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For numerical modeling of optical wave-guiding structures, perfectly matched

layers (PMLs) are widely used to terminate the transverse variables of the

waveguide. The PML modes are the eigenmodes of a waveguide terminated

by PMLs and they have found important applications in the mode matching

method, the coupled mode theory, etc. In this paper, we consider PML

modes for two-dimensional slab waveguides. It is shown that the PML modes

consist of perturbed propagating modes, perturbed leaky modes and two

infinite sequences of Berenger modes. High order asymptotic solutions for the

Berenger modes are derived using a systematic approach. c© 2013 Optical

Society of America
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1. Introduction

For numerical simulation of waves, the perfectly matched layer (PML) [1] is a very powerful

and extremely popular technique for truncating unbounded domains. While PML was orig-

inally introduced in the time domain, it is particularly easy to use in the frequency domain

as a complex coordinate stretching [2]. Since typical optical waveguides are open structures

with unbounded transverse directions, the PML is ideal for truncating the transverse vari-

ables. The PML technique was first applied to optical waveguides in a beam propagation

method [3] and a leaky mode solver [4]. It also found an important application in the mode

matching (or eigenmode expansion) method [5–8]. More recently, it has been applied in a

new version of the coupled mode theory [9] and a scattering matrix formalism for modeling

photonic integrated circuits [10].

The mode matching method [11–14] is widely used for numerical simulation of lightwaves

propagating in optical wave-guiding structures. The standard mode matching method as-

sumes that the structure can be divided into z-invariant segments, where z is a variable
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along the main propagation direction. In each segment, the wave field is decomposed as a

sum of the forward and backward components and these components are expanded in the

eigenfunctions of the local transverse operator. For open optical waveguides, the exact eigen-

function expansion involves an integral related to the continuous spectrum of radiation and

evanescent modes, and it is difficult to handle numerically. It turns out that PML is an ef-

fective method for discretizing the continuous spectrum [15]. When the transverse variables

are terminated by PMLs, the waveguide supports a discrete sequence of eigenmodes (which

will be called PML modes). The field in the waveguide can then be expanded in the PML

modes [5–7]. The completeness of the PML modes has been studied in [16]. Meanwhile, the

PML modes gives an efficient series expansion for the Green’s function [17]. The new coupled

mode theory [9] and scattering matrix formalism [10] also rely on the PML modes.

The PML modes are defined as the eigenfunctions of the transverse operator modified

by the PMLs. Although it is often necessary to solve the PML modes numerically, it is

helpful to understand their analytic properties. In particular, it is useful to know how the

eigenvalues of the PML modes are distributed in the complex plane. Rogier et al. derived

leading order asymptotic solutions for the PML modes in optical fibers [18, 19] and in two-

layer waveguides with one side bounded by a perfect electric (or magnetic) conductor [19,20].

They also classified the PML modes as finite number of perturbed propagating modes, an

infinite sequence of perturbed leaky modes, and a remaining sequence of modes (the Berenger

modes). However, these studies do not cover the important case of three-layer slab waveguides

consisting of a core, a cladding and a substrate. In an early work [21], we derived perturbation

results for the PML propagating modes of a slab waveguide. When a PML of finite thickness

is used, the propagating modes are slightly modified. In particular, the propagation constants

are complex in general, leading to unphysical growth or attenuation along the waveguide axis.

Therefore, it is necessary to use PMLs carefully, if a long propagation distance is involved.

In another work [22], we derived asymptotic solutions for the leaky modes of original slab

waveguides (without PMLs).

