νyΠ ρνy∂τ − νxΠ

] [

Hx

Hy

]

= 0 on Γ, (6)

where

Π = ε−1
1 Λ1 − ε−1

2 Λ2, ρ = ε−1
1 − ε−1

2 . (7)

The matrix operator in the left hand side of (6) depends non-linearly on β.
Once ∂τ and Λj are approximated, we can find β numerically. As mentioned
before, the key step of this formulation is to compute the DtN operators for
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domains with corners. The details of this step will be presented in the next
section.

The BIE-NtD method developed in [33] uses a four-function formulation.
On the interface Γ, the method makes use of the continuities of Hx, Hy and
the two terms in (4). Writing all of them in terms of ∂νH

+
x , ∂νH

+
y , ∂νH

−
x

and ∂νH
−
y (where the superscripts ′+′ and ′−′ indicate limits taken from the

exterior domain Ω2 and the interior domain Ω1, respectively), the following
nonlinear eigenvalue problem on Γ is established:











A2 B2 −A1 −B1

−ε−1
2 B2 ε−1

2 A2 ε−1
1 B1 −ε−1

1 A1

N2 0 −N1 0
0 N2 0 −N1





















∂νH
+
x

∂νH
+
y

∂νH
−
x

∂νH
−
y











= 0. (8)

In the above, the tangential derivative operator ∂τ and the NtD operators
N2 and N1 are needed, and

Aj = νx − νy∂τ ◦ Nj, Bj = νy + νx∂τ ◦ Nj (9)

for j = 1, 2.
It is possible to reduce the number of required functions for the BIE-NtD

approach. In fact, from (5), we can see that

νx∂νH
+
x + νy∂νH

+
y = νx∂νH

−
x + νy∂νH

−
y . (10)

This allows us to establish a new nonlinear eigenvalue problem involving
three functions only. More precisely, let f = νx∂νH

±
x + νy∂νH

±
y and g± =

−νy∂νH±
x + νx∂νH

±
y , then the continuities of Hx, Hy and the two terms in

(5) give rise to







ε−1
1 F1 − ε−1

2 F2 ε−1
2 E2 −ε−1

1 E1
(N2 −N1)(νx·) −N2(νy·) N1(νy·)
(N2 −N1)(νx·) N2(νx·) −N1(νx·)













f
g+

g−





 = 0, (11)

where
Ej = Aj(νx·) + Bj(νy·), Fj = −Aj(νy·) + Bj(νx·), (12)

for j = 1, 2 and N1(νx·)f = N1(νxf), etc. Therefore, we can find β after ∂τ
and Nj are approximated. Compared with Eq. (8), the new three-function
BIE-NtD formulation reduces the matrix size by 25%.
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3. DtN and NtD operators

In this section, we present the BIEs for computing the DtN and NtD
operators. The fundamental solution of Eq. (3) is

G(j)(r, r̃) =
i

4
H

(1)
0 (γj|r − r̃|), r 6= r̃, (13)

for j = 1, 2, where r = (x, y), r̃ = (x̃, ỹ), and H
(1)
0 is the first-kind Hankel

function of zeroth order. The BIEs involve the following four boundary
integral operators:

(Sjφ)(r) = 2
∫

Γ
G(j)(r, r̃)φ(r̃)ds(r̃), r ∈ Γ, (14)

(Kjφ)(r) = 2−
∫

Γ

∂G(j)(r, r̃)

∂ν(r̃)
φ(r̃)ds(r̃), r ∈ Γ, (15)

(K′
jφ)(r) = 2−

∫

Γ

∂G(j)(r, r̃)

∂ν(r)
φ(r̃)ds(r̃), r ∈ Γ, (16)

(Tjφ)(r) = 2×
∫

Γ

∂2G(j)(r, r̃)

∂ν(r)∂ν(r̃)
φ(r̃)ds(r̃), r ∈ Γ, (17)

where −
∫

denotes the Cauchy principle value integral and ×
∫

denotes the
Hadamard finite part integral.

Consider the bounded domain Ω1 first. If Γ is smooth and u ∈ C∞(Ω1),
we have the following boundary integral equations

(1 +K1)u = S1∂νu, on Γ, (18)

(K′
1 − 1)∂νu = T1u, on Γ. (19)

Note that this regularity assumption on u can be weakened (see [35]). There-
fore, if γ21 is not an eigenvalue of the associated homogeneous Dirichlet or
Neumann problem of Eq. (3), then the NtD and DtN operators are given by

N1 = (1 +K1)
−1S1, Λ1 = (K′

1 − 1)−1T1. (20)

For the more general case where Γ is piecewise smooth and has corners,
Eqs. (18) and (19) are not valid at the corners. The modified BIE related to
the NtD operator is

(K1 −K01)u = S1∂νu, on Γ, (21)
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where K0 is the operator defined by

(K0φ)(r) = 2−
∫

Γ

∂G0(r, r̃)

∂ν(r̃)
φ(r̃)ds(r̃), r ∈ Γ, (22)

and G0 is the Green’s function of Laplace equation, that is

G0(r, r̃) = − 1

2π
log |r − r̃|, r 6= r̃.

Therefore, the NtD operator is given by

N1 = (K1 −K01)
−1S1. (23)

Eq. (21) has been used in [33] for computing the NtD operators for domains
with corners. A very weak sufficient condition on u and a rigorous derivation
of this BIE is given in Appendix. Notice that

(K01)(r) = −θ(r)
π

,

where θ(r) is the interior angle of Ω at r ∈ Γ. Thus, Eq. (21) is the same as

(

K1 +
θ

π

)

u = S∂νu, on Γ.

Although K01 is known explicitly, we prefer to use Eq. (21) and evaluate
it numerically. The reason is that when r is extremely close to a corner
point, the discretization of the improper integral (K1u)(r) has numerical
errors which appear to be cancelled out to some extent through a consistent
numerical evaluation of K01. We present numerical evidences for this claim
in section 6.

The BIE (19) related to the DtN operator remains valid only for smooth
points of Γ, i.e.,

(K′
1∂νu)(r)− ∂νu(r) = (T1u)(r), (24)

where r can be any smooth point of Γ. Once again, significant numerical
errors appear when r is extremely close to a corner point when the two im-
proper integrals in (24) are discretized. Our approach is to use the following
BIE

(K′
1∂νu)(r) + (K01)(r)∂νu(r) = (S ′

01)(r)∂τu(r) + (T1u)(r), (25)
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where r is any smooth point on Γ and

(S ′
0φ)(r) = 2−

∫

Γ

∂G0(r, r̃)

∂τ (r̃)
φ(r̃)ds(r̃). (26)

A very weak sufficient regularity condition on u and a derivation of Eq. (25)
are presented in Appendix. Therefore, the DtN operator can be calculated
by

Λ1 = (K′
1 +K01)

−1(S ′
01∂τ + T1). (27)

Actually, it is easy to verify that (S ′
01)(r) = 0 and (K01)(r) = −1 on the

smooth part of Γ, thus the two BIEs (24) and (25) are exactly the same away
from the corner points. As before, K01 and S ′

01 are evaluated numerically
together with the other integral operators. Numerical evidences for their
usefulness are presented in section 6.

