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Scattering from Periodic Arrays of Cylinders by
Dirichlet-to-Neumann Maps

Yuexia Huang and Ya Yan Lu

Abstract— A simple and efficient numerical method is de-
veloped for computing the transmission and reflection spectra
of periodic arrays of cylinders. For each unit cell containing
a cylinder, only the wave field on the edges of the unit cell
is computed. For multi-layered structures, a marching scheme
based on a pair of operators is developed.

Index Terms— Photonic crystals, transmission and reflection
spectra, Dirichlet-to-Neumann map, cylindrical harmonic expan-
sion.

I. INTRODUCTION

Efficient numerical methods for simulation of light waves
in photonic crystal devices are important in computer-aided
design processes. Many different methods have already been
developed for analyzing the scattering from a two-dimensional
photonic crystal composed of arrays of dielectric or metallic
cylinders. The plane wave expansion method [1] may have
a slow convergence due to the discontinuity of the refractive
index. The finite difference and finite element methods can
be applied to general structures. In particular, high accuracy
can be obtained by the adaptive finite element method [2].
However, these methods are not very efficient, since they re-
quire a discretization of the domain. The cylindrical harmonic
expansion method [3], [4], [5], [6], [7], [8] is particularly
powerful, since it avoids a discretization of the domain by
expanding the solution around each cylinder as a series of
special analytic solutions of the governing equation and solves
these coefficients in a coupled linear system. The boundary
integral equation method [9] has a similar advantage, since
it only solves the wave field on surfaces of the cylinders.
For multi-layered structures, the scattering matrix formalism
[4] has been applied to the cylindrical harmonic expansion
method. If the number of layers is large, the Floquet mode
technique [6], [7] can be used.

Due to the periodicity of the structure along each array,
sophisticated lattice sums techniques [7], [10] are needed in
the cylindrical harmonic expansion method. In this paper, we
develop a simple and efficient method for computing the scat-
tering from a two-dimensional photonic crystal. Our method
relies on the cylindrical harmonic expansion to compute an
operator, namely, the Dirichlet-to-Neumann (DtN) map, that
maps the solution to its normal derivative on the boundary
of a square (or rectangle) surrounding each cylinder. The
DtN map is approximated by a matrix, the size of which is
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identical to the number of terms retained in the cylindrical
harmonic expansion. For multi-layered structures, we develop
a marching scheme based on a pair of operators. The efficiency
and accuracy of our method are demonstrated in a number of
numerical examples.

II. DIRICHLET-TO-NEUMANN MAP OF A UNIT CELL

For a two-dimensional structure specified by a z-
independent refractive index function n = n(x, y) and for
E polarized waves propagating in the xy-plane, we have the
following Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ k2

0n
2(x, y)u = 0, (1)

where u is the z-component of the electric field (the only
non-zero component). For the special case where a circular
cylinder of radius a is located at the origin in an otherwise
homogeneous medium, we have n = n1 for r < a and
n = n2 for r > a, where (r, θ) is the polar coordinate
system, n1 and n2 are the refractive indices of the cylinder and
the surrounding medium, respectively. Then, the Helmholtz
equation has the following general solution

u(x, y) =
∞∑

j=−∞
cjφj(r)eijθ, (2)

where φj is related to the Bessel functions Jj and Yj as

φj(r) =
{

Jj(k0n1r), r < a,
AjJj(k0n2r) + BjYj(k0n2r), r > a. (3)

The coefficients Aj and Bj can be solved from the following
two equations derived from the continuity of φ and φ′ at r = a:

Jj(k0n2a)Aj + Yj(k0n2a)Bj = Jj(k0n1a)
n2[J ′j(k0n2a)Aj + Y ′

j (k0n2a)Bj ] = n1J
′
j(k0n1a).

Notice that the derivatives of the Bessel functions are given
by

J ′j(s) = [Jj−1(s)− Jj+1(s)]/2,

Y ′
j (s) = [Yj−1(s)− Yj+1(s)]/2.

