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For lamellar gratings and other layered periodic structures, the modal methods (including both analytic and

numerical ones) are often the most efficient, since they avoid the discretization of one spatial variable. The pseu-

dospectral modal method (PSMM) previously developed for in-plane diffraction problems of one-dimensional

gratings achieves high accuracy for a small number of discretization points, and it outperforms most other

modal methods. In this paper, an extension of the PSMM to conical diffraction problems is presented and im-

plemented. Numerical examples are used to demonstrate the high accuracy and excellent convergence property

of this method for both dielectric and metallic gratings.
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1. Introduction

Diffraction gratings and other periodic structures play important roles in photonics [1, 2]. For

design and optimization of grating structures, efficient numerical methods are needed. Although

general numerical methods such as the finite-difference time-domain method [3] and the finite

element method [4], are widely available, it is possible to develop more efficient numerical meth-

ods by taking advantage of the geometric features of the grating structure. Modal methods are

highly suitable for lamellar gratings and other layered periodic structures, where the field can be

expanded in eigenmodes in each layer. Modal methods include the analytic modal method [5–7]

and different kinds of numerical modal methods. For some problems, the analytic modal method

may be difficult to use, since it requires a systematic method for root-finding in the complex

plane. The Fourier modal method (FMM) [8–14] calculates the eigenmodes using expansions in
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Fourier series, and is extremely popular due to its simplicity. Over the years, other numerical

modal methods have also been developed, for example, based on the finite difference method

[15–17], piecewise polynomial expansions [18, 19], spline functions [20], etc. The pseudospectral

modal method (PSMM) [21–24] is relatively easy to implement and it outperforms most other

numerical modal methods. PSMM shares some principle with the polynomial expansion modal

methods, but it works on the wave field in physical space directly (instead of expansion co-

efficients), and is applicable to gratings with arbitrary piecewise smooth (instead of piecewise

constant) refractive index profiles. It is interesting to note that the most accurate implementa-

tion of the PSMM [23] uses numerically calculated modes even in the homogeneous media above

and below the grating layers.

So far, the PSMM has only been implemented for in-plane diffraction problems of one-

dimension (1D) gratings. For these problems, the structure and the electromagnetic field are

independent of one spatial variable (z in this paper), and the Maxwell’s equations are reduced

to scalar Helmholtz equations for two different polarizations. In this paper, we implement the

PSMM for conical diffraction of 1D gratings. In that case, the field depends on z as exp(iγ0z)

for a given γ0, and four field components are needed to solve the problem. Conical diffractions

are important for practical applications. Although some other modal methods (analytic, Fourier,

finite difference, etc) are already available for conical diffraction problems, it is worthwhile to

extend the PSMM, since it achieves high accuracy for in-plane diffraction problems. Numerical

results indicate that PSMM indeed outperforms the FMM and a high order finite difference

modal method (FDMM) for conical diffraction problems.

2. Formulation and modal method

We consider a two-dimensional non-magnetic periodic structure described by a dielectric function

ε(x, y). The structure is z invariant, as ε(x, y) is independent of z, and it is periodic in x with

period L. We also assume that the structure consists of a finite number of layers separated by

0 = y0 < y1 < · · · < yJ = D, such that ε = ε(j)(x) is y-independent for yj−1 < y < yj , i.e., in

the jth layer. In addition, we assume ε = ε(∗) for y > D and ε = ε(0) for y < 0, where ε(∗) and

ε(0) are constants. Notice that the periodic structure is actually restricted to 0 < y < D, and

the media above (y > D) and below (y < 0) the periodic structure are homogeneous. Here, we

consider x and y as the axes in the horizontal and vertical directions, respectively.

Let H be the magnetic field multiplied by the free space impedance, the frequency domain
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Maxwell’s equations for the time dependence exp(−iωt) are

∇×E = ik0H, ∇×H = −ik0εE, (1)

where E is the electric field and k0 is the free space wavenumber. For conical diffraction, the

electromagnetic field is assumed to have a simple z dependence exp(iγ0z), where γ0 is a given

constant. To study conical diffraction problems, we need the four components Ex, Hx, Ez and

Hz. On the horizontal interfaces between different layers, i.e, at y = yj for 0 ≤ j ≤ J , we need

to enforce the continuity of these four components.