For the unbounded domain Ω2, each field component of the guided mode
decays exponentially to 0 as r =

√
x2 + y2 → ∞. If R > 0 is large enough

so that the open disk BO(R) = {(x, y)|x2 + y2 < R2} contains Ω1, we can
establish BIEs like (21) and (25) for the truncated domain Ω2 ∩ BO(R). As
R → ∞, we obtain

(K2 −K01− 2)u = S2∂νu, on Γ, (28)

(K01 +K′
2 + 2)∂νu = S ′

01∂τu+ T2u, on smooth points of Γ. (29)

Therefore, the NtD and DtN operators for Ω2 are given by

N2 = (K2 −K01− 2)−1S2, (30)

Λ2 = (K2 −K01− 2)−1(S ′
01∂τ + T2). (31)

To approximate Nj and Λj, we need to approximate the involved integral
operators first. We present the details in the following sections. Since u
represents Hx or Hy, in the rest of this paper (except for Appendix), we will
assume u and ∂νu are smooth at smooth points on Γ and u is continuous at
the corners [9, 10, 27, 28]. Note that the one-sided limits of ∂νu and ∂τu
may diverge at the corners.

4. Kernel-splitting technique: smooth case

In this section, we briefly review the Nyström method with kernel-splitting
techniques for the case when Γ is smooth, and introduce a new stabilized
splitting technique to prevent numerical instability for metallic waveguides.
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Without loss of generality, we consider the bounded domain Ω1 and as-
sume Γ is given by

r(η) = (x(η), y(η)), 0 ≤ η ≤ 2π,

where both x(η) and y(η) are analytic functions and |r′(η)| > 0 for all η. We
need to discretize S1, K1, K′

1 and T1. For the first three operators, since all
of them are weakly singular, following [35, 34], we can transform each of S1,
K1 and |r′|K′

1 (not K′
1) to the following general form

∫ 2π

0
h(η, η̃)φ(η̃)dη̃, (32)

where φ corresponds to a 2π-periodic smooth function. The kernel h can be
splitted as the sum of a smooth part and a part with a simple logarithmic
singularity, i.e.,

h(η, η̃) = h1(η, η̃) log
(

4 sin2 η − η̃

2

)

+ h2(η, η̃),

where both h1 and h2 are analytic. If η is uniformly discretized by N points
{ηl = lπ/N}N−1

l=0 where N is even, the integral of h2 can be approximated by
the trapezoidal rule. The integral of the logarithmic term can be approxi-
mated by the following quadrature formula of Martensen and Kussmaul [37]:

∫ 2π

0
φ(η̃) log

(

4 sin2 η − η̃

2

)

dη̃ ≈
N−1
∑

l=0

RN
l (η)φ(ηl), (33)

where

RN
l (η) = −4π

N

N/2−1
∑

k=0

1

k
cos[k(η − ηl)]−

4π

N2
cos[N(η − ηl)/2].

Therefore, (32) is approximated by

N−1
∑

l=0

[

RN
l (η)h1(η, ηl) +

2π

N
h2(η, ηl)

]

φ(ηl).

For more details, we refer readers to [35, 34].
The kernel-splitting technique for the hypersingular operator T1 was de-

veloped by Kress [34]. First, we make use of Maue’s identity (multiplied by
|r′|),

|r′|T1u = |r′|S ′
1∂τu+ γ21 |r′|ν · S1(νu), (34)
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where

(S ′
1∂τu)(r) = 2−

∫

Γ

∂G(1)(r, r̃)

∂τ (r)
∂τu(r̃)ds(r̃), r ∈ Γ. (35)

The key step is to approximate S ′
1∂τu since the second term in the right side

of (34) only involves the operator S1. By splitting out a singular term and
integration by parts, we can transform |r′|S ′

1∂τu to

1

2π

∫ 2π

0
cot

η̃ − η

2

du(r(η̃))

dη̃
dη̃ −

∫ 2π

0
M(η, η̃)u(r(η̃))dη̃, (36)

where

M(η, η̃) =
∂2

∂η∂η̃

{

i

2
H

(1)
0 (γ1|r(η)− r(η̃)|) +

1

2π
log

(

4 sin2 η − η̃

2

)}

. (37)

The kernel M involves a weak singularity and it can be splitted as

M(η, η̃) =M1(η, η̃) log
(

4 sin2 η − η̃

2

)

+M2(η, η̃), (38)

where

M1(η, η̃) = − 1

2π

∂2

∂η∂η̃
J0(γ1|r(η)− r(η̃)|), (39)

and M2(η, η̃) is evaluated through (38) except when η = η̃. In that case, we
have

M1(η, η) = −γ
2
1 |r′(η)|2
4π

, (40)

M2(η, η) =

(

πi− 1− 2C − 2 log
γ1|r′(η)|

2

)

γ21 |r′(η)|2
4π

+ (41)

1

12π
+

[r′(η) · r′′(η)]2
2π|r′(η)|4 − |r′′(η)|2

4π|r′(η)|2 − r′(η) · r′′′(η)
6π|r′(η)|2 ,

where C = 0.57721 · · · is Euler’s constant. The first term in (36) can be
approximated by the following quadrature formula:

1

2π

∫ 2π

0
cot

η̃ − η

2
φ′(η̃)dη̃ ≈

N−1
∑

l=0

TN
l (η)φ(ηl), (42)
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where

TN
l (η) = − 1

N

N/2−1
∑

k=1

2k cos k(η − ηl)−
1

2
cos

N

2
(η − ηl).

Using the trapezoidal rule and formulae (33) and (42), we obtain

|r′(η)|(S ′
1∂τu)(r(η)) (43)

≈
N−1
∑

l=0

[

TN
l (η) +M1(η, ηl)R

N
l (η) +M2(η, ηl)

]

u(r(ηl)),

Therefore, the scaled hypersingular operator |r′|T1 can be approximated.
More details can be found in [34].

In the kernel-splitting procedure, Bessel functions Jm(γjd) for integer m
and d = |r− r̃| appear. For guided modes in dielectric waveguides, the prop-
agation constant β is real and it satisfies k0n2 < β < k0n1, thus γ2 is a pure
imaginary number. Since the Bessel functions Jm grow exponentially along
the imaginary axis, the kernel-splitting procedure presented above suffers nu-
merical instability. To overcome this difficulty, Wang et al. [36] proposed to
replace Jm by a bounded function which approximates Jm near the origin.
For waveguides with a metallic core, γ1 is a general complex number, thus
the kernel-splitting procedure also suffers numerical instability for integral
operators related to the waveguide core. The method of Wang et al. [36] is
only applicable when γj is pure imaginary. We extend their method to the
case where γj is a general complex number.

