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Abstract

Efficient numerical methods for analyzing photonic crystals (PhCs) can be devel-
oped using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map
is an operator that takes the wave field on the boundary of a unit cell to its normal
derivative. In frequency domain calculations for band structures and transmission
spectra of finite PhCs, the DtN maps allow us to reduce the computation to the
boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells contain-
ing circular cylinders, the DtN maps can be constructed from analytic solutions (the
cylindrical waves). In this paper, we develop a boundary integral equation method
for computing DtN maps of general unit cells containing cylinders with arbitrary
cross sections. The DtN map method is used to analyze band structures for 2D
PhCs with elliptic and other cylinders.
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1 Introduction

Photonic crystals (PhCs) [1–3] are periodic structures with a period on the
scale of light wavelength. They have attracted much attention in recent years
due to their unusual ability to control and manipulate light. Optical compo-
nents and devices made of PhCs exhibit many unique functionalities, such as
cavities with ultra-small mode volumes, ultra-compact waveguide bends, su-
perprism effect, self-guiding, negative refractive index, slow light, etc. Efficient
numerical methods are needed to analyze fundamental properties of PhCs and
to design and optimize PhC components and devices.

The most important property of a PhC is its band structure of the spectrum.
The band structure comprises dispersion relations between the frequency and
the Bloch wave vector for waves allowed to propagate in the PhC. Many nu-
merical methods have been developed for computing band structures. Time
domain methods [5,6] have been used, but most existing techniques rely on
frequency domain formulations. In the standard frequency domain formula-
tion [3], the band structure problem is an eigenvalue problem on a unit cell
of the PhC, where ω2 (ω is the angular frequency) is the eigenvalue and the
components of the Bloch wave vector are parameters. For a non-dispersive
medium, the eigenvalue problem is linear, but it becomes nonlinear if the
medium is dispersive [4]. A number of numerical methods using this formula-
tion rely on expanding the eigenfunction in some series on the unit cell. The
popular plane wave expansion method [7–11] uses the Fourier series, but other
series can also be used [12,13]. Alternatively, the eigenvalue problem can be
solved by a direct discretization of the unit cell. Numerical methods following
this approach include the finite element method [14–16], the finite difference
methods [17–20], the pseudospectral method [21], the cell method [22], the
moving least squares method [23], the multiple multipole method [24], etc.
For a non-dispersive medium, these methods give rise to eigenvalue problems
of large matrices which are sparse in some cases. For dispersive media, the
matrices depend on the frequency, the eigenvalue problem is nonlinear and
more difficult to solve.

The band structure can also be calculated using alternative formulations where
ω is regarded as a parameter and the eigenvalue is related to a component of
the Bloch wave vector. In a formulation on the unit cell, this gives rise to
a linear eigenvalue problem even when the medium is dispersive [25]. Fur-
thermore, we can reformulate the eigenvalue problem to the boundary of the
unit cell using the transfer matrix [26,27], the scattering matrix [28,34] or
the Dirichlet-to-Neumann map [29,30] formalisms. These reformulations give
rise to linear eigenvalue problems (even for dispersive media) for rather small
matrices when they are discretized. Of course, additional work is needed to
calculate the transfer matrix, the scattering matrix or the DtN map at each
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frequency. Although the transfer matrix is easy to calculate [26,27], the method
suffers numerical instability. The scattering matrix can be constructed using a
multipole method with lattice sums techniques [28] or other numerical meth-
ods for diffractive optics such as the Fourier modal method [31,32] and the
finite element method [33,34]. The DtN map is an operator that maps the
wave field on the boundary of the unit cell to its normal derivative. It can be
approximated by a J×J matrix, if the wave field inside the unit cell is approx-
imated by the linear combination of J special solutions. For two-dimensional
(2D) PhCs where each unit cell contains exactly one circular cylinder, we have
used the cylindrical waves as the special solutions [29,30]. In that case, the
DtN map can be efficiently constructed using O(J3) operations. Based on the
DtN map of the unit cell, the band structure can be calculated from standard
matrix eigenvalue problems. Since the typical value of J is quite small, the
DtN map method for band structure calculation is highly competitive. The
DtN maps can also be used to derive efficient numerical methods for analyzing
PhCs of finite size [35,36].

In this paper, we extend the DtN map method to 2D photonic crystals com-
posed of identical and parallel cylinders with arbitrary cross sections. In sec-
tion 2, we first present improved eigenvalue formulations based on the DtN
maps. Compared with the formulations used in [29], the new formulations are
simpler and involve smaller matrices in some cases. In section 3, we develop
the boundary integral equation method for unit cells containing cylinders of
arbitrary cross sections. In such a general unit cell, simple analytic solutions
are not available. Our approach is to calculate the special solutions needed
for constructing the DtN map by solving scattering problems of the cylinder
with different plane incident waves. Since the size of the cylinder cross section
is on the order of the wavelength, the integral equations formulated on the
boundary of the cylinder require a relatively small number of discretization
points. The different solutions corresponding to different incident waves can
be efficiently solved together, as they are related to linear systems with an
identical coefficient matrix and different right hand sides. We illustrate our
method by band structure calculations for square and rectangular lattices.