For a given plane incident wave in the top region (y > D), our objective is to calculate the

reflected and transmitted waves in the top and bottom (y < 0) regions. Let the wave vector of

the incident wave be (α0,−β(∗)0 , γ0), where β
(∗)
0 > 0 and α2

0 + [β
(∗)
0 ]2 + γ20 = k20ε

(∗), the reflected

and transmitted waves can be expanded in plane waves with wave vectors (αl, β
(∗)
l , γ0) and

(αl,−β(0)l , γ0) respectively, where

αl = α0 + 2πl/L, β
(∗)
l = [k20ε

(∗) − α2
l − γ20 ]

1/2, β
(0)
l = [k20ε

(0) − α2
l − γ20 ]

1/2, (2)

and l is any integer.

Since the structure consists of a few layers, where each layer is y independent, it is natural to

use the modal method. To simplify the presentation, we follow our previous work [16] and skip

the derivations. In the jth layer where ε = ε(j)(x), we need to solve two eigenvalue problems.

The first problem is for eigenfunction φ and eigenvalue δ2:

ε
d

dx

(

1

ε

dφ

dx

)

+ (k20ε− γ20)φ = δ2φ, 0 < x < L, (3)

φ(L) = ρφ(0), (4)

1

ε(L−)

dφ

dx
(L−) =

ρ

ε(0+)

dφ

dx
(0+), (5)

where ρ = eiα0L. The second eigenvalue problem is for ψ and ν2:

d2ψ

dx2
+ (k20ε− γ20)ψ = ν2ψ, 0 < x < L, (6)

ψ(L) = ρψ(0), (7)

dψ

dx
(L) = ρ

dψ

dx
(0). (8)

Each of these eigenvalue problems gives rise to an infinite sequence of eigenpairs. We denote the

eigenpairs by {φm, δ2m} and {ψm, ν
2
m} for m = 1, 2, 3, · · · , then the x and z components of the
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electromagnetic field are given by

Ex(x, y) =

∞
∑

m=1

γ20 + δ2m
ε(x)

φm(x)
[

ame
iδm(y−yj−1) + bme

−iδm(y−yj)
]

, (9)

Hx(x, y) =

∞
∑

m=1

(γ20 + ν2m)ψm(x)
[

cme
iνm(y−yj−1) + dme

−iνm(y−yj)
]

, (10)

Ez(x, y) =

∞
∑

m=1

iγ0
ε(x)

dφm(x)

dx

[

ame
iδm(y−yj−1) + bme

−iδm(y−yj)
]

(11)

+

∞
∑

m=1

k0νmψm(x)
[

cme
iνm(y−yj−1) − dme

−iνm(y−yj)
]

,

Hz(x, y) =

∞
∑

m=1

−k0δmφm(x)
[

ame
iδm(y−yj−1) − bme

−iδm(y−yj)
]

(12)

+

∞
∑

m=1

iγ0
dψm(x)

dx

[

cme
iνm(y−yj−1) + dme

−iνm(y−yj)
]

.

For simplicity, we have removed the z dependence eiγ0z in the above expansions. Notice that the

eigenfunctions, eigenvalues and coefficients are specific to the jth layer. To be more precise, we

should add a subpscript (j) to these quantities, that is, φ
(j)
m , δ

(j)
m , ψ

(j)
m , ν

(j)
m , a

(j)
m , b

(j)
m , c

(j)
m and

d
(j)
m .

In the top and bottom regions, the field components are expanded in plane waves which are

related to the eigenfunctions. For the top region, the eigenvalue problems (3-5) and (6-8) have

the trivial solutions:

φl = ψl = eiαlx,

δ2l = ν2l = k20ε
(∗) − γ20 − α2

l ,

where l is any integer. The case for the bottom region is similar.