For a positive integerM∗, the Taylor expansion of exp(|γ1d|)Jm(γ1d) gives

e|γ1d|Jm(γ1d) =

(

γ1d

2

)m M∗−m
∑

l=0

cl|γ1d|l +O(|γ1d|M∗+1), d→ 0+, (44)

where

cl =
[l/2]
∑

k=0

e(2 arg γ1+π)ki

k! · (k +m)! · 22m · (l − 2k)!
. (45)

Let J̃m be the function given by

J̃m(γ1d) = e−|γ1d|

(

γ1d

2

)m M∗−m
∑

l=0

cl|γ1d|l. (46)

It is a good approximation to Jm(γ1d) for small d and decays to zero as
d→ +∞. More precisely, we have

Jm(γ1d)− J̃m(γ1d) = O(|γ1d|)M+1, d→ 0+. (47)
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With the replacement of Jm by J̃m, the kernel-splitting technique is stable
for metallic waveguides.

5. Kernel-splitting technique: piecewise smooth case

In this section, we consider the discretization of boundary integral op-
erators when Γ is piecewise smooth. Based on a graded mesh [35] and the
kernel-splitting technique presented in the previous section, the weakly singu-
lar integral operators can be easily discretized. The case for the hypersingular
integral operator Tj is more complicated. A direct combination of the graded
mesh and the splitting technique of Kress [34] fails. We develop a new split-
ting technique for Tj that works well with the graded mesh. The method
should be useful to other problems where the hypersingular integral operator
appears. We also present discretization schemes for the two functions K01
and S ′

01 that appear in the BIEs.
Let Γ be represented by

r(s) = (x(s), y(s)) , 0 ≤ s ≤ L,

where s is the arclength and L is the total length of Γ. We assume the corner
points are given by rj = r(sj) for 0 ≤ j ≤ j∗, where 0 = s0 < s1 < ... < sj∗ =
L, and s0 = 0 and sj∗ = L correspond to the same corner point. A graded
mesh [35, 33] on Γ can be constructed from a piecewise sigmoidal function
s = w(η) for 0 ≤ η ≤ 2π. The function w is given explicitly as

w(η) =
sj+1w

p
1 + sjw

p
2

wp
1 + wp

2

for η(j) ≤ η ≤ η(j+1), j = 0, 1, ..., j∗ − 1,

where the integer p is the mesh order, η(j) corresponds to a corner point, i.e.,
sj = w(η(j)), and

w1 =

(

1

2
− 1

p

)

ξ3 +
ξ

p
+

1

2
, w2 = 1− w1, ξ =

2η − (η(j) + η(j+1))

η(j+1) − η(j)
.

Notice that the derivatives of w up to order p− 1 vanish at the corners. The
graded mesh is obtained by discretizing η uniformly with an even number of
points: {ηl = 2πl/N}N−1

l=0 where N is even. We assume these discretization
points contain all corner points, that is, for each j satisfying 0 ≤ j ≤ j∗ − 1,
there is an integer lj such that η(j) = ηlj .

13



Using the function s = w(η), we reparameterize Γ as

r(η) = (x(w(η)), y(w(η))) , 0 ≤ η ≤ 2π. (48)

For simplcity, we denote r(s) = r(w(η)) by r(η). Using the kernel-splitting
technique presented in the previous section, the integral operators S1, K1

and |r′|K′
1 can be discretized, where r′ is the derivative of r with respect

to η. Notice that |r′(η)| is zero when η corresponds to a corner and it is
positive otherwise. Meanwhile, K′

1 is not defined at the corners, since the
normal vector ν is not defined. Nevertheless, |r′|K′

1 is well-defined even at
corners since |r′|ν vanishes there.

For the hypersingular operator T1, we also need to consider the scaled
operator |r′|T1. However, the kernel-splitting technique of Kress [34] does
not work, since the diagonal term of M2 in (41) blows up as η tends to any
corner point. In the following, we present a new kernel-splitting technique
for |r′|T1. Due to Maue’s identity (34), the discretization of |r′|T1 is reduced
to the discretization of |r′|S ′

1∂τu. Splitting out the singular term, we obtain

|r′(η)|(S ′
1∂τu)(r(η)) =

∫ 2π

0

[

1

2π
cot

η̃ − η

2
−Q(η, η̃)

]

du(r(η̃))

dη̃
dη̃, (49)

where

Q(η, η̃) =
iγ1[r(η)− r(η̃)] · r′(η)

2|r(η)− r(η̃)| H
(1)
1 (γ1|r(η)− r(η̃)|) +

1

2π
cot

η̃ − η

2
.

The above splitting is different from (36), since no integration by parts is
performed. We further split Q into two parts to reveal the logarithmic sin-
gularity. That is

Q(η, η̃) = Q1(η, η̃) log
(

4 sin2 η − η̃

2

)

+Q2(η, η̃), (50)

where

Q1(η, η̃) =
γ1[r(η)− r(η̃)] · r′(η)

2π|r(η)− r(η̃)| J1(γ1|r(η)− r(η̃)|).

If η 6= η̃, Q2(η, η̃) can be evaluated by Eq. (50). When η = η̃, we have

Q1(η, η) = 0, Q2(η, η) =
r′(η) · r′′(η)
2π|r′(η)|2 . (51)
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Notice the diagonal term of Q2 also blows up as η tends to any corner point,
but since the function u′(r(η̃)) vanishes at corners (where u′ denotes du/dη),
the whole term Q2(η, η̃)u

′(r(η̃)) can still be regarded as a 2π-periodic smooth
function of η̃. Therefore, using the trapezoidal rule and the quadrature for-
mulae (33) and (42), we obtain

|r′(η)|(S ′
1∂τu)(r(η)) ≈

N−1
∑

l=0

TN
l (η)u(r(ηl)) (52)

+
[

RN
l (η)Q1(η, ηl) +

2π

N
Q2(η, ηl)

]

du

dη
(r(ηl)).

To express the left hand side of (52) in terms of u(r(ηl)) only, we need a
relation between du/dη = |r′|∂τu and u, i.e., the scaled tangential operator.
This will be discussed it the next section.

Our BIEs contain two extra terms K01 and S ′
01. The evaluation of K01

is straightforward and is given in [35]. For the second term, we split out a
singular term and obtain

(S ′
01)(r(η)) =

∫ 2π

0

[

1

2π
cot

η̃ − η

2
− U(η, η̃)

]

dη̃, (53)

where

U(η, η̃) =
(r(η̃)− r(η)) · r′(η̃)
π|r(η)− r(η̃)|2 +

1

2π
cot

η̃ − η

2
, η 6= η̃, (54)

and

U(η, η) =
r′(η) · r′′(η)
2π|r′(η)|2 . (55)

Since
∫ 2π

0

1

2π
cot

η̃ − η

2
dη̃ = 0,

the trapezoidal rule gives us

(S ′
01)(r(η)) ≈ −2π

N

N−1
∑

l=0

U(η, ηl). (56)

We can see that U(η, η) blows up as η tends to a corner. Nevertheless,
if Eq. (25) is multiplied by |r′|, then the S ′

01 term has a multiplier du/dη
which vanishes at corners.