In this paper, we develop an asymptotic theory for the PML modes of a three-layer

slab waveguide, where PMLs are needed for both sides of the transverse direction. Simi-

lar to the cases studied in [18, 20], the PML modes consist of finite number of perturbed

propagating modes, an infinite sequence of perturbed leaky modes, and infinite number of

Berenger modes. However, the Berenger modes consist of two infinite sequences with differ-

ent asymptotic phase angles (in general). It turns out that the PML leaky modes have the

same asymptotic solutions as the original leaky modes [22]. Each Berenge mode sequence is

asymptotically identical to the Berenger modes of a two-layer waveguide. The first two-layer

waveguide has the core and the cladding of the original slab waveguide, and the second two-

layer waveguide has the core and the substrate. In the following sections, we justify these
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claims and systematically derive high order asymptotic solutions for the Berenger modes.

2. Transverse electric modes

Consider a two-dimensional slab waveguide with its axis in the z direction and a refractive

index profile given by

n(x) =











n1, x < b1;

n0, b1 < x < b2;

n2, x > b2,

(1)

where n0, n1 and n2 are the refractive indices of the waveguide core, the substrate and the

cladding, respectively. A schematic of the waveguide is shown in Fig. 1. We assume that

Fig. 1. A slab waveguide terminated by PMLs.

b1 ≤ 0 ≤ b2 and n0 > max{n1, n2}. The width of the waveguide core is b2 − b1. The PMLs

are introduced by a complex coordinate stretching

x̂ =
∫ x

0
s(τ) dτ, s(x) = 1 + iσ(x) (2)

where σ (a dimensionless function) satisfies σ(x) = 0 for c1 ≤ x ≤ c2 and σ(x) > 0 otherwise,

c1 and c2 satisfy the condition c1 ≤ b1 < b2 ≤ c2. The transverse variable x is terminated at

x = d1 and x = d2, where d1 < c1 and d2 > c2. The actual PML layers correspond to the

intervals (d1, c1) and (c2, d2) where s(x) 6= 1.

For a PML mode in the transverse electric (TE) polarization, the y component of the

electric field is Ey = φ(x)eiβz, where φ (the mode profile) and β (the propagation constant)
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satisfy the following eigenvalue problem:

1

s

d

dx

(

1

s

dφ

dx

)

+ k2
0n

2φ = β2φ, d1 < x < d2, (3)

φ(d1) = φ(d2) = 0. (4)

In the above, the time dependence is assumed to be e−iωt for an angular frequency ω, and

k0 is the free space wavenumber. A simple zero boundary condition is used at x = d1 and

x = d2.

Let γ0, γ1 and γ2 be given by

γj =
√

k2
0n

2
j − β2, j = 0, 1, 2, (5)

where the complex square root follows the standard definition, namely, if a = |a|eiθ for

−π < θ ≤ π, then
√
a =

√

|a|eiθ/2. For this choice, the negative real axis is the branch

cut and the real part of
√
a is always non-negative. Since the refractive index is piecewise

constant, Eq. (3) is reduced to
d2φ

dx̂2
+ k2

0n
2
jφ = β2φ (6)

for b1 < x < b2 (j = 0), d1 < x < b1 (j = 1), and b2 < x < d2 (j = 2), respectively. Using the

analytic solutions of these equations and matching φ and dφ/dx at the interfaces, we arrive

at the following nonlinear equation for β2:

γ0 − iγ1 cot(ρ1γ1)

γ0 + iγ1 cot(ρ1γ1)
· γ0 − iγ2 cot(ρ2γ2)

γ0 + iγ2 cot(ρ2γ2)
= e2i(b1−b2)γ0 , (7)

where

d̂j = x̂(dj) = dj + i
∫ dj

cj
σ(τ) dτ, (8)

ρ1 = b1 − d̂1, ρ2 = d̂2 − b2. (9)

Notice that both the real and the imaginary parts of ρ1 and ρ2 are positive. Therefore,

ρ1 = |ρ1|eiϕ1 , ρ2 = |ρ2|eiϕ2 , (10)

where ϕ1, ϕ2 ∈ (0, π/2).