3. Pseudospectral modal method

To solve the eigenvalue problems (3-5) and (6-8), we use the Chebyshev pseudospectral method

[25]. A detailed description of the method is given in [22]. In the following, we briefly summarize

the main steps for problem (3-5).

First, we need to identify the discontinuities of ε along the x axis. The grating structure has

a few layers, and the dielectric function ε is assumed to be piecewise smooth in each layer. If

the discontinuities are located at x0, x1, · · · , xP satisfying 0 = x0 < x1 < · · · < xP = L, then we
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discretize the pth segment xp−1 < x < xp by

ξp,k = xp−1 +
xp − xp−1

2

[

1− cos

(

kπ

qp

)]

, 0 ≤ k ≤ qp, (13)

where qp is a positive integer, ξp,0 = xp−1 and ξp,qp = xp. The Chebyshev pseudospectral method

gives us a matrix Cp, such that











φ′(x+p−1)

φ′
p

φ′(x−p )











≈ Cp











φ(xp−1)

φp

φ(xp)











, (14)

where φp is a column vector for φ at the interior points {ξp,k : 1 ≤ k ≤ qp−1}, and φ′ = dφ/dx.

We can use Cp, 1 ≤ p ≤ P , to evaluate one-side limits of φ′ at all discontinuity points, set

up a system of equations based on the continuity of 1
εφ

′ and the quasi-periodic conditions (4-5),

and obtain a matrix A0 such that

















φ(x0)

φ(x1)
...

φ(xP )

















≈ A0

















φ1

φ2

...

φP

















. (15)

The above equation relates the eigenfunction at the discontinuity points to the eigenfunction at

all interior points {ξp,k : 1 ≤ k ≤ qp − 1, 1 ≤ p ≤ P}. The total number of interior points is

N = (q1−1)+(q2−1)+ · · · =
∑P

p=1 qp−P . When the governing equation (3) is discretized at all

N interior points based on the differentiation matrices Cp, 1 ≤ p ≤ P , we obtain the following

matrix eigenvalue problem

A

















φ1

φ2

...

φP

















= δ2

















φ1

φ2

...

φP

















. (16)

The discretization process involves φ at the discontinuity points, but they have been eliminated

using Eq. (15). When the matrix eigenvalue problem (16) is solved, we can use Eq. (15) again to

find the eigenfunction at the discontinuity points and use Eq. (14) to find the derivative of the

eigenfunctions. In the top and bottom homogeneous regions, although the eigenvalue problems

have simple analytic solutions, we also calculate numerical eigenfunctions and eigenvalues based

on the same discretization points and the same Chebyshev pseudospectral method.



October 13, 2013 15:14 Journal of Modern Optics jmo˙d4

6

After the numerical eigenmodes for each layer are found, we can evaluate Ex, Hx, Ez and

Hz at the N interior points on both sides of the horizontal interfaces, i.e. at y = y±j for 0 ≤
j ≤ J . Of course, these vector representations involve the four sets of unknown coefficients

{a(j)m , b
(j)
m , c

(j)
m , d

(j)
m : 1 ≤ m ≤ N} for each layer (i.e. 1 ≤ j ≤ J), as well as the unknown

reflection and transmission amplitudes in the top and bottom regions. The continuity of these

four components gives rise to a linear system for all 4(J+1)N unknowns. From the reflection and

transmission amplitudes, we can find the diffraction efficiencies. The method requires O(JN3)

operations for computing the eigenmodes in different layers and for solving the final linear

system. Typically, the required CPU time is dominated by the computation of the eigenmodes.

The memory requirement is O(JN2).

4. Numerical examples

In this section, we present a few numerical examples to validate and illustrate the accuracy of

our conical PSMM. The first example is shown in Fig. 1(a). It is a metallic lamellar grating with

y

D

x

ε(∗ )

L ε(0)

W
(a)

L

W

D
x

y

ε(∗ )
(b)

ε(0)

x

y

L ε(0)

ε(∗ )

D/3

D/3

D/3

w
1

w
2

w
3

(c)

Figure 1. (a) A metallic lamellar grating. (b) A dielectric lamellar grating. (c) A metallic grating with three layers.

