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A simple and efficient method for computing bandgap structures of two

dimensional photonic crystals is presented in this paper. Using the Dirichlet-

to-Neumann (DtN) map of the unit cell, the bandgaps are calculated as an

eigenvalue problem for each given frequency, where the eigenvalue is related

to the Bloch wave vector. A linear matrix eigenvalue problem is obtained even

when the medium is dispersive. For photonic crystals composed of a square

lattice of parallel cylinders, the DtN map is obtained by a cylindrical wave

expansion. This leads to eigenvalue problems for relatively small matrices.

Unlike other methods based on cylindrical wave expansions, sophisticated

lattice sums techniques are not needed. c© 2006 Optical Society of America

OCIS codes: 000.4430,260.2110

1. Introduction

Photonic crystals1,2 have been extensively studied due to their unusual ability to manipu-

late the flow of light. Many useful applications of photonic crystals have been proposed and

realized. Efficient numerical methods are needed to understand the basic properties of pho-

tonic crystals and to design and optimize related devices. Starting from the late 80’s, many

numerical methods have been developed to analyze photonic crystals and related structures.

Both frequency-domain and time-domain methods are used to compute bandgap structures,
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defect modes, waveguide modes, and to simulate lightwaves in more complicated photonic

crystal structures, such as bends, branches, etc.

The most important property of a photonic crystal is its bandgap structure. Current meth-

ods for computing bandgap structures include the plane-wave expansion method,3–7 cylin-

drical/spherical wave expansion (CWE) method,8–10 the transfer matrix method,11,12 the

scattering matrix method,13 the finite difference method,14–16 the finite element method,17,18

the finite difference time domain (FDTD) method,19–21 the multiple multipole method,22

the cell method,23 the moving least-squares method,24 the wavelet method,25 etc. In the fre-

quency domain, the standard formulation1 gives rise to an eigenvalue problem, where ω2 is

the eigenvalue. For a non-dispersive medium, this is a linear eigenvalue problem. When it

is discretized, we obtain a standard matrix eigenvalue problem. The discretization can be

achieved by discretizing a unit cell of the photonic crystal, for example, by the finite element

method17,18 and the finite difference method.14–16 The “discretization” can also be achieved

by expanding the eigenfunction in some series,26 such as the Fourier series in the plane-wave

expansion method.3–7 The linear eigenvalue problems (for non-dispersive media) can also

be turned to nonlinear eigenvalue problems as in the CWE method.8–10 The nonlinear ap-

proach is useful, since it gives rise to much smaller matrices. However, the eigenvalue ω2 must

be searched one-by-one from the condition that a matrix becomes singular. For dispersive

media, the original eigenvalue problem itself becomes nonlinear. In the CWE method, the

lattice Green’s function is involved and its evaluation requires lattice sums techniques. In

the transfer matrix method11,12 and the scattering matrix method,13 the bandgap problem

is formulated as an eigenvalue problem, where the eigenvalue is a function of the Bloch wave

vector. These methods give rise to linear eigenvalue problems even when the medium is

dispersive. Due to the difficulty with evanescent modes in the transfer matrix method, the

scattering matrix method is preferred. How the scattering (or transfer) matrix is obtained

is a separate problem. For example, many existing numerical methods for diffractive optics

can be used to compute the scattering matrix. In particular, the cylindrical wave expansion

method can be used, but a sophisticated lattice sums technique is again required.

In this paper, we develop a Dirichlet-to-Neumann (DtN) map method for computing

bandgap structures of two-dimensional photonic crystals. The DtN map is an operator that

maps the wave field on the boundary of a unit cell to its normal derivative there. Like the

transfer matrix and the scattering matrix methods, we obtain a linear eigenvalue problem

even for a dispersive medium, where the eigenvalue is related to the Bloch wave vector. The

computation of DtN map is also a separate problem. Our approach is to use a cylindrical

wave expansion. This gives rise to accurate approximations of the DtN map with matrices of

very small size. Compared with the scattering matrix method,13 our method is much simpler,

since lattice sums techniques are not needed.
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The outline of the remainder of this paper is as follows. In section 2, we develop a matrix

approximation to the DtN map using cylindrical wave expansions. In section 3, we formulate

the eigenvalue problem using the DtN map and describe an efficient method for computing

the bandgaps directly. Numerical examples are given in section 4. We have computed dis-

persion relations and gap maps for two-dimensional photonic crystals composed of a square

lattice of circular cylinders for both dispersive and non-dispersive media.