For a symmetric slab waveguide (n1 = n2), if we use identical PML profiles in both positive

and negative x directions, Eq. (7) can be simplified. More precisely, if the slab waveguide is

symmetric, we can assume b1 = −b2, c1 = −c2, d1 = −d2 and σ(−x) = σ(x), then γ1 = γ2,

d̂1 = −d̂2 and Eq. (7) is reduced to

γ0 − iγ1 cot(ρ1γ1)

γ0 + iγ1 cot(ρ1γ1)
= ±ei(b1−b2)γ0 . (11)
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Our objective is to find asymptotic solutions of Eq. (7) or Eq. (11) assuming that |β| is large.
To derive asymptotic solutions, we consider a sequence of β with a convergent phase

angle. More precisely, let {βm : m = 0, 1, 2, · · ·} be a sequence of solutions of Eq. (7) and

β2
m = |β2

m|eiθm where θm is the phase angle of β2
m, then we require

lim
m→∞

|βm| = ∞ and lim
m→∞

θm = θ∗.

We further assume that β2
m is in the upper half complex plane, i.e., 0 < θm < π, then

k2
0n

2
j − β2

m (for 0 ≤ j ≤ 2) is in the lower half plane, and γj given in (5) is in the fourth

quadrant. Therefore, if |βm| is large, we have

γj = |βm|ei(θm−π)/2
√

1− k2
0n

2
j/β

2
m. (12)

This leads to

ρjγj = |ρjβm|ei(θm/2+ϕj−π/2)
√

1− k2
0n

2
j/β

2
m (13)

for j = 1, 2. By considering different values of θ∗, we can simplify Eq. (7) and find the

asymptotic solutions.

The first sequence corresponds to θ∗ = π. In that case, Im(ρjγj) → +∞, thus cot(ρjγj) →
−i exponentially. As a result, Eq. (7) is simplified to

γ0 − γ1
γ0 + γ1

· γ0 − γ2
γ0 + γ2

≈ e2i(b1−b2)γ0 . (14)

It turns out that Eq. (14) is exactly the same transcendental equation for the leaky modes

of the slab waveguide. The asymptotic solutions of the leaky modes have been derived in our

previous work [22].

Two more sequences can be found for 0 < θ∗ < π. From (12), it is clear that Im(γ0) → −∞,

Re[2i(b1 − b2)γ0] → −∞, thus e2i(b1−b2)γ0 → 0 exponentially. If θ∗ 6= π − 2ϕj for j = 1 or

2, then Im(ρjγj) → ±∞, cot(ρjγj) → ∓i exponentially, so the left hand side of (7) can be

simplified, but it does not converge to 0 exponentially. On the other hand, if θ∗ = π − 2ϕj

for j = 1 or j = 2, Eq. (7) is approximated by

γ0 − iγj cot(ρjγj) ≈ 0. (15)

This is the same as
γ0 − γj
γ0 + γj

≈ e2iρjγj . (16)

The above equation gives rise to one sequence of Berenger modes for each j. Notice that

Eq. (16) involves only two layers: the waveguide core and the substrate (j = 1), or the

waveguide core and the cladding (j = 2). In fact, if we consider a two-layer waveguide
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consisting the core and the cladding (for x > b1), use a perfectly electric conductor boundary

at x = b1, i.e., φ(b1) = 0, we get the following transcendental equation for the TE modes

γ0 − iγ2 cot(ρ2γ2)

γ0 + iγ2 cot(ρ2γ2)
= −e2i(b1−b2)γ0 . (17)

For a sequence with the a converging phase angle θ∗ ∈ (0, π), Eq. (17) also gives rise to

Eq. (16) for j = 2.

Leading order asymptotic solutions for two-layer waveguides have been derived before [20].