2 Eigenvalue problems

For time harmonic electro-magnetic waves propagating in a 2D medium, the
governing equation is

ρ
∂

∂x

(

1

ρ

∂u

∂x

)

+ ρ
∂

∂y

(

1

ρ

∂u

∂y

)

+ k2
0n

2u = 0, (1)
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where k0 = ω/c is the free space wavenumber, ω is the angular frequency, c
is the speed of light in vacuum, n = n(x) is the refractive index function and
x = (x, y). For the E polarization, u is the z-component of the electric field
and ρ = 1. For the H polarization, u is the z-component of the magnetic field
and ρ = n2. For a 2D PhC, the refractive index function is periodic in two
distinct directions. We have two vectors a1 and a2, such that

n(x) = n(x + l1a1 + l2a2), (2)

where l1 and l2 are arbitrary integers. As shown in Fig. 1(a), the parallelogram
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Fig. 1. (a) The unit cell Ω for a photonic crystal with two translation vectors a1 and
a2; (b) The first Brillouin zone B with points Γ, X, M , X ′ and M ′ corresponding
to πb1, π(b1 + b2), πb2 and π(b2 − b1), respectively.

Ω specified by the vectors a1 and a2, i.e.,

Ω = {x = s1a1 + s2a2 | 0 < s1, s2 < 1 }, (3)

is a unit cell of the PhC. Two edges of Ω are Γ1 and Γ2 given below

Γ1 = {x = s1a1 | 0 < s1 < 1 }, Γ2 = {x = s2a2 | 0 < s2 < 1 }. (4)

The other two edges of Ω are a2 + Γ1 and a1 + Γ2. We also let ν1 and ν2 be
two unit vectors perpendicular to a1 and a2, respectively. These two vectors
will serve as the unit normal vector of the boundary of Ω. We can choose ν1

and ν2 to be the inward unit normal vector of Ω on Γ1 and Γ2, then they are
the outward normal vector on the other two edges of Ω.

For 2D PhCs, we consider Bloch wave solutions of the Helmholtz equation (1)
given as

u(x) = eik·xΨ(x), (5)

4



where k = (α, β) is the Bloch wave vector and Ψ follows the same periodic
condition (2) as the refractive index function. This implies that u satisfies the
following quasi-periodic conditions:

u(x + a1) = ρ1u(x), u(x + a2) = ρ2u(x), (6)

where ρ1 = exp(ik ·a1) and ρ2 = exp(ik ·a2). Alternatively, we can write down
the quasi-periodic conditions in terms of u and its normal derivatives on edges
of Ω. The normal derivatives follow the unit normal vectors ν1 and ν2 chosen
earlier. We have

u(x + a2) = ρ2u(x),
∂u

∂ν1

(x + a2) = ρ2
∂u

∂ν1

(x), x ∈ Γ1, (7)

u(x + a1) = ρ1u(x),
∂u

∂ν2

(x + a1) = ρ1
∂u

∂ν2

(x), x ∈ Γ2. (8)

In the standard formulation [3], Eq. (1) and boundary conditions (7) and (8)
give rise to an eigenvalue problem on Ω, where α and β are given parame-
ters and ω2 (or k2

0) is the eigenvalue. Most existing numerical methods use
this formulation. The solutions give rise to a discrete sequence of dispersion
relations

ω = ωk(k), k = 1, 2, ... (9)

For lossless media, the frequencies ωk are real and they can be ordered as an
increasing sequence. Each dispersion relationship is a surface of two variables
α and β. If for some integer k, the maximum of ωk is less than the minimum
of ωk+1, we have a band gap:

(max
k

ωk(k),min
k

ωk+1(k)).

If the frequency ω is in a band gap, propagating Bloch waves do not exist for
any real α and β, therefore, waves at this frequency cannot propagate in the
PhC.

Due to the periodicity of the PhC, ωk is a periodic function of the Bloch wave
vector k satisfying

ωk(k + 2πl1b1 + 2πl2b2) = ωk(k), (10)

where l1 and l2 are arbitrary integers, b1 and b2 are vectors satisfying

bj · ak = δjk =
{

1 if j = k
0 if j 6= k.