2. Dirichlet-to-Neumann map of a unit cell

In a two-dimensional medium which is invariant in the z-direction, the governing equations

are
∂2u

∂x2
+

∂2u

∂y2
+ k2

0n
2u = 0 (1)

for the E polarization and

∂

∂x

(
1

n2

∂u

∂x

)
+

∂

∂y

(
1

n2

∂u

∂y

)
+ k2

0u = 0 (2)

for the H polarization, where k0 is the free space wavenumber, n = n(x, y) is the refractive

index, u is the z-component (the only non-zero component) of the electric or magnetic fields

for the E or H polarizations, respectively. For a square lattice with a lattice constant L, the

refractive index n satisfies

n(x, y) = n(x + m1L, y + m2L) (3)

for any integers m1 and m2. The Dirichlet-to-Neumann (DtN) map is the operator Λ that

maps u on the boundary of the square unit cell to the normal derivative of u on the boundary.

A matrix approximation to Λ is needed in our method for computing bandgap structures of

the photonic crystal.

For photonic crystals composed of a square lattice of circular cylinders, the DtN map Λ

can be efficiently calculated by a cylindrical wave expansion. For a square unit cell given by

0 < x < L and 0 < y < L and assuming that a cylinder is located at the center of the unit

cell, we have n = n1 for r < a and n = n2 for r > a, where r and θ are the polar coordinates

such that r = 0 corresponds to x = y = L/2, a is the radius of the cylinder, n1 and n2 are

the refractive indices of the cylinder and the surrounding medium, respectively. Under these

assumptions, the Helmholtz equations (1) and (2) have the following general solutions

u(x, y) =
∞∑

m=−∞

CmΦm(r, θ), Φm(r, θ) = φm(r)eimθ, (4)

where φm(r) is related to the Bessel functions Jm and Ym as

φm(r) =

{
AmJm(k0n1r), r < a;

BmJm(k0n2r) + Ym(k0n2r), r > a.
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In the above, the coefficient of Ym is arbitrarily scaled to be 1. The coefficients Am and Bm

can be solved from the interface conditions at r = a. We have

AmJm(k0n1a)−BmJm(k0n2a) = Ym(k0n2a),
n1

n2

AmJ ′m(k0n1a)−BmJ ′m(k0n2a) = Y ′
m(k0n2a)

for the E polarization and

AmJm(k0n1a)−BmJm(k0n2a) = Ym(k0n2a),
n2

n1

AmJ ′m(k0n1a)−BmJ ′m(k0n2a) = Y ′
m(k0n2a)

for the H polarization. Using the general solution (4), it is possible to find the DtN map Λ

of the unit cell satisfying

Λ


u0

v0

u1

v1

 =


∂yu0

∂xv0

∂yu1

∂xv1

 , (5)

where u0, u1,v0 and v1 are restrictions of u on the four edges of the square:

u0 = u(x, 0), u1 = u(x, L), v0 = u(0, y), v1 = u(L, y)

and

∂yu0 = ∂yu|y=0, ∂yu1 = ∂yu|y=L, ∂xv0 = ∂xu|x=0, ∂xv1 = ∂xu|x=L.