Higher order asymptotic solutions of Eq. (16) can be derived using a systematic approach

developed in our previous work [22]. They are most conveniently given in terms of γj. The

propagation constant β can be evaluated from β2 = k2
0n

2
j − γ2

j . Furthermore, these solutions

are related to the Lambert W functions [23]. For a complex number ξ, the Lambert W

function W (ξ) is a multi-valued function satisfying W (ξ)eW (ξ) = ξ. For an integer p, the pth

branch of the Lambert W function is denoted as LambertW(p, ξ). Let

δj = k2
0(n

2
0 − n2

j), Wj = LambertW(p,± iρj
2

√

δj),

then an asymptotic solution of Eq. (16) is

γj ≈
Wj

A0

− A0A2

W 2
j

− A2
0A3

W 3
j

− A3
0A4

W 4
j

, (18)

where

A0 = iρj, A2 =
δj
4
, A3 = − δj

4A0

,

A4 =
δj
4A2

0

− δ2j
16

.

The definition of Wj above involves an integer p (branch index) and a plus or minus sign.

To be consistent with our assumption 0 < θ∗ < π, we require that Im(Wj) > 0. From the

properties of the Lambert W functions, this requirement leads to the following choices: we

take the negative sign for p = 0 and both signs for p > 0. For a symmetric slab waveguide, if

the PML is also placed symmetrically, these two sequences are identical, thus the Berenger

modes are asymptotically degenerate.

Finally, we note that no asymptotic solutions exist for −π < θ∗ ≤ 0. The case θ∗ = 0

may be considered under the assumption 0 < θm < π, but the left and right sides of (7)

cannot balance. On the other hand, it can be shown that there is no solution sequence with

−π < θm ≤ 0.
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3. Transverse magnetic case

For a transverse magnetic (TM) mode, the y-component of the magnetic field Hy can be

written as φ(x)eiβz, where the mode profile φ and the propagation constant β satisfy

n2

s

d

dx

(

1

sn2

dφ

dx

)

+ k2
0n

2φ = β2φ, d1 < x < d2 (19)

φ(d1) = φ(d2) = 0. (20)

As before, we assume that the PMLs are terminated by a simple zero boundary condition

at x = d1 and d2. Similar to the TE case, it is easily shown that the propagation constant β

satisfies the following nonlinear equation:

µ0 − iµ1 cot(ρ1γ1)

µ0 + iµ1 cot((ρ1γ1)
· µ0 − iµ2 cot(ρ2γ2)

µ0 + iµ2 cot(ρ2γ2)
= e2i(b1−b2)γ0 , (21)

where µj = γj/n
2
j for j = 0, 1, 2. As in the previous section, we consider a sequence of

solutions, β2
m = |βm|2eiθm for m = 0, 1, 2, ..., such that |βm| → ∞ and θm → θ∗ as m → ∞.

For different values of θ∗, we simplify Eq. (21) and find the asymptotic solutions.

The first case is θ∗ = π. After removing some exponentially small terms, Eq. (21) is reduced

to
µ0 − µ1

µ0 + µ1

· µ0 − µ2

µ0 + µ2

≈ e2i(b1−b2)γ0 . (22)

This is the transcendental equation of the TM leaky modes and its asymptotic solutions are

already obtained [22]. Therefore, the first sequence of PML modes is asymptotically identical

to the leaky modes.

For 0 < θ∗ < π, we can find two sequences, for which Eq. (21) is reduced to

µ0 − iµj cot(ρjγj) ≈ 0, j = 1 or 2. (23)

This leads to
µ0 − µj

µ0 + µj

≈ e2iρjγj , j = 1 or 2. (24)

For the above equation, we take the logarithm for both sides, expand the right hand side in

inverse powers of γj, and get

2iρjγj = B0 −
B1

γ2
j

+
B2

γ4
j

+ ... (25)

where

B0 = ln

(

n2
0 − n2

j

n2
0 + n2

j

)

+ (2m+ 1)πi, m ≥ 0,

B1 =
k2
0n

2
0n

2
j

n2
0 + n2

j

,

B2 =
k4
0n

2
0n

2
j(n

4
j − 3n4

0)

4(n2
0 + n2

j)
2

.
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If we solve Eq. (25) iteratively, we obtain the following approximate formulas:

γj ≈ γ
(0)
j =

B0

2iρj
, (26)

γj ≈ γ
(1)
j =

B0

2iρj
− 2iρjB1

B2
0

, (27)

γj ≈ γ
(2)
j =

1

2iρj



B0 −
B1

(γ
(1)
j )2

+
B2

(γ
(1)
j )4



 . (28)

4. Examples

In this section, we check the accuracy of our asymptotic solutions for two examples. The first

example is an unsymmetric slab waveguide. The refractive indices of the core, the substrate

and the cladding are n0 = 3.3, n1 = 3.17 and n2 = 1, respectively. The width of the core is

0.8µm. The PMLs in the substrate and the cladding are placed at 0.8µm and 0.4µm from

the boundaries of the core respectively, and their widths are both 0.1µm. The geometric

parameters are d1 = −0.9µm, c1 = −0.8µm, b1 = 0µm, b2 = 0.8µm, c2 = 1.2µm, and

d2 = 1.3µm. The PML profile is given by

σ(x) =
Cjη

3

1 + η2
, η =

x− cj
dj − cj

, j = 1, 2, (29)

for x between cj and dj. The coefficients of σ(x) are given by C1 = C2 = 16. The second

example is a symmetric slab waveguide. The refractive indices of the core and the cladding

are n0 = 3.4 and n1 = n2 = 1, respectively. The widths of the core and the PMLs are

0.6µm and 0.1µm, respectively. The distance between the PMLs and the core is 0.4µm. The

geometric parameters are b2 = −b1 = 0.3µm, c2 = −c1 = 0.7µm, and d2 = −d1 = 0.8µm.

The coefficients of σ(x) are C1 = C2 = 16. For both examples, we assume the free space

wavelength is λ = 1.55µm.

In Fig. 2, we compare the exact and approximate propagation constants of the TE Berenger

modes for the two example. The approximate solutions are calculated by formula (18) and

the exact solutions are obtained by solving (7) or (11). For the first example, two sequences

corresponding to j = 1 and j = 2 can be identified in Fig. 2 (left). For the second example,

the asymptotic solutions are doubly degenerate, but the exact solutions are not. Each asymp-

totic solution corresponds to two slightly different Berenger modes. To show the accuracy

of the asymptotic solutions more clearly, we list some exact solutions and the relative errors

of the asymptotic solutions in Table 1 and Table 2. For the second example, the two exact

propagation constants corresponding to the same asymptotic solution are grouped together.

For the TM case, we compare the exact and approximate propagation constants in Fig. 3 and

list the exact propagation constants and relative errors of the asymptotic solutions of some

Berenger modes in Tables 3 and 4. Similar to the TE case, we list the two exact values corre-
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Fig. 2. Comparison of the exact (marked by “+”) and approximate (marked

by “o”) propagation constants of the TE Berenger modes.
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Fig. 3. Comparison of the exact (marked by “+”) and approximate (marked

by “o”) propagation constants of the TM Berenger modes.
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Sequence Exact βm/k0 R.E. of (18)

1 1.43929148+ 6.63289452i 0.21×10−1

1 1.61322522+ 7.59678078i 0.89×10−2

1 1.78855145+ 8.51026440i 0.37×10−2

1 1.95999515+ 9.38560677i 0.16×10−2

1 2.13878608+10.23243809i 0.63×10−3

1 2.33151054+11.06866741i 0.21×10−3

1 2.52955914+11.90377903i 0.70×10−4

1 2.72842216+12.73636055i 0.22×10−4

1 2.92805862+13.56549835i 0.71×10−5

2 1.12165964+ 2.50906348i 0.47×10−1

2 1.49026048+ 3.96589470i 0.12×10−2

2 2.00763631+ 5.30041599i 0.16×10−3

2 2.54001164+ 6.61296082i 0.62×10−4

2 3.08547425+ 7.91153908i 0.27×10−4

2 3.64048886+ 9.20100880i 0.13×10−4

2 4.20275879+10.48410130i 0.69×10−5

Table 1. Example 1: exact propagation constants of the TE Berenger modes

and relative errors of formula (18).

sponding to the same asymptotic solution together for the second example. However, each of

the last four rows of Table 4 represents the two exact solutions which are not distinguishable

for the digits listed.