(11)
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Therefore, it is only necessary to calculate the dispersion relations (9) on the
first Brillouin zone

B = {k = s1b1 + s2b2 | − π < s1, s2 < π}. (12)

For the unit cell shown in Fig. 1(a), the corresponding first Brillouin zone B
is depicted in Fig. 1(b). The points Γ, X, M , X ′ and M ′ correspond to πb1,
π(b1 +b2), πb2 and π(b2 −b1), respectively. For a lossless medium where the
refractive index is real, if u is a a solution of the Helmholtz equation (1), then
u (the complex conjugate of u) is also a solution. If u is a Bloch wave solution
with a wave vector k, then u is a Bloch wave solution with wave vector −k.
This implies that the dispersion relations are even functions of k, i.e.,

ωk(k) = ωk(−k). (13)

Therefore, if n(x) is real, we only need to compute the dispersion relations on
one half of the first Brillouin zone. Furthermore, using (13) and the periodicity
(10), we can deduce that the dispersion relations are symmetric with respect
to the mid-point on each edge of the first Brillouin zone. For example, on the
top edge given by

k = πb2 + πs1b1, −1 < s1 < 1,

we have

ωk(πb2 + πs1b1) = ωk(−πb2 − πs1b1) = ωk(πb2 − πs1b1). (14)

Using other symmetries, it is often possible to further reduce the computation
domain of k. In practice, the dispersion relations are often calculated on edges
of the irreducible Brillouin zone. If the medium is dispersive (thus, the refrac-
tive index n depends on ω), this eigenvalue problem is nonlinear and more
difficult to solve.

Alternatively, we can consider ω as a given parameter and formulate the band
structure problem as eigenvalue problems with an eigenvalue related to the
Bloch wave vector k. Let us expand k as k = γ1b1 + γ2b2. If γ1 is assumed to
be a given parameter, we can formulate an eigenvalue problem for γ2. Notice
that γ1 = k·a1 and γ2 = k·a2. To remove the eigenvalue γ2 from the boundary
condition (7), we re-write the Bloch wave given in (5) as

u(x) = eiγ2b2·xφ(x). (15)
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From (1), we obtain the following equation for φ:

ρ∇ ·

(

1

ρ
∇φ

)

+ k2
0n

2 φ+ iγ2b2 ·

[

∇φ+ ρ∇ ·

(

1

ρ
φ

)]

− γ2
2 ||b2||

2 φ = 0.(16)

From the quasi-periodic conditions of u, it is easy to see that φ is quasi-periodic
in a1 direction and periodic in a2 direction. That is

φ(x + a1) = ρ1φ(x), φ(x + a2) = φ(x). (17)

This gives rise to the boundary conditions of φ:

φ(x + a2) = φ(x),
∂φ

∂ν1

(x + a2) =
∂φ

∂ν1

(x), x ∈ Γ1, (18)

φ(x + a1) = ρ1φ(x),
∂φ

∂ν2

(x + a1) = ρ1
∂φ

∂ν2

(x), x ∈ Γ2. (19)

Therefore, we obtain a quadratic eigenvalue problem (16,18,19) for eigenfunc-
tion φ and eigenvalue γ2. Notice that the quadratic eigenvalue problem can
be turned into a linear eigenvalue problem if we change (16) into a system of
two equations with an additional function ϕ = γ2φ. This eigenvalue problem
is still formulated on the unit cell Ω and it is linear even if the medium is
dispersive.

The band structure eigenvalue problem can be further reduced to the edges of
the unit cell Ω. The transfer matrix approach [26,27] is easy to implement, but
it suffers from numerical instabilities. The scattering matrix approach [28,34]
relies on decomposing the wave field as the sum of its forward and backward
components, i.e, u = u+ + u−, around the edges Γ1 and Γ1 + a2. If we denote
u± on Γ1 and Γ1 + a2 as u±0 and u±1 , respectively, then the scatter matrix S
satisfies

S
[

u+
0

u−1

]

=
[

S11 S12

S21 S22

] [

u+
0

u−1

]

=
[

u−0
u+

1

]

. (20)

Here, S is given as a 2 × 2 matrix where each entry is an operator acting on
functions defined on edges of Ω. The quasi-periodicity in a2 direction implies

u+
1 = ρ2u

+
0 , u−1 = ρ2u

−

0 . (21)

This leads to the following eigenvalue problem

[

S11 −I
S21 0

] [

u+
0

u−0

]

= ρ2

[

0 −S12

I −S22

] [

u+
0

u−0

]

, (22)
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where I is the identity operator and ρ2 is the eigenvalue. Notice that this is
a linear eigenvalue problem even if the medium is dispersive. The scattering
matrix S can be calculated by analyzing one layer of the PhC, i.e., x =
s1a1+s2a2 for −∞ < s1 <∞ and 0 < s2 < 1, as a diffraction grating problem.
Existing numerical methods for diffraction gratings, such as the Fourier modal
method [31,32], the finite element method [33,34] and the multipole method
[28], can be used to find S.