In the discrete case, we select N points on each edge of the square corresponding to

xj = yj = (j − 0.5)
L

N
, j = 1, 2, · · · , N

and replace u0, u1, v0 and v1 by column vectors of length N , then the DtN map Λ is

approximated by a (4N)× (4N) matrix. More precisely, we first truncate (4) as

u(x, y) =
2N−1∑

m=−2N

CmΦm(r, θ), (6)

then evaluate u at the 4N points on the boundary. This gives rise to a matrix Λ1 that maps

the coefficients {Cm} to the 4N values of u on the boundary. Similarly, if we evaluate the

normal derivative of u (which are just partial derivatives with respect to x or y here) at

these 4N points by (6), we obtain a matrix Λ2 that maps {Cm} to the normal derivatives.

Therefore, we obtain the following matrix approximation of the DtN map:

Λ = Λ2Λ
−1
1 . (7)
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The number of operations required to compute Λ is O(N3).

Notice that the infinite cylindrical wave expansion (4) converges only when r < L−a (the

distance from the center of a cylinder to the edges of the nearby cylinders) and this region

does not always include the entire square unit cell, but the finite sum (6) is always an exact

solution on the entire unit cell.

3. The eigenvalue problem

For a two-dimensional photonic crystal, we consider the Bloch mode solutions of the

Helmholtz equation (1) or (2) given by

u(x, y) = ei(αx+βy)Ψ(x, y), (8)

where (α, β) is the Bloch wave vector and Ψ follows the same periodic condition (3) as the

refractive index function. For a square lattice, the periodicity of the structure in the x and

y directions leads to

u(x, L) = ρβu(x, 0),
∂u(x, L)

∂y
= ρβ

∂u(x, 0)

∂y
, (9)

u(L, y) = ραu(0, y),
∂u(L, y)

∂x
= ρα

∂u(0, y)

∂x
, (10)

where L is the lattice constant, ρβ = eiβL and ρα = eiαL. In the standard formulation,1 the

bandgap problem is an eigenvalue problem for given α and β, where ω2 (ω = k0c is the

angular frequency, c is the speed of light in vacuum) is the eigenvalue. For a non-dispersive

medium, this is a linear eigenvalue problem, but it becomes a nonlinear eigenvalue problem

when the medium is dispersive (i.e. n varies with ω). In the following, we formulate the

bandgap problem as an eigenvalue problem for a given ω, where the eigenvalue is related to

α and β.

For the square unit cell 0 < x < L and 0 < y < L, we have the DtN map Λ satisfying (5).

The operator Λ can be naturally partitioned as 4× 4 blocks. This leads to
Λ11 Λ12 Λ13 Λ14

Λ21 Λ22 Λ23 Λ24

Λ31 Λ32 Λ33 Λ34

Λ41 Λ42 Λ43 Λ44




u0

v0

u1

v1

 =


∂yu0

∂xv0

∂yu1

∂xv1

 . (11)

If we write down the four equations in (11) and apply the periodic conditions (9) and (10),

we can eliminate u1, v1, ∂yu0, ∂xv0, ∂yu1 and ∂xv1, and obtain[
Λ31 Λ32

Λ41 Λ42

] [
u0

v0

]
=

[
M11 M12

M13 M14

] [
u0

v0

]
(12)
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where M11, M12, M21, M22 are operators given by

M11 = ρ2
βΛ13 + ρβ(Λ11 − Λ33),

M12 = ρβραΛ14 − ραΛ34 + ρβΛ12,

M21 = ρβραΛ23 + ραΛ21 − ρβΛ43,

M22 = ρ2
αΛ24 + ρα(Λ22 − Λ44).

In general, we seek dispersion relationships for (α, β) in the irreducible Brillouin zone.