Given a closed curve Γ enclosing the cylinder, the Dirichlet-
to-Neumann (DtN) map is the operator Λ that maps u on Γ
to the normal derivative of u on Γ. That is

Λ u|Γ =
∂u

∂ν

∣∣∣∣
Γ

,

where ν is a unit normal vector of Γ. If we sample the curve
Γ by p points: (xk, yk) for k = 1, 2, ..., p, we can approximate
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Λ by a p× p matrix. Let (rk, θk) be the polar coordinates of
(xk, yk) and νk be a unit normal vector of Γ at (xk, yk), we
truncate (2) to p terms as

u =
p/2−1∑

j=−p/2

cjφj(r)eijθ or u =
(p−1)/2∑

j=−(p−1)/2

cjφj(r)eijθ

for an even or odd integer p, respectively. For an even integer
p, at the given points on Γ, we have

u(xk, yk) =
p/2−1∑

j=−p/2

cjφj(rk)eijθk , (4)

∂u

∂νk
(xk, yk) = νk ·

p/2−1∑
j=−p/2

cj∇[φj(rk)eijθk ] (5)

for k = 1, 2, ..., p, where

∇[φj(r)eijθ] = φ′(r)eijθ

[
cos θ
sin θ

]
+

ijφ(r)eijθ

r

[
− sin θ
cos θ

]
.

Equations (4) and (5) can be written in the following matrix
forms

~u = A~c, ~w = B~c,

where

~u = [u(x1, y1), u(x2, y2), ..., u(xp, yp)]
T

,

~c =
[
c− p

2
, c− p

2 +1, ..., c p
2−1

]T

,

~w =
[

∂u

∂ν1
(x1, y1),

∂u

∂ν2
(x2, y2), ...,

∂u

∂νp
(xp, yp)

]T

.

Therefore, we obtain a matrix approximation of the DtN map
Λ = BA−1, such that

~w = Λ~u.

Related to two-dimensional photonic crystals composed of
a square lattice, we consider the DtN map of a square unit
cell. In this case, the curve Γ is the boundary of the square
given by |x| < L/2 and |y| < L/2, where L/2 > a. For each
edge of the square, we choose N points. For example, on the
top edge of the square, the N points are(

−0.5L +
k − 0.5

N
L, 0.5L

)
, k = 1, 2, ..., N. (6)

Notice that the four corners of the square are avoided. The
normal derivative of Γ at these 4N points can be chosen as
the partial derivatives with respect to x (for the two vertical
edges at x = ±0.5L) or y (for the two horizontal edges at
y = ±0.5L). Since p = 4N , the (4N) × (4N) matrix Λ =
BA−1 can be calculated in O(N3) operations.

III. PROBLEM FORMULATION

We are concerned with the transmission and reflection of
periodic arrays of cylinders as in a two-dimensional photonic
crystal. This is a special case of the diffractive optics problem.
In this section, we recall the basic mathematical formulation
of this problem and write down matrix approximations to the
boundary conditions.

We consider the Helmholtz equation (1) in the entire xy
plane, but assume that n = nb for y < 0 and n = n0 for
y > D. For 0 < y < D, n(x, y) is periodic in x with period
L, i.e.,

n(x, y) = n(x + L, y), 0 < y < D.

For y > D, we have an incident wave

u(i)(x, y) = ei[α0x−β0(y−D)]

that propagates in decreasing y direction. Assuming that the
time dependence is e−iωt, we have β0 > 0. Let the angle
between the wave vector (α0,−β0) and the y axis be θ0, we
have

α0 = k0n0 sin θ0, β0 = k0n0 cos θ0.

The incident wave u(i) leads to a reflected wave u(r) and a
transmitted wave u(t) which can be written down as

u(r)(x, y) =
∞∑

j=−∞
Rje

i[αjx+βj(y−D)], y > D (7)

u(t)(x, y) =
∞∑

j=−∞
Tje

i[αjx−γjy], y < 0, (8)

where

αj = α0 +
2jπ

L
, βj =

√
k2
0n

2
0 − α2

j , γj =
√

k2
0n

2
b − α2

j .

Meanwhile, the periodicity of the structure in x leads to

u(L, y) = ρu(0, y),
∂u

∂x
(L, y) = ρ

∂u

∂x
(0, y), (9)

for ρ = eiα0L. The problem is to determine the transmission
and reflection coefficients {Tj , Rj}.