L = D = 1µm and W = 0.5µm, where L is the period, D is the depth of the grooves, and W is
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the width of the ridges. For this structure, we consider a plane incident wave with a free space

wavelength λ = 0.5µm and an incident wave vector (α0,−β(∗)0 , γ0) = k0(
√
2/4,−

√
3/2,

√
2/4),

where k0 = 2π/λ = 4π (µm)−1. The electric field of the incident wave is given by

E(i)(x, y, z) =











√
3/4− 1/2
√
2/4

√
3/4 + 1/2











exp{i[α0x− β
(∗)
0 (y −D) + γ0z]}.

The magnetic field of the incident wave can be easily obtained using the Maxwell’s equations.

We assume that the dielectric constant of the metal is ε(0) = (0.1+5.0i)2 and the medium above

the grating is air (thus ε(∗) = 1). This problem has been previously analyzed by an analytic

modal method [7] and a boundary integral equation (BIE) method [27]. For this incident wave,

the grating has four propagating diffraction orders in the reflected wave. In Table 1 we compare

Table 1. Metallic lamellar grating: diffraction

efficiency of the zeroth reflected order com-

puted by the FMM, FDMM and PSMM.

N FMM FDMM PSMM

96 0.441907 0.44083 0.44157307

192 0.441605 0.44133 0.44158363

300 0.441572 0.44144 0.44158516

384 0.441566 0.44148 0.44158551

492 0.441567 0.44151 0.44158569

600 0.441570 0.44153 0.44158578

768 0.441573 0.44156 0.44158584

the diffraction efficiency of the zeroth reflected order obtained by the FMM, a high order FDMM

[16] and our conical PSMM. For FDMM and PSMM, the integer N is the number of points for

discretizing one period in x. For FMM, N is the total number of retained terms in the Fourier

series. For all three methods, N is also the size of the matrices in the resulting matrix eigenvalue

problems. Since all three methods require O(JN3) operations for solving the eigenvalue problems

and the final linear systems, it is fair to compare the methods for the same N . For N ≥ 384,

all PSMM results round to the same six digits R0 = 0.441586. Notice that for N = 192, we get

R0 = 0.441584 and it is already very accurate. In contrast, both FMM and FDMM can only

reach the first four correct digits when N = 768. These results agree with the previous result

given in [27].

The second example is the dielectric lamellar grating shown in Fig. 1(b). The dielectric constant
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of the medium is ε(0) = 2.252, and the medium above the grating is air (i.e. ε(∗) = 1). The

geometric parameters are L = 1µm and D =W = 0.5µm. For this structure, we specify a plane

incident wave with the electric field

E(i)(x, y, z) =











1/2 + i/
√
2

1/
√
2

1/2− i/
√
2











exp{i[α0x− iβ
(∗)
0 (y −D) + γ0z]},

where (α0,−β(∗)0 , γ0) = k0(1/2,−1/
√
2, 1/2) and k0 = 4π (µm)−1, i.e. the free space wavelength

is λ = 0.5µm. This problem has been analyzed before by the analytic modal method [7] and the

BIE methods [26, 28]. For the above incident wave, there are five propagating diffraction orders

in the transmitted wave. In Table 2 we list the diffraction efficiencies of the first and zeroth

Table 2. Dielectric lamellar grating:

diffraction efficiencies of the first and

zeroth transmitted orders computed by

the PSMM.

N T1 T0

60 0.378262173 0.1419188289

100 0.378266145 0.1419195190

200 0.378267520 0.1419195448

300 0.378267708 0.1419195324

400 0.378267761 0.1419195273

500 0.378267782 0.1419195249

600 0.378267792 0.1419195237

700 0.378267798 0.1419195230

800 0.378267801 0.1419195225

900 0.378267803 0.1419195223

1000 0.378267805 0.1419195221

transmitted orders computed by the PSMM with different values of N . It can be seen that when

N = 200, we obtain a solution with six correct digits T1 ≈ 0.378268, and when N = 400, we

get a solution with seven correct digits T1 ≈ 0.3782678. This agrees with the previous results

T1 = 0.37826780866 given in [28], T1 = 0.37827 given in [7], and T1 = 0.3783 given in [26].