Another reformulation of the band structure eigenvalue problem is based on
the Dirichlet-to-Neumann maps. In [29] and [30], we formulated the eigenvalue
problems for square and triangular lattices, respectively. In the following, we
derive improved formulations for general lattice structures. These new for-
mulations are simpler and they involve smaller matrices in some cases. If we
denote {u, ∂ν1

u} on the edges Γ1 and Γ1 + a2 by {u0, ∂ν1
u0} and {u1, ∂ν1

u1},
respectively, the reduced DtN map M gives

M
[

u0

u1

]

=
[

M11 M12

M21 M22

] [

u0

u1

]

=
[

∂ν1
u0

∂ν1
u1

]

. (23)

Similar to the scatter matrix S, the reduced DtN map M is a 2 × 2 matrix
with operator entries. Using the quasi-periodic condition in a2 direction, i.e.,

u1 = ρ2u0, ∂ν1
u1 = ρ2∂ν1

u0,

we obtain the following linear eigenvalue problem

[

M11 −I
M21 0

] [

u0

∂ν1
u0

]

= ρ2

[

−M12 0
−M22 I

] [

u0

∂ν1
u0

]

, (24)

where ρ2 is the eigenvalue. It turns out that the reduced DtN map M can be
easily calculated from the DtN map Λ of the unit cell Ω satisfying

Λ
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v0

u1

v1





















=





















Λ11 Λ12 Λ13 Λ14

Λ21 Λ22 Λ23 Λ24

Λ31 Λ32 Λ33 Λ34

Λ41 Λ42 Λ43 Λ44









































u0

v0

u1

v1





















=





















∂ν1
u0

∂ν2
v0

∂ν1
u1

∂ν2
v1





















, (25)

where v0 and v1 denote u on the edges Γ2 and Γ2 + a1, respectively, and ∂ν2
v0

and ∂ν2
v1 denote the normal derivatives of u there. Using the quasi-periodic

conditions in a1 direction, i.e., v1 = ρ1v0 and ∂ν2
v1 = ρ1∂ν2

v0, and the second
and fourth equations of (25), we can eliminate ∂ν2

v0 and obtain an equation
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for v0:

Dv0 = (Λ41 − ρ1Λ21)u0 + (Λ43 − ρ1Λ23)u1, (26)

where

D = ρ2
1Λ24 + ρ1(Λ22 − Λ44) − Λ42.

The above gives rise to v0 = K1u0 +K2u1, where

K1 = D−1(Λ41 − ρ1Λ21), K2 = D−1(Λ43 − ρ1Λ23).

We can insert these results into the first and third equations of (25) and obtain

M =
[

Λ11 Λ13

Λ31 Λ33

]

+
[

Λ12 + ρ1Λ14

Λ32 + ρ1Λ34

]

[K1, K2] . (27)

In the three eigenvalue formulations (16,18,19), (22) and (24), we have as-
sumed that the frequency ω and a component of the Bloch wave vector
γ1 = k · a1 are given parameters. The eigenvalue is either γ2 = k · a2 or
ρ2 = eiγ2 . Similarly, we can derive band structure eigenvalue formulations
where ω and γ2 are given parameters and γ1 or ρ1 = eiγ1 is the eigenvalue.
For the DtN map formulation, applying the quasi-periodic conditions in a2

direction to (25), we can find another reduced DtN map N satisfying

N
[

v0

v1

]

=
[

N11 N12

N21 N22

] [

v0

v1

]

=
[

∂ν2
v0

∂ν2
v1

]

. (28)

Then, the quasi-periodic condition in a1 direction gives rise to the following
eigenvalue problem:

[

N11 −I
N21 0

] [

v0

∂ν2
v0

]

= ρ1

[

−N12 0
−N22 I

] [

v0

∂ν2
v0

]

. (29)

In principle, the dispersion relations in (9) are needed for all k in the irre-
ducible Brillouin zone. If only the edges of the irreducible Brillouin zone are
used, band gaps can be over estimated [40]. Our method can be used to com-
pute the dispersion relations on the entire Brillouin zone. If the DtN eigenvalue
formulation (24) is used, we need to vary two parameters ω and γ1, and solve
(24) for each selection of the parameters. Only eigenvalues on the unit circle,
i.e. |ρ2| = 1, are needed, since we are looking for Bloch waves with a real
Bloch wave vector. In practice, the dispersion relations are often calculated
on a few edges of the irreducible Brillouin zone. The two formulations (24)
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and (29) allow us to calculate the dispersion relations along lines parallel to
b2 and b1, respectively. Next, we formulate eigenvalue problems on the two
diagonals of the first Brillouin zone. On the diagonal given by k = s(b1 + b2)
for −π < s < π, we have γ1 = k · a1 = k · a2 = γ2 and ρ1 = ρ2. Using the
quasi-periodic conditions in both a1 and a2 directions, we can eliminate u1,
v1, ∂ν1