Boundary conditions at y = 0 and y = D can be written
down as [11]

∂u

∂y
= −iS̃bu, y = 0, (10)

∂u

∂y
= iS̃0u− 2iβ0e

iα0x, y = D, (11)

for two properly defined operators S̃0 and S̃b. For u(t) given
in (8), we have

∂u(t)

∂y
= −i

∞∑
j=−∞

γjTje
i(αjx−γjy).

Therefore, if we define a linear operator S̃b satisfying

S̃b eiαjx = γje
iαjx, j = 0,±1,±2, ... (12)

then, from the principle of superposition, we have ∂yu(t) =
−iS̃bu

(t). The boundary condition (10) is obtained, since u =
u(t) for y < 0 and both u and ∂yu are continuous at y = 0.
Similarly, the boundary condition (11) is obtained, if we define
the linear operator S̃0 by

S̃0 eiαjx = βje
iαjx, j = 0,±1,±2, ... (13)

Since αj = α0 + 2πj/L, the operator S̃b is related to a linear
operator Sb defined on the Fourier components as

Sb ei2πjx/L = γj ei2πjx/L, j = 0,±1,±2, ...
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Let f be a periodic function of x with period L given by its
Fourier series as

f(x) =
∞∑

j=−∞
f̂je

i2πjx/L. (14)

then

(Sbf)(x) =
∞∑

j=−∞
γj f̂je

i2πjx/L,

(S̃bf)(x) = eiα0xSb[e−iα0xf(x)].

Similarly,

(S0f)(x) =
∞∑

j=−∞
βj f̂je

i2πjx/L,

(S̃0f)(x) = eiα0xS0[e−iα0xf(x)].

If x is discretized by N points (say, xk for k = 1, 2, ..., N ),
the operators S̃b and S̃0 can be approximated by N × N
matrices. The Fourier series (14) is truncated to N terms and
approximated by the discrete Fourier transform:

f(xk) =
q∑

j=−q

ei2πjxk/Lf̂j , k = 1, 2, ..., N,

where q = (N − 1)/2 for an odd integer N . For an even
N , the integer j is truncated from −N/2 to N/2 − 1. This
gives rise to an N ×N matrix F , the (k, j′) entry of which
is ei2πjxk/L for j = j′ − 1− q. Therefore, the operator Sb is
approximated by the matrix

Sb = FDγF−1,

where Dγ is the diagonal matrix of γj for j = −q,−q+1, ..., q.
This leads to the matrix approximation:

S̃b = DαFDγF−1D−1
α ,

where Dα is the diagonal matrix of eiα0xk for k = 1, 2, ..., N .
Similarly, the matrix approximations of S0 and S̃0 are

S0 = FDβF−1, S̃0 = DαFDβF−1D−1
α ,

where Dβ is the diagonal matrix of βj for j = −q,−q +
1, ..., q.

To be consistent with the discretization (6) for computing
the DtN map of the unit cell, the x variable (now for 0 < x <
L) is discretized as

xk =
k − 0.5

N
L, k = 1, 2, ..., N.

The matrices S̃0 and S̃b can be easily calculated by a direct
evaluation of the formulas or using the Fast Fourier Transform
(FFT) in O(N3) or O(N2 log2 N) operations.

IV. OPERATOR MARCHING SCHEME

Many numerical methods [12], [13], [14], [15], [16], [17],
[2] have been developed for the diffractive optics problem.
Most of these methods are not specially designed for multi-
layers of circular cylinders as in photonic crystal problems.
In this section, we present a DtN operator marching method
that utilizes the DtN map Λ of the unit cell to avoid the
discretization of the interior of the unit cell completely. Our
method relies on additional operators Q, Y and M , where
Q and M are DtN maps defined in different context. These
operators can be approximated by relatively small matrices.