5. Conclusion

In the previous sections, we analyzed the PML modes of two-dimensional slab waveguides.

The PML modes can be classified as the PML propagating modes, the PML leaky modes, and

the Berenger modes. The PML propagating modes are perturbations of the true propagating

modes. The asymptotic solutions of the PML modes are derived by considering a sequence

of propagation constants βm satisfying |βm| → ∞ and θm → θ∗ where θm is the phase

angle of β2
m (or θm/2 is the phase angle of βm). The PML leaky modes are asymptotically

identical to the true leaky modes, and they correspond to θ∗ = π. High order asymptotic

solutions for the leaky modes of slab waveguides are available in our previous work [22]. For

the Berenger modes, we find two sequences corresponding to θ∗ = π − 2ϕj for j = 1 and 2,
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Exact β/k0 R.E. of (18)

1.96391106+ 5.32063246i 0.11×10−1

2.05728030+ 5.28033113i 0.71×10−2

2.53330898+ 6.60819817i 0.27×10−2

2.56865978+ 6.60561514i 0.23×10−2

3.09196258+ 7.90452147i 0.71×10−3

3.10386252+ 7.90639448i 0.71×10−3

3.65136361+ 9.19430542i 0.19×10−3

3.65505052+ 9.19561386i 0.21×10−3

4.21504927+10.47774410i 0.49×10−4

4.21612167+10.47832680i 0.60×10−4

4.78345537+11.75629902i 0.11×10−4

4.78375196+11.75651836i 0.18×10−4

5.35612345+13.03115463i 0.20×10−5

5.35620165+13.03122997i 0.63×10−5

Table 2. Example 2: exact propagation constants of the TE Berenger modes

and relative errors of formula (18).

where ϕj is related to the location and profile of the PML in the substrate or the cladding. It

is interesting to note that these two sequences are asymptotically identical to the Berenger

modes in two-layer waveguides consisting of only the core and the substrate, or only the core

and the cladding. For these two sequences, we derived high order asymptotic solutions based

on a systematic approach.

We study the analytic properties of the PML modes because they have important ap-

plications as described in [5–10, 17]. Our results should also be useful for numerical imple-

mentation of the mode matching method. For two-dimensional waveguides with a piecewise

constant refractive index, it is possible to avoid discretizing the transverse variable, write

down the eigenfunctions analytically, and solve the eigenvalues from a transcendental equa-

tion. A number of numerical methods have been developed to solve the eigenvalues from this

transcendental equation [24–26], but our asymptotic solutions make the task much easier,

since they provide excellent initial guesses. With these initial guesses, the exact eigenvalues

can be easily found by solving the nonlinear equation with Newton’s method or any other

nonlinear equation solver.
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Sequence Exact β/k0 R.E. of (28)

1 1.22010469+ 4.32303238i 0.23×10−2

1 1.40473378+ 5.28413486i 0.46×10−3

1 1.60215116+ 6.19549084i 0.95×10−4

1 1.80584180+ 7.08042812i 0.15×10−4

1 2.01256752+ 7.94794035i 0.86×10−5

2 1.54685795+ 3.00455475i 0.39×10−2

2 2.14756656+ 4.29343843i 0.73×10−3

2 2.75336146+ 5.56421614i 0.21×10−3

2 3.36158633+ 6.82692719i 0.76×10−4

2 3.97119999+ 8.08533478i 0.33×10−4

2 4.58168840+ 9.34117889i 0.16×10−4

2 5.19276524+10.59537601i 0.87×10−5

Table 3. Example 1: Exact propagation constants and relative errors of formula

(28) for TM Berenger modes.
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