u1 and ∂ν2
v1 in (25), and obtain the following eigenvalue problem











Λ11 Λ12 −I 0
Λ21 Λ22 0 −I
Λ31 Λ32 0 0
Λ41 Λ42 0 0











U = ρ











−Λ13 −Λ14 0 0
−Λ23 −Λ24 0 0
−Λ33 −Λ34 I 0
−Λ43 −Λ44 0 I











U, (30)

where U = [u0; v0; ∂ν1
u0; ∂ν2

v0] is a column vector given in the MATLAB
notation (u0, v0, ..., are column vectors), and the eigenvalue is ρ = ρ1 = ρ2.
On the other diagonal given by α = s(b2 − b1) for −π < s < π. We have
γ2 = −γ1 and ρ2 = ρ−1

1 . Eliminating u1, v0, ∂ν1
u1 and ∂ν2

v0 in (25), we have











Λ11 Λ14 −I 0
Λ41 Λ44 0 −I
Λ31 Λ34 0 0
Λ21 Λ24 0 0











U = ρ











−Λ13 −Λ12 0 0
−Λ43 −Λ42 0 0
−Λ33 −Λ32 I 0
−Λ23 −Λ22 0 I











U (31)

where U = [u0; v1; ∂ν1
u0; ∂ν2

v1] and the eigenvalue is ρ = ρ2 = ρ−1
1 .

If N1 and N2 sampling points are used on Γ1 and Γ2 (and their opposite
edges) of the unit cell Ω, respectively, the DtN map Λ is approximated by a
J×J matrix, where J = 2(N1+N2). The operators Mjk for j, k = 1, 2, become
N1×N1 matrices. The eigenvalue problems (24) and (29) involve (2N1)×(2N1)
and (2N2) × (2N2) matrices, respectively. On the other hand, the eigenvalue
problems on the diagonals, i.e., (30) and (31), involve J×J matrices. All these
eigenvalue problems can be solved in O(J3) operations. Since the typical value
of J is quite small, our method is highly competitive. Compared with our
previous DtN formulations developed in [29], the new formulations (24), (29),
(30) and (31) are simpler and they give smaller matrices along lines parallel to
b1 or b2. For a triangular lattice, although the general treatment developed in
this section is applicable, the approach based on hexagon unit cells developed
in [30] is still preferred because of the symmetry.

3 DtN map by boundary integral equations

To find a matrix approximation to the DtN map Λ, we choose J sampling
points on the boundary of unit cell Ω and approximate the general solution in
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Ω by a linear combination of J special solutions:

u(x) =
J
∑

j=1

cjφj(x), (32)

where φj satisfies the Helmholtz equation (1). Let the J sampling points on the
boundary of Ω be x1, x2, ..., xJ . If we use (32) to evaluate u at the sampling
points, we obtain a J × J matrix Λ1 that maps the coefficients {cj} to the
J values of u on the boundary of Ω. In fact, the (k, j) entry of the matrix
Λ1 is φj(xk). We can also find the x and y derivatives of φj and evaluate the
normal derivative of u at the J sampling points. This gives rise to another
J×J matrix Λ2 that maps {cj} to the normal derivatives of u at the J points.
The (k, j) entry of the matrix Λ2 is ∂νφj(xk), where ν is a unit vector of the
boundary at point xk. Then, the DtN map of the unit cell is approximated by
the matrix Λ = Λ2Λ

−1
1 .

If the unit cell contains a circular cylinder, we choose φj as cylindrical waves
which are given analytically. At least for square and hexagon unit cells, the
cylindrical waves give rise to accurate approximations of the DtN map Λ.
Numerical experiments in [29,30] indicate an exponential convergence with
respect to the number of points used on each edge of the unit cell. In the fol-
lowing, we consider a more general unit cell containing a cylinder of arbitrary
cross section. Our approach is to let

φj = φ
(i)
j + φ

(s)
j ,

where φ
(i)
j is a plane wave propagating with an incident angle τj and φ

(s)
j is

the associated scattered wave. The incident angles are either τj = 2πj/J or
τj = 2π(j − 0.5)/J depending on how the sampling points are chosen. We

solve the scattered wave φ
(s)
j by a boundary integral equation method. The

J different scattered waves correspond to the same scatterer and they can be
efficiently solved together.

Let Ω1 be the cross section of the cylinder in the unit cell, let n1 and n2 be the
refractive indices of the cylinder and the surrounding medium, respectively,
the scattering problem is formulated in the entire xy-plane R

2 for a single
cylinder. Let Ω2 = R

2\Ω1 be the domain outside the cylinder, the incident
wave is given in Ω2 as

φ
(i)
j (x) = exp[ik0n2(x cos τj + y sin τj)],

and the scattered wave φ
(s)
j satisfies the Sommerfeld radiation condition at

infinity. In our boundary integral formulation, we solve for two functions ψ
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and ϕ defined on the boundary Σ of domain Ω1. Let ν(p) be the outward unit
normal vector of Σ at a point p, we have

ψ(p) = φj(p), ϕ(p) =
∂φj(p)

∂ν(p)
.