In the above kernel-splitting procedure for |r′|T1, Bessel functions Jm
should be replaced by J̃m if necessary, to avoid numerical instability.
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6. Discretization of DtN and NtD operators

In section 3, we presented BIEs (21) and (25) for the bounded domain
Ω1 when its boundary Γ is piecewise smooth. In principle, they can be
discretized and be used to calculate the NtD and DtN operators as in (23)
and (27). In practice, due to the use of a graded mesh, we need to use scaled
operators that replace the normal derivative of the field ∂νu by ψ = |r′|∂νu,
where r is given in (48) and the prime denotes derivative with respect to η.
The scaled DtN operator Λ̃1 and the scaled NtD operator Ñ1 satisfy

Λ̃1u = ψ, Ñ1ψ = u on Γ, (57)

for any u satisfying the Helmholtz equation (3) in Ω1.
The tangential derivative operator ∂τ appears in all eigenvalue-problem

formulations (6), (8) and (11), and it is also needed in the process for evalu-
ating the hypersingular operator T1. We also consider the scaled tangential
operator |r′|∂τ which is is simply the derivative with respect to η, that is
d/dη = |r′|∂τ . If Γ is smooth, ∂τ can be approximated by a matrix based
on the discrete Fourier transform (see for example, [32]). If Γ is piecewise
smooth, we may still regard functions on Γ as smooth 2π-periodic functions
of η, and approximate |r′|∂τ by a matrix using the discrete Fourier trans-
form [33]. When η is discretized by N points, this leads to a full N × N
matrix. Here, we present a better approach that approximates d/dη on each
smooth piece of Γ based on the discrete cosine transform. As a result, d/dη
is approximated by a block diagonal matrix.

For a function u on Γ, we denote u(r(η)) by u(η) for simplicity. On the
jth interval of η, i.e., [η(j), η(j+1)] for 0 ≤ j ≤ j∗ − 1, if u(η) is given at
Nj = lj+1 − lj + 1 points {ηl = 2πl/N for lj ≤ l ≤ lj+1}, then u(η) can be
approximated by a finite cosine series

u(η) ≈
Nj−1
∑

k=0

ûk cos
πk(η − η(j))

η(j+1) − η(j)
, (58)

where the coefficients are calculated by the discrete cosine transform, i.e.,

ûk =
1

Nj − 1



u(η(j)) + 2
lj+1−1
∑

l=lj+1

u(ηl) cos
πk(ηl − η(j))

η(j+1) − ζ(j)
+ (−1)ku(η(j+1))



 .

(59)
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We can evaluate du/dη at these Nj points by (58):

du

dη
(ηl) ≈

Nj−1
∑

k=0

−πkûk
η(j+1) − η(j)

sin
πk(ηl − η(j))

η(j+1) − η(j)
, l = lj, ..., lj + 1. (60)

The above gives rise to a differentiation matrix Dj satisfying

duj

dη
= Djuj, (61)

where duj/dη and uj are column vectors of u′(ηl) and u(ηl), respectively, for
lj ≤ l ≤ lj+1.

The BIE (21) related to the NtD operator N1 contains the term S1∂νu.
When the line integral on Γ is transformed to the integral for η on [0, 2π],
we have ds(r) = |r′|dη. Therefore, we can define a scaled operator S̃1, such
that

S1∂νu = S̃1ψ,

where ψ = |r′|∂νu. Eqs. (21) and (23) become

(K1 −K01)u = S̃1ψ, (62)

Ñ1 = (K1 −K01)
−1S̃1. (63)

To find a matrix approximation for the scaled NtD operator Ñ1, we collocate
η at ηl for 0 ≤ l ≤ N − 1, apply the kernel-splitting techniques given in
sections 5 and 6, and solve the linear system.

If we multiply BIE (25) by |r′| and define a scaled operator K̃′
1 such that

|r′|K′
1∂νu = K̃′

1ψ,

then Eq. (25) is transformed to

(K̃′
1 +K01)ψ = (S ′

01)|r′|∂τu+ |r′|T1u. (64)

Therefore, we can calculate the scaled DtN operator Λ̃1 by

Λ̃1 = (K̃′
1 +K01)

−1

[

(S ′
01)

d

dη
+ |r′|T1

]

. (65)

Based on the discretization schemes for |r′|K′
1 (easily revised for K̃′

1), |r′|T1,
K01, S ′

01, |r′|∂τ , and collocating η at ηl for 0 ≤ l ≤ N − 1, we can then find
a matrix approximating Λ̃1.
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In section 3, we claimed that consistent numerical evaluations of K01 and
S ′
01 in the BIEs are useful for improving the accuracy. Here, we present

a numerical example to support this claim. Let Ω1 = {(x, y) | 0 < x <
1µm, 0 < y < 1µm} be a square with refractive index n1 = 2. Assuming
β = 4µm−1 and k0 = 2π/1.5µm−1, the Helmholtz equation (3) has the
following analytic solution

u(r) = H
(1)
0 (γ1|r − r0|) in Ω1, (66)

where r0 = (−0.2,−0.2)µm /∈ Ω1 and γ1 is defined in section 2. On the
boundary Γ (except at the corners), we have

∂νu(r) = −γ1(r − r0) · ν(r)|r − r0|
H

(1)
1 (γ1|r − r0|). (67)

We discretize Γ by N points using a graded mesh with a mesh order p = 7,
and approximate the scaled DtN and NtD operators. The matrix approxi-
mations to these operators are denoted as Λ̃

(1)
1 , Λ̃

(2)
1 , Ñ (1)

1 and Ñ (2)
1 , where

the superscripts (1) and (2) correspond to discretizations without and with
numerical evaluations of K01 and S ′

01. Let u and ψ be vectors of length N
corresponding to the exact values of u and ψ = |r′|∂νu at the N points, we
calculate the following errors

edtnl = ||ψ − Λ̃
(l)
1 u||2, entdl = ||u− Ñ (l)

1 ψ||2, l = 1, 2.

These errors are shown in Fig. 2 for different values of N . It is clear that
the scaled DtN and NtD operators based on numerical evaluation of K01 and
S ′
01 are more accurate. The top panel of Fig. 2 indicates a persistent large

error for the NtD operator obtained without a numerical evaluation of K01.
To see more details for this case, we show the pointwise absolute error for
N = 600 in Fig. 3. It is clear that large errors occur around the four corners.

7. Revised formulation

When Γ is piecewise smooth, the NtD, DtN and tangential derivative
operators should all be replaced by their scaled versions to maintain numer-
ical stability. As a result, the eigenvalue-problem formulations presented in
section 2 must be revised accordingly.
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Figure 2: Comparing the scaled NtD and DtN operators obtained with (l = 2) and without

(l = 1) numerical evaluations of K01 and S ′

01. Top: absolute errors e
ntd
l

for Ñ and l = 1, 2;

Bottem: absolute errors edtn
l

for Λ̃ and l = 1, 2.