For a square lattice of circular cylinders, this is the triangular region with corners at the

Γ (α = β = 0), X (α = 0, β = π/L) and M (α = β = π/L) points. In most bandgap

calculations, the dispersion relationships are only calculated for (α, β) on the boundary of

the irreducible Brillouin zone. If (α, β) is varied along the edges of the triangle ΓXM , we

have ρβ = 1 from Γ to X, ρα = −1 from X to M and ρα = ρβ from M to Γ. In all these

three cases, equation (12) can be written as

(λ2A+ λB + C)U = 0, (13)

where U = (u0, v0)
T , the operators A, B, C and the scalar λ are defined on each edge of the

irreducible Brillouin zone as follows:

1. From Γ to X, λ = eiαL for 0 < α ≤ π/L and

A =

[
0 0

0 −Λ24

]
, B =

[
0 Λ34 − Λ14

−Λ21 − Λ23 Λ44 − Λ22

]
,

C =

[
Λ31 − Λ13 + Λ33 − Λ11 Λ32 − Λ12

Λ41 + Λ43 Λ42

]
; (14)

2. From X to M , λ = eiβL for 0 < β ≤ π/L and

A =

[
−Λ13 0

0 0

]
, B =

[
Λ33 − Λ11 Λ14 − Λ12

Λ43 + Λ23 0

]
,

C =

[
Λ31 Λ32 − Λ34

Λ41 + Λ21 Λ42 − Λ24 + Λ22 − Λ44

]
; (15)

3. From M to Γ, λ = eiαL = eiβL, (0 ≤ α = β ≤ π/L) and

A =

[
−Λ13 −Λ14

−Λ23 −Λ24

]
, B =

[
Λ33 − Λ11 Λ34 − Λ12

Λ43 − Λ21 Λ44 − Λ22

]
,

C =

[
Λ31 Λ32

Λ41 Λ42

]
. (16)
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This is a quadratic eigenvalue problem, since a nonzero solution of U only exists for special

values of λ (the eigenvalues). In bandgap calculations, we are concerned with real α and β

(for propagating Bloch waves), therefore, we only need to calculate eigenvalues that stay on

the unit circle. The classical approach to solve quadratic eigenvalue problems of the form (13)

is to perform a linearization. By introducing the vector V = λU, the quadratic eigenvalue

problem (13) is reduced to

λ

[
A 0

0 I

] [
V

U

]
+

[
B C
−I 0

] [
V

U

]
= 0, (17)

where I is the identity operator. This linear eigenvalue problem can be solved with standard

linear algebra programs.27

In the discrete case, all operators are represented by matrices. If x ∈ (0, L) and y ∈ (0, L)

are discretized by N points, the operators Λij are approximated by N×N matrices. Therefore,

equation (17) is a generalized eigenvalue problem of (4N)×(4N) matrices and it can be solved

in O(N3) operations.

4. Numerical examples

To validate our method, we consider some numerical examples in this section. As usual,

we show dispersion curves with the Bloch wave vector (α, β) given on the boundary of the

irreducible Brillouin zone. Our method is especially suitable for computing the bandgaps

directly. This will be illustrated in our calculations of gap maps.

For the first example, we consider a square lattice of identical dielectric cylinders in vac-

uum. The dielectric constant of the cylinders is ε1 = n2
1 = 8.9. The radius of the cylinders

is a = 0.378L, where L is the lattice constant. Using 9 points on each edge of the unit cell,

i.e., N = 9, we obtain the dispersion curves for both polarizations. The eigenvalue problem

(17) involves 36 × 36 matrices. The results for the E polarization are given in Fig. 1. The

ordinate is the normalized frequency ωL/(2πc), where ω is the angular frequency and c is

the speed of light in vacuum. The abscissa is the edge of the irreducible Brillouin zone. Our

results are identical to the finite element results reported in Ref. 17, where the unit cell is

discretized with 4096 elements (leading to eigenvalue problems of 4096× 4096 matrices). To

obtain the dispersion curves, we solve the eigenvalue problem (17) for various values of ω.

Since the eigenvalue λ is related to the Bloch wave vector (α, β) by λ = eiαL or λ = eiβL,

those eigenvalues on the unit circle (i.e. |λ| = 1) are saved for each ω. In practice, we replace

the condition |λ| = 1 by |1− |λ|| ≤ 10−6. On each edge of the irreducible Brillouin zone, the

saved eigenvalues are further organized as sequences where each sequence corresponds to one

dispersion curve. This can be achieved by imposing the continuity of the derivative of the

dispersion curves. Since the dispersion curves may become very flat at some frequencies, a
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Fig. 1. Computed band structure for Example 1: the E polarization.

small increment of ω may be needed. To improve the efficiency, an adaptive procedure that

links the increment of ω with the slopes of the dispersion curves can be used.