For the H polarization, the normal derivative of φj is not continuous on Σ,
then ϕ is defined as the limit from the outside of the cylinder, i.e., from Ω2.
Let Gl (for l = 1, 2) be the fundamental solution of the Helmholtz equation
in the medium with refractive index nl, i.e.,

Gl(p,q) =
i

4
H

(1)
0 (k0nl|p− q|),

we define the single- and double-layer integral operators by

(Slµ)(p)= 2
∫

Σ

Gl(p,q)µ(q)ds(q), p ∈ Σ;

(Klµ)(p)= 2
∫

Σ

∂Gl(p,q)

∂ν(q)
µ(q)ds(q), p ∈ Σ,

where µ is an arbitrary function defined on Σ. Then, ψ and ϕ satisfy the
following integral equations:

(1 + K1)ψ − S1ϕ= 0, (33)

(1 −K2)ψ + γS2ϕ= (1 −K2)φ
(i)
j + γS2

∂φ
(i)
j

∂ν
, (34)

where γ = 1 and γ = n2
1/n

2
2 for the E and H polarization, respectively. Once

ψ and ϕ are solved, we can evaluate the total wave field at a point p in Ω2 by

φj(p) = φ
(i)
j (p) +

∫

Σ

∂G2(p,q)

∂ν(q)
ψ̃(q)ds(q) −

∫

Σ

G2(p,q)ϕ̃(q)ds(q), (35)

where

ψ̃(q) = ψ(q) − φ
(i)
j (q), ϕ̃(q) = ϕ(q) −

∂φ
(i)
j (q)

∂ν(q)
, q ∈ Σ.

If we have a unit vector ν(p) at a point p ∈ Ω2, we can evaluate the directional
derivative at p by taking the derivative from (35) directly. That is
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∂φj(p)

∂ν(p)
=
∂φ

(i)
j (p)

∂ν(p)
+
∫

Σ

∂2G2(p,q)

∂ν(p)∂ν(q)
ψ̃(q)ds(q)

−
∫

Σ

∂G2(p,q)

∂ν(p)
ϕ̃(q)ds(q). (36)

To solve the integral equations (33) and (34), we use a numerical method
described in [37]. The method is especially suitable when the interface Σ is
smooth. Starting from a parametric representation of Σ given by

q = (x, y) = (ξ(θ), η(θ)), 0 ≤ θ ≤ 2π,

we approximate ϕ and ψ by vectors of length m following a discretization of
θ as θl = 2πl/m for 0 ≤ l < m. The integral operators are approximated by
m × m matrices through the following three steps. First, we transform the
integral operators on Σ to those on [0, 2π]. We have functions S1, S2, K1 and
K2 satisfying

(Slµ)(ϑ) =

2π
∫

0

Sl(ϑ, θ)µ(θ)dθ, (Klµ)(ϑ) =

2π
∫

0

Kl(ϑ, θ)µ(θ)dθ,

for l = 1, 2, where

Sl(ϑ, θ) =
iσ

2
H

(1)
0 (k0nlr), Kl(ϑ, θ) = −

ik0nlρ

2r
H

(1)
1 (k0nlr)

and

p=(ξ(ϑ), η(ϑ)),

n=(η′(θ),−ξ′(θ)),

σ=σ(θ) = |q′| =
√

[ξ′(θ)]2 + [η′(θ)]2,

r= r(ϑ, θ) = |p− q| =
√

[ξ(ϑ) − ξ(θ)]2 + [η(ϑ) − η(θ)]2,

ρ= ρ(ϑ, θ) = n · (q − p) = η′(θ)[ξ(θ) − ξ(ϑ)] − ξ′(θ)[η(θ) − η(ϑ)].

Next, we separate the logarithmic singularity in the integral operator kernels.
For Sl and Kl, we have smooth functions Sl,1, Sl,2, Kl,1 and Kl,2 such that

Sl(ϑ, θ) =Sl,1(ϑ, θ) ln

(

4 sin2 ϑ− θ

2

)

+ Sl,2(ϑ, θ) (37)

Kl(ϑ, θ) =Kl,1(ϑ, θ) ln

(

4 sin2 ϑ− θ

2

)

+Kl,2(ϑ, θ), (38)
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where

Sl,1 = −
σ

2π
J0(k0nlr), Kl,1 =

k0nlρ

2πr
J1(k0nlr),

Sl,2 and Kl,2 are evaluated using (37) and (38), except when ϑ = θ. In that
case,

Sl,2(θ, θ) =

[

i

2
−
C

π
−

1

π
ln

(

k0nlσ

2

)]