Finally, we consider the three-layer metallic grating shown in Fig. 1(c). This structure has

been studied before by Zolla et al. [29]. It is assumed that the dielectric constant of the metal is

ε(0) = (1 + 10i)2, the medium above the grating is air (i.e., ε(∗) = 1), the period of the grating

is L = 2π µm, the total height of the grating is D, the height of each layer is D/3, the widths

of the metal in the layers are w1 = 3π/4µm, w2 = π/2µm, and w3 = π/4µm, respectively. We
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specify a plane incident wave with the electric field given by

E(i)(x, y, z) =











1/2 +
√
2/4

1/2

1/2−
√
2/4











exp{i[α0x− β
(∗)
0 (y −D) + γ0z]}

where (α0,−β(∗)0 , γ0) = k0(1/2,−
√
2/2, 1/2). In Fig. 2, we show the zeroth, minus first and

3 4 5 6 7 8 9
0

0.5
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Wavelength of incident wave: λ (µm) for D=0.6µm
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0

0.5

1

Wavelength of incident wave: λ (µm) for D=3µm
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ie
nc

ie
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R
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R
−1

R
−2

R
−1

R
−2

Figure 2. Dependence of reflected diffraction efficiencies R0, R−1 and R−2 on free space wavelength λ for (a) D = 0.6µm,

and (b) D = 3µm.

minus second reflected diffraction efficiencies R0, R−1 and R−2 as functions of the free space

wavelength λ for D = 0.6µm and D = 3µm. Our results show a good agreement with those

reported in [29]. Notice that the number of propagating reflected diffraction orders changes in

the wavelength range shown in the figures, thus R−1 and R−2 cease to exist when the wavelength

is too large. To check the convergence of our method, we fix D = 0.6µm and λ = 6µm, and

compare numerical solutions for different values of N . The results for R0 and R−1 are listed in

Table 3. It appears that a solution for R0 with six correct digits, i.e., R0 ≈ 0.782458, can be

obtained with N = 234.

5. Conclusion

In the previous sections, we presented a PSMM for analyzing conical diffraction of gratings.

The method is an extension of the PSMM [21–24] developed for in-plane diffraction problems.

Following the approach of Granet [23], we use numerical eigenmodes even in the homogeneous

media above and below the grating layer, and match the field on horizontal interfaces at all
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Table 3. Metallic lamellar grating in

a conical mounting: diffraction effi-

ciency of zeroth and minus-first re-

flected order.

N R0 R−1

54 0.78244768 0.16936466

84 0.78246492 0.16934320

144 0.78245970 0.16933706

174 0.78245889 0.16933624

234 0.78245809 0.16933565

294 0.78245779 0.16933540

354 0.78245766 0.16933527

414 0.78245758 0.16933520

474 0.78245754 0.16933516

534 0.78245752 0.16933513

discretization points. The method is suitable for gratings with one or a few layers where each

layer is invariant in the vertical direction perpendicular to the grating layer. It delivers high

accuracy for relatively small number of discretization points and shows good convergence for

both dielectric and metallic gratings. The method clearly outperforms the standard FMM and

our own high order FDMM [16], and it is easy to implement.

This version of the PSMM becomes less competitive if the grating has many layers and the

dielectric function has many different vertical discontinuities, since the discretization points are

identical for all layers and must cluster around each discontinuous point. In that case, it may be

more efficient to use different discretization points for different layers and matching the Fourier

coefficients of the field on horizontal interfaces [22]. Alternatively, we may use the PSMM for

each layer separately to calculate the scattering matrix of the layer, then use the scattering

matrix method to find the final solution. Like most modal methods, the PSMM is not suitable

if the dielectric function has general (not just vertical and horizontal) discontinuity curves. In

that case, other methods, such as the BIE method, are more appropriate.
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