Our method is especially suitable for computing the bandgaps directly, that is, without

computing the detailed dispersion curves first. It turns out that the eigenvalues of (17)

appear in pairs as λ and 1/λ. That is, if λ is an eigenvalue of (17), then so is 1/λ. Since the

dispersion curves correspond to eigenvalues on the unit circle, we can calculate the shortest

distance to the unit circle among all eigenvalues satisfying |λ| ≤ 1. That is,

F (ω) = min{|1− |λ||, λ is an eigenvalue of (17) and |λ| ≤ 1}.

The eigenvalues for three different edges of the irreducible Brillouin zone are all included in

the above definition. Clearly, if ω is in a bandgap, then F (ω) > 0, otherwise F (ω) = 0. The

bandgaps can be calculated by searching intervals of ω where F (ω) > 0. For this purpose, we

have implemented a simple bisection method that determines the end points of such intervals.

Using this method, we calculate the gap map for the above square lattice of cylinders with

ε1 = 8.9. As shown in Fig. 2, the gap map reveals the dependence of the bandgaps on the

ratio between the radius of the cylinders and the lattice constant.

For a dispersive medium, our method remains unchanged. The eigenvalue problem (17) is

linear even when the medium is dispersive. As the second example, we consider the square

lattice of dispersive circular cylinders studied in Ref. 21 and Ref. 20. The dielectric constant
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Fig. 2. The gap map of the E polarization for Example 1.

of the cylinders is assumed to satisfy

ε1(ω) = ε∞

(
1−

ω2
p

ω2

)
, (18)

where ωp is the plasma frequency and ε∞ is the dielectric constant for infinite frequency. For

the E polarization, we choose

ε∞ = 1, a = 0.472L, ωp =
2πc

L
,

where L is the lattice constant and a is the radius of the cylinders. The dispersion curves for

the E polarization are shown in Fig. 3. For other values of a/L, the bandgaps are shown in

Fig. 4. For the H polarization, our method requires very little modification. As in Refs. 21

and 20, we choose

ε∞ = 1, a = 0.3L, ωp =
2πc

L

and obtain the dispersion curves in Fig. 5. These numerical results are obtained with N = 9.

They are identical to the FDTD results reported in Refs. 21 and 20.

For metallic cylinders, the dielectric constant ε1 should have an imaginary part, for exam-

ple, as given in the Drude model:

ε1(ω) = ε∞

[
1−

ω2
p

(ω + iδ)(ω + iγ)

]
,
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Fig. 5. Computed band structure for Example 2: the H polarization.

where γ is the relaxation rate and δ is a positive infinitesimal. In this case, the differential

operator in the standard eigenvalue formulation,1 where ω2 is the eigenvalue, is not self-

adjoint. Therefore, the eigenvalue ω2 is in general complex for any given real Bloch wave

vector (α, β). In our formulation, a real ω is given as an input parameter, then α or β will

have an imaginary part. The eigenvalue problem (17) can be solved without any difficulty,

but the dispersion curves no longer correspond to |λ| = 1, where the eigenvalue λ is either

eiαL or eiβL. As in Ref. 20, we choose to avoid the case of a complex dielectric constant by

using the simpler model (18).

5. Conclusions

We have developed a Dirichlet-to-Neumann (DtN) map approach for computing bandgap

structures of photonic crystals. For 2-D photonic crystals composed of circular cylinders, the

DtN map can be efficiently calculated by cylindrical wave expansions. Our method avoids a

discretization of the unit cell and it gives rise to linear eigenvalue problems of relatively small

matrices even when the medium is dispersive. Unlike other methods based on cylindrical wave

expansions, our method is simple to implement, since it does not require sophisticated lattice

sums techniques.
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