The boundary value problem (1,9,10,11) can be reformu-
lated as an initial value problem in y for the DtN map Q and
fundamental solution (FS) operator Y defined (at each y) by

Q(y) u(x, y) =
∂u

∂y
(x, y), Y (y) u(x, y) = u(x, 0),

where u is any solution of (1,9,10). Notice that condition (11)
is removed from the above definition. The operators Q and Y
satisfy some first order differential equations in y [18], [19],
[20]. The initial conditions can be obtained from (10) and the
definition of Y , that is:

Q(0) = −iS̃b, Y (0) = I, (15)

where I is the identity operator. If Q(D) and Y (D) are
calculated, we can find u at y = D for the specific incident
wave from (11). Therefore

[Q(D)− iS̃0]u(x,D) = −2iβ0e
iα0x. (16)

The reflected wave is obtained simply from

u(r)(x,D+) = u(x,D)− u(i)(x,D+). (17)

Meanwhile, the FS operator Y (D) gives

u(x, 0) = Y (D) u(x,D) (18)

and the above is exactly the transmitted wave u(t)(x, 0−).
For a multi-layered structure, we have different layers

separated in the y direction by y0, y1, ..., ym and they satisfy

0 = y0 < y1 < ... < ym = D.

In that case, we can find formulas that march Q and Y from
yj to yj+1, if we first calculate the following DtN map M of
the segment (yj , yj+1):

M

[
uj

uj+1

]
=

[
M11 M12

M21 M22

] [
uj

uj+1

]
=

[
∂yuj

∂yuj+1

]
(19)

where uj = u(x, yj), ∂yuj = ∂yu(x, yj), etc. We can re-
place ∂yuj and ∂yuj+1 above by Q(yj)uj and Q(yj+1)uj+1,
respectively, then eliminate uj . This gives rise to

Q(yj+1) = M22 + M21[Q(yj)−M11]−1M12. (20)

From the first equation in (19) and the condition Y (yj)uj =
Y (yj+1)uj+1 = u0, we obtain

Y (yj+1) = Y (yj)[Q(yj)−M11]−1M12. (21)
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In our case, we first calculate the DtN map Λ of the
rectangle given by 0 < x < L and yj < y < yj+1, that
is

Λ


uj

v0j

v1j

uj+1

 =


∂yuj

∂xv0j

∂xv1j

∂yuj+1

 , (22)

where

v0j(y) = u(0, y), v1j(y) = u(L, y), yj < y < yj+1.

The matrix operator Λ can be naturally partitioned as 4 × 4
blocks. From the second and third equations in (22) and the
condition (9), we can eliminate ∂xv0j and solve v0j . Then, we
insert v0j into the first and fourth equations in (22) and obtain

M =
[

Λ11 Λ14

Λ41 Λ44

]
+

[
C1D1 C1D2

C2D1 C2D2

]
, (23)

where C1, C2, D1, D2 are operators given by

C1 = Λ12 + ρΛ13

C2 = Λ42 + ρΛ43

D0 = ρΛ22 + ρ2Λ23 − Λ32 − ρΛ33

D1 = D−1
0 (Λ31 − ρΛ21)

D2 = D−1
0 (Λ34 − ρΛ24).

In conclusion, we start with Q(0) and Y (0) given in (15),
then march Q and Y in the y direction by (20) and (21). Once
Q(D) and Y (D) are obtained, we calculate the total field at
y = D by (16), the reflected wave by (17) and the transmitted
wave by (18). In each marching step, we need the operator
M which can be obtained from Λ as in (23). In the discrete
case, all operators are represented by matrices. If x ∈ (0, L)
is discretized by N points, the operators Q, Y and Mij all
become N ×N matrices. In each step, the marching formulas
(20) and (21) require O(N3) operations. The DtN operators Λ
and M can also be obtained in O(N3) operations. However, if
the segments are identical, the repeated calculations of Λ and
M can be avoided. For a structure with m layers, the total
required number of operations is O(mN3).

V. NUMERICAL EXAMPLES

To validate our method, we calculate the transmission and
reflection spectra for a number of examples and compare our
results with those published by other authors. We first consider
a square lattice of air-holes in a dielectric medium. As in [1],
we let

n0 = nb = n1 = 1, n2
2 = 2.1, a =

47.5
170

L,

where a is the radius of the air-holes. The structure has
m = 16 layers, so that yj = jL for j = 0, 1, ...,m. The air-
holes are located at the center of each unit square. For a normal
incident wave (thus, θ0 = 0, α0 = 0, β0 = k0n0 and ρ = 1),
we obtain the transmission spectrum as in Fig. 1 with N = 9.
The horizontal axis in Fig. 1 is the normalized frequency
ωL/(2πc), where c is the speed of light in vacuum. The
vertical axis is |T0|2, where T0 is the transmission coefficient
defined in (8). Our results are nearly identical to those in [1]
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Fig. 1. Transmission spectrum of a 16 layer air-holes in a dielectric medium
with refractive index n2 =