σ,

Kl,2(θ, θ) =
η′(θ)ξ′′(θ) − ξ′(θ)η′′(θ)

2πσ2
,

where C = 0.57721... is the Euler’s constant. Finally, we discretize the inte-
gral operators by quadrature formulas. For smooth functions, the standard
trapezoidal rule is used. For the product of the logarithmic singularity with
a smooth function, the following special quadrature formula is used. Assume
that m is an even integer, we have

2π
∫

0

ln (4 sin2 ϑ− θ

2
)f(θ)dθ ≈

m−1
∑

j=0

Rj(ϑ)f(θj),

where

Rj(ϑ) = −
4π

m

m/2−1
∑

k=1

1

k
cos[k(ϑ− θj)] −

4π

m2
cos[m(ϑ− θj)/2].

More details can be found in [37]. With the integral operators approximated by
matrices, the right hand side of (34) can be easily evaluated, ϕ and ψ can then
be solved in O(m3) operations. Afterward, for each sampling point p on the
boundary of the unit cell Ω, we evaluate φj(p) and its normal derivative using
(35) and (36). In that case, p is not on the interface Σ, the integral operators
in (35) and (36) have smooth kernels, thus they can be easily discretized with
the trapezoidal rule.

To construct the DtN map Λ, we need J special solutions corresponding to J
different plane incident waves. We emphasize that the total required number
of operations is still O(m3), assuming that J is on the same order as m. This
corresponds to solving J linear systems with the same coefficient matrix. The
matrix approximations to the integral operators and the LU decomposition of
the coefficient matrix are calculated only once.
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4 Numerical examples

We first test our method for PhCs with square unit cells containing circular
cylinders. For the examples in [29], we have obtained nearly identical results.

For a circular cylinder, the scattering field φ
(s)
j associated with a plane inci-

dent wave φ
(i)
j can be solved analytically. This allows us to test our boundary

integral equation method for solving φ
(s)
j . The DtN-map method developed

in [29] uses different special solutions (the cylindrical waves) to construct the
DtN maps of the unit cells and also use different eigenvalue formulations.

In this following, we illustrate our method by a few examples involving non-
circular cylinders. First, we consider a rectangular lattice of elliptic air-holes
in a background medium with dielectric constant ǫ2 = n2

2 = 11.4. A unit cell
is shown in Fig. 2(a). The periods in the x and y directions are L1 and L2,

L
1

L
2

r
2

r
1

ε
2
=11.4

L

L
ε
1
=14

r
1

r
2 π/4

ε
1
=13

L

L

Fig. 2. Unit cells for three examples of two-dimensional photonic crystals.

respectively. As in [38], we assume that L1 = 0.77L2. The minor and major
axes of the elliptic air-holes are parallel to the x and y axes, respectively. The
lengths of the semi-axes are r1 = 0.3L2 and r2 = 0.4L2. The PhC has reflection
symmetries with respect to the x and y axes. This implies that the dispersion
relations have reflection symmetries with respect to the α and β axes on the
plane of Bloch wave vector k = (α, β). Therefore, the irreducible Brillouin
zone is the rectangle bounded by the four points: Γ = (0, 0), X = (π/L1, 0),
M = (π/L1, π/L2) and X ′ = (0, π/L2). Using N1 = 8 and N2 = 10 points
on the short and long edges of the rectangular unit cell, respectively, and
m = 128 points to discretize the boundary of ellipse, we obtain the band
diagram shown in Fig. 3. The horizontal axis corresponds to the four edges
and one diagonal of the irreducible Brillouin zone. The vertical axis is the
normalized frequency ωL2/(2πc). The dashed and the solid curves correspond
to the E and H polarizations, respectively. To validate our results, we have
repeated the calculations for ωL1/(2πc) = 0.15, 0.2, 0.4 and 0.5, using various
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Fig. 3. Band structure of a rectangular lattice of elliptic air-holes in a dielectric
medium (ǫ2 = 11.4). The solid and dashed lines represent the H and E polarizations,
respectively.

values of N1, N2 and m. Consistent results are obtained for N1 ≤ 14, N2 ≤ 18
and m ≤ 512. In [38], a complete bandgap (for both polarizations) was found
for r1 = 0.38L2 and r2 = 0.45L2. We are able to confirm the existence of a
complete bandgap. However, since the air-holes are very close to each other
(the shortest distance between two air-holes is only 0.01L2), it is difficult to
verify the accuracy of the solutions, especially for the H polarization.