Figure 3: Absolute error |u− Ñ (1)
1 ψ| of the scaled NtD operator without numerical eval-

uation of K01 vs. η for N = 600.
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The continuity of the terms in (5) implies the continuity of

νxψx + νyψy and
1

ε

[

(νxψy − νyψx)−
(

νy
dHy

dη
+ νx

dHx

dη

)]

, (68)

where ψx = |r′|∂νHx and ψy = |r′|∂νHy. Based on the above and multiplying
both sides of Eq. (6) by |r′|, we have

[

νxΛ̃2 − νxΛ̃1 νyΛ̃2 − νyΛ̃1

ρνx
d
dη

+ νyΠ̃ ρνy
d
dη

− νxΠ̃

] [

Hx

Hy

]

= 0 on Γ, (69)

where Π̃ = ε−1
1 Λ̃1− ε−1

2 Λ̃2. Similarly, multiplying the first row of Eq. (11) by
|r′| and replacing Nj by Ñj(|r′|·), we have







ε−1
1 F̃1 − ε−1

2 F̃2 ε−1
2 Ẽ2 −ε−1

1 Ẽ1
(Ñ2 − Ñ1)(νx·) −Ñ2(νy·) Ñ1(νy·)
(Ñ2 − Ñ1)(νy·) Ñ2(νx·) −Ñ1(νx·)













f̃
g̃+

g̃−





 = 0, on Γ, (70)

where f̃ = |r′|f , g̃± = |r′|g±, Ẽj and F̃j are defined by

Ẽj = Ãj(νx·) + B̃j(νy·), F̃j = −Ãj(νy·) + B̃j(νx·), (71)

and

Ãj = νx − νy
d

dη
◦ Ñj, B̃j = νy + νx

d

dη
◦ Ñj. (72)

When Γ is discretized by N points, d/dη, Λ̃j and Ñj are all approximated
by N ×N matrices, νx and νy are represented by N ×N diagonal matrices.
Therefore, the matrix operators in Eq. (69) and Eq. (70) are approximated
by (2N)× (2N) and (3N)× (3N) matrices, respectively.

To find the propagation constant β, we follow a procedure proposed by
Cheng et al. [30]. If the matrix approximations to (69) and (70) are denoted
as

F (β)φ = 0, (73)

then we solve β iteratively from the nonlinear equation

f(β) =
1

aTF−1(β)b
= 0, (74)

where a and b are two fixed random vectors. In each iteration, we solve the
linear system F (β)w = b to obtain w = F−1(β)b.
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8. Extensions

So far, we have only considered waveguides with a single homogeneous
core surrounded by a homogeneous medium. In this section, we extend our
work to more general waveguide structures. The first extension is for waveg-
uides like photonic crystal fibers [4, 32]. The cross-section of such a waveguide
consists of several homogeneous non-overlapping bounded domains (with pos-
sibly different refractive indices) surrounded by a homogeneous medium. To
find guided modes for this kind of waveguides, we need to compute the scaled
tangential derivative operator along each interface, find the scaled DtN and
NtD operators for each bounded homogeneous domain and for the unbounded
domain. Based on these operators and the continuity conditions along the
interfaces, we can establish nonlinear eigenvalue problems like Eq. (69) and
Eq. (70) with two or three functions on each interface. The final step for
solving the propagation constant β is the same as before.

The other extension is concerned with waveguides with a layered back-
ground medium. A typical example is the rib waveguide shown in Fig. 4. The

Figure 4: A rib waveguide involving a high index (n = 3.44) layer on a slightly lower index
(n = 3.4) substrate with air cladding (n = 1). The thickness of the layer is 0.5µm. The
waveguide core is created by increasing the thickness of the high index layer to 1µm for a
width of 3µm.

background is a thin high-index layer sandwiched between two lower-index
media. The waveguide core is created by locally increasing the thickness of
the high-index layer. The structure has three unbounded homogeneous do-
mains corresponding to the three different refractive indices. The interfaces
between these three domains extend to infinity. As before, the key step is to
calculate the scaled tangential derivative operator for the interfaces and the
scaled NtD and DtN operators for the homogeneous domains. Since the in-
terfaces (the boundaries of the homogeneous domains) are unbounded, they
must be truncated and the truncation leads to some errors. Fortunately, the
wave field of a guided mode decays exponentially away from the waveguide
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core, thus the boundary integral equations on truncated boundaries could
still give accurate results.

To illustrate the basic ideas, we take the upper unbounded domain as an
example. Let a and b be two points on the top interface sufficiently far away
from the waveguide core such that u and ∂νu are extremely close to zero on
Bab, where Bab is the top half circle with a diameter ab as shown in Fig. 4.
Let Ω1 be the domain enclosed by Bab and the curve Γab, and Γ = Bab∪Γab

be the boundary of Ω1. As in section 3, we can establish two basic BIEs on
Γ corresponding to the DtN or NtD operators. If we further approximate u
and ∂νu on Bab by zero, these two BIEs become

2−
∫

Γab

∂G(1)(r, r̃)

∂ν(r̃)
u(r̃)ds(r̃)− 2−

∫

Γ

∂G0(r, r̃)

∂ν(r̃)
ds(r̃)u(r)

≈ 2
∫

Γab

G(1)(r, r̃)∂νu(r̃)ds(r̃), (75)

2−
∫

Γab

∂G(1)(r, r̃)

∂ν(r)
∂νu(r̃)ds(r̃) + 2−

∫

Γ

∂G0(r, r̃)

∂ν(r̃)
ds(r̃)∂νu(r)

≈ 2−
∫

Γ

∂G0(r, r̃)

∂τ (r̃)
ds(r̃)∂τu(r) + 2×

∫

Γab

∂2G(1)(r, r̃)

∂ν(r)∂ν(r̃)
u(r̃)ds(r̃) (76)

for r ∈ Γ, where G(1) is the Green’s function for Ω1, and r in (76) must to
be a smooth point of Γab. It is easy to show that

2−
∫

Bab

∂G0(r, r̃)

∂ν(r̃)
ds(r̃) = −

6 arb

π
,

2−
∫

Bab

∂G0(r, r̃)

∂τ (r̃)
ds(r̃) = − 1

π
log

|r − a|
|r − b|

if r is neither a nor b. Otherwise, we have

2−
∫

Γ

∂G0(r, r̃)

∂ν(r̃)
ds(r̃) = −1, 2−

∫

Γ

∂G0(r, r̃)

∂τ (r̃)
ds(r̃) = 0.