√
2.1.

where a plane wave expansion of 2700 terms are used. In
particular, Sakoda[1] observed some “singular” interference
patterns due to simultaneous excitation of two eigenmodes (as
in the bandgap calculation). In the third plot of Fig. 1, we
observe that the near singular interference pattern is in fact
smooth. To check the convergence, we calculate T0 at a fixed
normalized frequency ωL/(2πc) = 0.7 for N = 1, 2, 3, ..., 20.
Let T

(N)
0 be the T0 calculated with N points on each edge of

the unit cell, we use T
(20)
0 as a reference solution to define

the relative error EN = |T (N)
0 − T

(20)
0 |/|T (20)

0 |. In Fig. 2, we
plot the relative errors for N = 1, 2, .., 16. It is clear that the
errors decrease exponentially as N is increased.

For another example, we consider the photonic crystal
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Fig. 2. Exponential decrease of the relative error of the transmission
coefficient T0 with N for ωL/(2πc) = 0.7.

Fabry-Perot structure studied by Venakides et al. in [9]. There
are eight layers of dielectric cylinders in free space given
as a square lattice with a lattice constant L, except that the
distance between the fourth and fifth layers is increased to
3.6L. The radius and the refractive index of the cylinders
are a = 0.1524L and n1 =

√
12, respectively. To use the

techniques developed in section 3, we let

y0 = 0, yj = yj−1+L for 1 ≤ j ≤ 9, except y5 = y4+2.6L.

For one period 0 < x < L, the eight cylinders are located at
the center of the square unit cells given by yj−1 < y < yj for
1 ≤ j ≤ 9 but j 6= 5. The interval y4 < y < y5 corresponds
to the extra free space between the fourth and fifth layers of
cylinders. The DtN map of the square unit cell containing a
cylinder can be found by the procedure developed in section
2. For the rectangular region of the free space between y4

and y5, we can find its DtN map based on decomposing the
wave field as forward and backward components in y. For a
normal incident wave, we obtain the transmission spectrum
of the structure as shown Fig. 3. Our results are identical to

0.25 0.29 0.33 0.37 0.41 0.45 0.49

0

0.2

0.4

0.6

0.8

1

ωL/(2πc)

|T
0
|

Fig. 3. Transmission coefficient of the photonic crystal Fabry-Perot structure
studied in [9].

those in [9]. Venakides et al. developed a boundary integral
equation method that solves the wave field on surfaces of the
eight cylinders together.

Finally, we consider an example studied by Yasumoto et
al. in [7]. Two layers of dielectric cylinders are given in a
rectangular lattice. The distance between nearby cylinders in
the x direction (which extends to infinity periodically) is L,
but the distance in the y direction (between the two layers)
is 0.7L. The radius of the cylinders is a = 0.3L and the
refractive index of the cylinders is n1 =

√
2. Our calculations

with N = 9 confirm the results in [7]. The reflection spectrum
of this two layer periodic structure is shown in Fig. 4.

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

ωL/(2πc)
|R
0
|2

Fig. 4. Reflection spectrum of two layers of dielectric cylinders with a
reduced distance between the layers.

VI. CONCLUSIONS

We have developed a simple and efficient method for com-
puting transmission and reflection spectra of a 2-D photonic
crystal structures composed of cylinders or air-holes in a
medium. Our method uses the Dirichlet-to-Neumann (DtN)
map Λ of a unit cell to satisfy the continuity condition on edges
of the unit cells. The cylindrical harmonic expansion method
is used to find a matrix approximation of Λ. For multi-layered
structures, an operator marching scheme is developed based
on a pair of operators. Our method avoids the lattice sums
techniques needed in standard cylindrical harmonic expansion
methods. Numerical results suggest that the errors decrease
exponentially with N , where N is the number of collocation
points on each edge of the unit cell.
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