The second example is a square lattice of elliptic dielectric rods in air, where
the dielectric constant of the rods is ǫ1 = n2

1 = 14. As shown in Fig. 2(b),
the major axis of the elliptic rods and the x-axis form a 45 degree angle. The
lengths of the semi-axes are r1 = 0.424L and r2 = 0.212L. The structure has
reflection symmetries with respect to straight lines y = ±x. This implies that
the dispersion relations (9) also have reflection symmetries with respect to the
lines β = ±α on the αβ plane. Therefore, the irreducible Brillouin zone is the
triangle with vertices at Γ = (0, 0), M = (π/L, π/L) and M ′ = (−π/L, π/L).
Using N = 6 sampling points on each edge of the unit cell and m = 128 points
to discretize the boundary of the ellipse, we obtain the dispersion curves for
the E polarization as shown in Fig. 4. On the top edge M ′M , the dispersion
curves are symmetric with respect to the mid-point X ′ = (0, π/L). In fact,
equation (14) can be written as ωk(α, π/L) = ωk(−α, π/L). Therefore, the
band diagram shows only half of the top edge, from M to X ′, but it also
includes a line from M ′ to Γ. Our results agree with those of Feng et al. [39]
who used a plane-wave expansion method. The results shown in Fig. 4 are
verified with other values of N and m for a few frequencies.
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Fig. 4. Band structure for a square lattice of elliptic dielectric rods (ǫ1 = 14) in air
(the E polarization).

Finally, we consider a square lattice of dielectric rods with a kite-shaped cross
section as shown in Fig. 2(c). The dielectric constant of the rods is ǫ1 = n2

1 = 13
and the background medium is air. The boundary of the rod in the square unit
cell (given as 0 < x, y < L) has the following parametric representation:

x =
L

6
(2.35 + cos θ + 0.65 cos 2θ), y = L(0.5 + 0.25 sin θ),

for 0 ≤ θ ≤ 2π. Since the refractive index is real, we can apply (13) and
consider only half of the first Brillouin zone with positive α. On the other
hand, the structure has a reflection symmetry with respect to the x-axis. This
implies that the dispersion relations satisfy ωk(α, β) = ω(α,−β). Therefore,
the irreducible Brillouin zone is the square with corners at Γ = (0, 0), X =
(π/L, 0), M = (π/L, π/L) and X ′ = (0, π/L). Using N = 7 points on each
edge of the unit cell and m = 128 on the boundary of the kite-shaped rod, we
obtain the dispersion curves shown in Fig. 5. These results are verified with
repeated calculations using other values of N and m for ωL/(2πc) = 0.07,
0.25 and 0.4. The case for ωL/(2πc) = 0.4 and m = 128 is given in Table 1.
It seems that 3 or 4 significant digits can be obtained with N ≤ 10. Since the
global expansion (32) is used to construct the DtN map, ill-conditioning will
affect the accuracy when N is too large.

In the above calculations, we solved the eigenvalue problems (24), (29), (30)
and (31) for ρ (i.e., ρ1 or ρ2) on the unit circle. In practice, this condition
is replaced by |1 − |ρ|| ≤ δ, where δ is on the order of 10−3. Our method is
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Fig. 5. Band structure for a square lattice of kite-shaped dielectric rods (ǫ1 = 13) in
air. The solid and dashed lines represent the E and H polarizations, respectively.

N k on ΓX′ k on X′M

5 0.58314 0.30949

6 0.58086 0.31273

7 0.58106 0.31260

8 0.58148 0.31189

9 0.58176 0.31147

10 0.58152 0.31186

11 0.58176 0.31166

12 0.58160 0.31166

13 0.58168 0.31171

14 0.58168 0.31168

Table 1
Computed Bloch wave vector component for ωL/(2πc) = 0.4.

efficient, since the size of the matrices is very small.
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5 Conclusions

For 2D PhCs containing cylinders with arbitrary cross sections, we developed
a boundary integral equation method for constructing the DtN maps of the
unit cells and applied the DtN maps to compute the band structures. Numer-
ical examples include dielectric rods in air and air-holes in dielectric media,
where the rods and air-holes have elliptic or kite-shaped cross sections. The
DtN map is obtained by approximating the general wave field inside a unit
cell by a sum of J special solutions and evaluating the field and its normal
derivative at J sampling points on the boundary of the unit cell. The special
solutions are obtained from solving scattering problems for a single cylinder
on the entire plane. The boundary integral equation method is ideal for the
scattering problem, since the refractive index is constant inside and outside the
cylinder. The different special solutions are related to the scattering of differ-
ent plane incident waves on the same cylinder, and they can be solved together
efficiently, since they correspond to linear systems with the same coefficient
matrix and different right hand sides. The required number of operations for
constructing the DtN map is O(m3), where m is the number of points for
discretizing the boundary of the cylinder. The band structures are calculated
from linear eigenvalue problems of small matrices. The sizes of these matrices
are J × J or less. In the numerical examples, reasonably accurate solutions
have been obtained with m = 128 and J = 24, 28 and 36.

The DtN maps of a unit cell has also been used to develop efficient numerical
methods for analyzing the transmission and reflection of finite PhCs [35,36].
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