Therefore, Eqs. (75) and (76) become

2−
∫

Γab

∂G(1)(r, r̃)

∂ν(r̃)
u(r̃)ds(r̃) +

(

6 arb

π
− 2−

∫

Γab

∂G0(r, r̃)

∂ν(r̃)
ds(r̃

)

u(r)

≈ 2
∫

Γab

G(1)(r, r̃)∂νu(r̃)ds(r̃), (77)
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2−
∫

Γab

∂G(1)(r, r̃)

∂ν(r)
∂νu(r̃)ds(r̃)−

(

6 arb

π
− 2−

∫

Γab

∂G0(r, r̃)

∂ν(r̃)
ds(r̃

)

∂νu(r)

≈
(

2−
∫

Γab

∂G0(r, r̃)

∂τ (r̃)
ds(r̃)− 1

π
log

|r − a|
|r − b|

)

∂τu(r)

+2×
∫

Γab

∂2G(1)(r, r̃)

∂ν(r)∂ν(r̃)
u(r̃)ds(r̃). (78)

By the definitions of integral operators (14)-(17), (22) and (26) (with Γ re-
placed by Γab), we can rewrite the above two BIEs as

(

6 arb

π
+K1 −K01

)

u ≈ S1∂νu, (79)

(

K01−
6 arb

π
+K′

1

)

∂νu ≈
(

S ′
01−

1

π
log

|r − a|
|r − b|

)

∂τu+ T1u. (80)

Therefore, for the truncated domain Ω1, the NtD and NtD operators are
given by

N1 ≈
(

6 arb

π
+K1 −K01

)−1

S1, (81)

Λ1 ≈
(

K01−
6 arb

π
+K′

1

)−1 [(

S ′
01−

1

π
ln

|r − a|
|r − b|

)

∂τ + T1

]

. (82)

The other two unbounded domains in Fig. 4 can be similarly handled. For
actual numerical implementations, we need to use the revised operators.

Clearly, a large truncated boundary will give more accurate results, but
it also requires more discretization points. Since the profile of a guided mode
is smooth away from the waveguide core, it is desirable to use a larger mesh
size near the end points of the truncated boundary. This can be achieved
by a change of variable and using the new variable for discretization. For
example, consider the line segment fb shown in Fig. 4 and assume that it is
parameterized by its arclength s for 0 ≤ s ≤ L. We introduce a new variable
s̃ for 0 ≤ s̃ ≤ L̃ (where L̃ < L), such that s = s̃ for 0 ≤ s̃ ≤ L0 < L and

s = s̃+ (L− L̃)

(

s̃− L0

L̃− L0

)p+1

, L0 < s̃ ≤ L̃,

where p is the same integer used in the graded mesh for the corners. With
this technique, we can calculate waveguide modes that decay slowly away
from the core.
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9. Numerical examples

In this section, we present several numerical examples. The first exam-
ple is a right-angle trapezoidal dielectric waveguide as shown in Fig. 1(a).
The height and the bottom base of the trapezoidal core are 12/23µm and
1µm, respectively, and the base angle is 48◦. The refractive indices of the
waveguide core and the surrounding medium are n1 =

√
8 and n2 = 1,

respectively. For this waveguide, we calculate its propagation constant β
for free space wavelength λ = 1.5µm by the original BIE-NtD method,
the new BIE-NtD method and the BIE-DtN method. A reference solution
β∗/k0 = 2.309472902955 is obtained by extrapolating numerical solutions
calculated by the original BIE-NtD method with graded mesh order p = 7,
and it is used to calculate the absolute errors for numerical solutions corre-
sponding to different values of N (the number of discretization points on the
interface Γ) and p = 7. The results for 160 ≤ N ≤ 800 are shown in Fig. 5,
where the vertical axis is the absolute error, the horizontal axis is NF or

Figure 5: The trapezoidal dielectric waveguide: (a) the absolute error |β − β∗|/k0 vs. NF

for p = 7, where β is the numerical solution; (b) the same absolute error vs. 1/NF .

1/NF in Fig. 5(a) or 5(b) respectively, NF is the size of the matrix F in the
final nonlinear eigenvalue problem (73). For the original BIE-NtD, the new
BIE-NtD, and the BIE-DtN methods, NF = 4N , 3N and 2N , respectively.
As expected, the three methods give about the same level of accuracy for the
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same N , and the order of accuracy of these methods is about 5 as indicated
by the slopes of the curves in Fig. 5(b), where both vertical and horizontal
axes are shown in a logarithmic scale. Clearly, the BIE-DtN method has the
lowest computation cost, but it is slightly less stable for large N . The new
BIE-NtD method is useful when extremely high accuracy is needed.

The second example is the rectangular metallic waveguide shown in Fig. 1(b).
It has a 0.15µm×0.3µmmetallic core with a refractive index n1 = 0.22+6.71i
and the surrounding medium is air (n2 = 1). We calculate the propaga-
tion constant β for free space wavelength λ = 1µm, using p = 7 and for
160 ≤ N ≤ 800. A reference solution β∗/k0 = 1.078814141 + 0.0039507129i
is obtained by extrapolating numerical solutions computed by the new BIE-
NtD method, and it is used to calculate the absolute errors for the less
accurate numerical solutions. The absolute errors are shown in Fig. 6. As

Figure 6: The rectangular metallic waveguide: (a) the absolute error |β − β∗|/k0 vs. NF

for p = 7, where β is the numerical solution; (b) the same absolute error vs 1/NF .

before, these two methods exhibit about the same accuracy for the same N ,
the BIE-DtN method is more effcient, but the BIE-NtD method has bet-
ter stability and is useful when high accuracy is needed. The orders of the
methods depend on the field singularity at the corners. For this example,
the order is about 4 as indicated by the slopes in Fig. 6(b).

The third example, as shown in Fig. 4, is a classical rib waveguide pre-
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viously analyzed by a number of authors [10, 24]. The problem is difficult,
since the eigenmode decays slowly in the horizontal direction. We calculate
the propagation constant β for λ = 1.15µm by the new BIE-NtD and BIE-
DtN methods with graded mesh order p = 6. Numerical results using 160
discretization points on each smooth segment of the interfaces are shown in
Table 1, and they are given for three different sizes of the trunctated domain.

Table 1: The rib waveguide: numerical solutions β/k0 for different truncated domains.

Truncation β/k0(new BIE-NtD) β/k0(BIE-DtN)
|x| < 7.5µm 3.41313213964 3.41313214393
|x| < 9.5µm 3.41313213964 3.41313214285
|x| < 11.5µm 3.41313213964 3.41313214021

For simplicity, we use the same number of points on each segment. Since
there are six segments, the final matrix size is NF = 2880 and NF = 1920 for
the BIE-NtD and BIE-DtN methods, respectively. Natually, the accuracy
depends on the size of the truncated domain. It appears that both methods
give the same solution β/k0 = 3.413132140 after rounding. This is in good
agreement with previous results of Hadley [10] (3.413132 ± 3 × 10−6) and
Chiang et al. [24] (3.4131329350). These earlier results are calculated in
truncated domains corresponding to |x| < 3.8µm and |x| < 4.5µm.

10. Conclusion

In the previous sections, we developed two new full-vectorial BIE meth-
ods for computing guided modes of optical waveguides. These methods are
suitable for waveguides with a piecewise constant refractive index profile,
where the interfaces are piecewise smooth and could have corners. High or-
der full-vectorial mode solvers for waveguides with corners are difficult to
develop due to the singularity of electromagnetic field at the corners. In each
domain of constant refractive index, we derive BIEs with corner correction
terms to calculate the NtD or DtN operators, and then formulate nonlinear
eigenvalue problems for the propagation constant β and some unknown func-
tions defined on the interfaces. The new BIE-NtD and BIE-DtN methods
solve three and two unknown functions, respectively. In contrast, the orig-
inal BIE-NtD method [33] solves four functions, and the original BIE-DtN
method [32] is only suitable for waveguides with smooth interfaces. The BIEs
are discretized based on a Nyström method with kernel-splitting and graded
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mesh techniques. In particular, a new kernel-splitting procedure is developed
for the hypersingular boundary integral operator. Other improvements de-
veloped in this paper are concerned with the stability of the kernel-splitting
technique for domains with complex refractive indices, the efficient evalu-
ation of the tangential derivative operator, and the efficient truncation of
unbounded interfaces. The new BIE-NtD and BIE-DtN method exhibit high
order of accuracy, but the order depends on the graded mesh and the field
singularity at the corners.

Appendix

In this appendix, we give a derivation for Eqs. (21) and (25). For
a bounded Lipschitz domain Ω1 with a piecewise smooth boundary Γ, we
consider the following Neumann boundary value problem:

{

∂2xu+ ∂2yu+ γ21u = 0 in Ω1,
∂u
∂ν

= gN on Γ,
(83)

where the Neumann data gN ∈ L2(Γ). If γ21 is not an eigenvalue of the
negative Laplace operator on Ω1 with zero Neumann condition on Γ, then
problem (83) admits a unique solution u ∈ H3/2(Ω1) ⊂ C0,1/2(Ω̄1) and u|Γ ∈
H1(Γ) ⊂ C0,1/2(Γ), indicating that

|u(r)− u(r̃)| ≤ C0|r − r̃|
1

2 ,

for any r, r̃ ∈ Ω̄1 where C0 does not depend on these two points (see [38]
and the references therein). Under the regularity conditions on u and the
domain Ω1, u satisfies the following Green’s representation theorem

u(r) =
∫

Γ

[

G(1)(r, r̃)∂νu(r̃)−
∂G(1)(r, r̃)

∂ν(r̃)
u(r̃)

]

ds(r̃), r ∈ Ω1. (84)

Similarly, any harmonic function u0(r) satisfies

u0(r) =
∫

Γ

[

G0(r, r̃)∂νu0(r̃)−
∂G0(r, r̃)

∂ν(r̃)
u0(r̃)

]

ds(r̃), r ∈ Ω1. (85)

Let u0 = 1, then Eq. (84) −u(r)× Eq. (85) gives

∫

Γ

[

∂G(1)(r, r̃)

∂ν(r̃)
u(r̃)− ∂G0(r, r̃)

∂ν(r̃)
u(r)

]

ds(r̃) =
∫

Γ
G(1)(r, r̃)∂νu(r̃)ds(r̃).

(86)
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To figure out what happens when r approaches the boundary Γ, we need the
following lemma.

Lemma 1. For a given function f(r, r̃) ∈ C(Ω̄1 × Γ), if φ ∈ L2(Γ), then
∫

Γ
log |r − r̃|f(r, r̃)φ(r̃)ds(r) ∈ C(Ω̄1), (87)

and if φ ∈ L∞(Γ), then for any α0 > 0
∫

Γ
|r − r̃|α0−1f(r, r̃)φ(r̃)ds(r) ∈ C(Ω̄1). (88)

Let r∗ be given smooth point on Γ, Γd
r∗

= B(r∗, d) ∩ Γ be a smooth part of Γ
for a proper d > 0, and Ωd

r∗
= B(r∗, d) ∩ Ω1. If φ ∈ L2(Γd

r∗
), then

∫

Γd
r∗

log |r − r̃|f(r, r̃)φ(r̃)ds(r) ∈ C(Ωd
r∗
), (89)

and if φ ∈ L∞(Γd
r∗
), then for any α0 > 0
∫

Γd
r∗

|r − r̃|α0−1f(r, r̃)φ(r̃)ds(r) ∈ C(Ωd
r∗
). (90)

For the proof of Lemma 1, see [40] and the references therein.
From the properties of Hankel functions, we can see that the nonregular

part of G(1) −G0 is

1

2π
log(|r − r̃|)(1− J0(γ|r − r̃|)) = O(|r − r̃|2 log |r − r̃|). (91)

The integrand of the left hand side of Eq. (86) can be written as

∂G(1)(r, r̃)

∂ν(r̃)
u(r̃)− ∂G0(r, r̃)

∂ν(r̃)
u(r) (92)

=
∂(G(1) −G0)(r, r̃)

∂ν(r̃)
u(r̃) +

∂G0(r, r̃)

∂ν(r̃)
(u(r̃)− u(r)),

=
2
∑

i=1

fi(r, r̃)gi(r̃) +
4
∑

i=3

|r − r̃|−1/2fi(r, r̃)gi(r̃),

where fi ∈ C(Ω̄1 × Γ) and gi ∈ L∞(Γ) for 1 ≤ i ≤ 4. For a given point
r∗ ∈ Γ, as r → r∗, by Lemma 1, Eq. (86) becomes

∫

Γ

[

∂G(1)(r∗, r̃)

∂ν(r̃)
u(r̃)− ∂G0(r∗, r̃)

∂ν(r̃)
u(r)

]

ds(r̃) =
∫

Γ
G(1)(r∗, r̃)∂νu(r̃)ds(r̃).

(93)
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In light of this, Eq. (21) follows immediately from the fact that the improper
integral (K1u)(r∗) exists everywhere on Γ since u is Hölder continuous on Γ
(see [39]).

Next, we consider the Dirichlet boundary value problem

{

∂2xu+ ∂2yu+ γ21u = 0, in Ω1,
u = gD, on Γ,

(94)

where the Dirichlet data gD ∈ H1(Γ). Again, if γ21 is not an eigenvalue
of the negative Laplace operator with zero Dirichlet boundary condition,
then problem (94) admits a unique solution u ∈ H3/2(Ω1) ⊂ C0,1/2(Ω̄1) and
∂νu ∈ L2(Γ) (see [38]). To establish Eq. (25), we require extra regularity
conditions for gD on the smooth part of Γ.

Let r∗ be a smooth point of Γ, using the notations in Lemma 1, we
assume gD ∈ Hα1+3/2(Γd

r∗
) for any given positive α1. We conclude that u ∈

Hα1+2(Ωd/2
r∗

) ⊂ Cα1+1(Ω
d/2
r∗ ) (see [38]). Let r = r∗ − δν(r∗) for 0 < δ < d/2

so that r ∈ Ω
d/2
r∗ , and consider the directional derivative of Eqs. (84) and

(85) in the direction ν(r∗). We have

∂u(r)

∂ν(r∗)
=

∫

Γ

[

∂G(1)(r, r̃)

∂ν(r∗)
∂νu(r̃)−

∂2G(1)(r, r̃)

∂ν(r∗)∂ν(r̃)
u(r̃)

]

ds(r̃), (95)

∂u0(r)

∂ν(r∗)
=

∫

Γ

[

∂G0(r, r̃)

∂ν(r∗)
∂νu0(r̃)−

∂2G0(r, r̃)

∂ν(r∗)∂ν(r̃)
u0(r̃)

]

ds(r̃). (96)

Plugging u0 = x, y into Eq. (96), we obtain the following vectorial equation

ν(r∗) =
∫

Γ

[

∂G0(r, r̃)

∂ν(r∗)
ν(r̃)− ∂2G0(r, r̃)

∂ν(r∗)∂ν(r̃)
r̃

]

ds(r̃). (97)

Considering Eq. (95)−∇u(r)· Eq. (97), we have

(

∫

Γ/Γ
d/2
r∗

+
∫

Γ
d/2
r∗

)[

∂G(1)(r, r̃)

∂ν(r∗)
∂νu(r̃)−

∂G0(r, r̃)

∂ν(r∗)
∇u(r) · ν(r̃)

]

ds(r̃)

=

(

∫

Γ/Γ
d/2
r∗

+
∫

Γ
d/2
r∗

)[

∂2G(1)(r, r̃)

∂ν(r∗)∂ν(r̃)
u(r̃)− ∂2G0(r, r̃)

∂ν(r∗)∂ν(r̃)
∇u(r) · r̃

]

ds(r̃).(98)

Apparently, the integration of each side over Γ/Γd/2
r∗

is continuous at r = r∗
as δ → 0+. We now focus on the two integrations over the smooth part Γd/2

r∗
.
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The integrand of the left hand side can be written as

∂G(1)(r, r̃)

∂ν(r∗)
∂νu(r̃)−

∂G0(r, r̃)

∂ν(r∗)
∇u(r) · ν(r̃)

=
∂(G(1) −G0)(r, r̃)

∂ν(r∗)
∂νu(r̃) +

∂G0(r, r̃)

∂ν(r∗)
(∇u(r̃)−∇u(r)) · ν(r̃),

=
6
∑

i=5

fi(r, r̃)gi(r̃) +
10
∑

i=7

fi(r, r̃)gi(r̃)

where fi ∈ C(Ω
d/2
r∗ × Γd/2

r∗
) for 5 ≤ i ≤ 10, gi ∈ L2(Γd/2

r∗
) for 5 ≤ i ≤ 6 and

gi ∈ L∞(Γd/2
r∗

) for 7 ≤ i ≤ 10, and therefore it is continuous at r = r∗ as
δ → 0+ due to Lemma 1.

Taking u0 = 1, Eq. (96) becomes

∫

Γ

∂2G0(r, r̃)

∂ν(r∗)∂ν(r̃)
ds(r̃) = 0. (99)

Therefore, the integral in the right hand side of Eq. (98) equals to

∫

Γ

{

∂2(G(1) −G0)(r, r̃)

∂ν(r∗)∂ν(r̃)
u(r̃) +

∂2G0(r, r̃)

∂ν(r∗)∂ν(r̃)
[u(r̃)− u(r)−∇u(r) · (r̃ − r)]

}

ds(r̃).

Its integrand can be written as

14
∑

i=11

log |r − r̃|fi(r, r̃)gi(r̃) +
19
∑

i=15

|r − r̃|α1/2−1fi(r, r̃)gi(r̃), (100)

where fi ∈ C(Ω
d/2
r∗ × Γd/2

r∗
) and gi ∈ L∞(Γd/2

r∗
) for 11 ≤ i ≤ 19. Integrated

over Γd/2
r∗

, the integration is continuous at r = r∗ as δ → 0+ due to Lemma
1.

Therefore, taking the limit δ → 0+ in Eq. (98), we have

∫

Γ

[

∂G(1)(r∗, r̃)

∂ν(r∗)
∂νu(r̃)−

∂G0(r∗, r̃)

∂ν(r∗)
∇u(r∗) · ν(r̃)

]

ds(r̃)

=
∫

Γ

{

∂2G(1)(r∗, r̃)

∂ν(r∗)∂ν(r̃)
u(r̃) +

∂2G0(r∗, r̃)

∂ν(r∗)∂ν(r̃)
[−u(r∗)−∇u(r∗) · (r̃ − r∗)]

}

ds(r̃).(101)
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To simplify this equation, we make use of the following two identities

×
∫

Γ

∂2G0(r∗, r̃)

∂ν(r∗)∂ν(r̃)
ds(r̃) = 0,

×
∫

Γ

∂2G0(r∗, r̃)

∂ν(r∗)∂ν(r̃)
r̃ds(r̃) = −

∫

Γ

∂G0(r∗, r̃)

∂τ (r∗)
τ (r̃)ds(r̃).

These two identities can be proved based on the fact that

∂2G0(r∗, r̃)

∂ν(r∗)∂ν(r̃)
= − ∂2G0(r∗, r̃)

∂τ (r∗)∂τ (r̃)
, if r∗ 6= r̃.

Observing ∇r∗G0(r∗, r̃) = −∇r̃G0(r∗, r̃), we have

−
∫

Γ

∂G0(r∗, r̃)

∂ν(r∗)
ν(r̃)ds(r̃)−×

∫

Γ

∂2G0(r∗, r̃)

∂ν(r∗)∂ν(r̃)
r̃ds(r̃)

= −
∫

Γ
[(∇r∗G0(r∗, r̃) · ν(r∗))ν(r̃)− (∇r∗G0(r∗, r̃) · τ (r∗))τ (r̃)] ds(r̃)

= −
∫

Γ
[−ν(r̃)ν(r∗)T + τ (r̃)τ (r∗)

T ]∇r̃G0(r∗, r̃)ds(r̃)

= −
∫

Γ
[−ν(r̃)ν(r∗)T + τ (r̃)τ (r∗)

T ]T∇r̃G0(r∗, r̃)ds(r̃)

= −−
∫

Γ

∂G0(r∗, r̃)

∂ν(r̃)
ds(r̃)ν(r∗) +−

∫

Γ

∂G0(r∗, r̃)

∂τ (r̃)
ds(r̃)τ (r∗).

Thus, Eq. (101) becomes

−
∫

Γ

∂G0(r∗, r̃)

∂ν(r̃)
ds(r̃)∂νu(r∗) +−

∫

Γ

∂G(r∗, r̃)

∂ν(r∗)
∂νu(r̃)ds(r̃)

= −
∫

Γ

∂G0(r∗, r̃)

∂τ (r̃)
ds(r̃)∂τu(r∗) +×

∫

Γ

∂2G(r∗, r̃)

∂ν(r∗)∂ν(r̃)
u(r̃)ds(r̃).

Notice that under the regularity conditions on u, all improper integrals above
exist [39]. Therefore, at any smooth point of Γ, if we impose the same
regularity condition on gD as argued before, then Eq. (25) is valid at all
smooth points on Γ.
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