
An Efficient Bidirectional Propagation Method Based

on Dirichlet-to-Neumann Maps

Lijun Yuan and Ya Yan Lu∗

Abstract

A new bidirectional propagation method is developed for numerical simulation
of wave-guiding structures with multiple longitudinal discontinuities. It is a non-
iterative method based on the Dirichlet-to-Neumann map of each uniform segment.
The method is more accurate than existing bidirectional beam propagation methods
and it does not require the computation of eigenmodes in each segment.

1 Introduction

Optical wave-guiding structures that are piecewise uniform along the main propagation

direction are widely used in many applications. Efficient numerical methods are essential

in the analysis and design of these structures. Existing methods for analyzing such

structures with multiple longitudinal discontinuities include various modal methods [1,

2, 3, 4, 5], the bidirectional beam propagation method (BiBPM) [6, 7, 8, 9] and the finite

difference time domain (FDTD) method.

In the modal methods, the wave field in each z-invariant segment (where z is the

waveguide axis) is expanded in the eigenmodes of the transverse operator. The eigen-

modes can be obtained from the eigenvalue decomposition of the matrix approximating

the transverse operator [2]. When a perfectly matched layer (PML) is used to truncate

the transverse variable, the matrix is complex and unsymmetric, and its eigenvalue de-

composition is expensive to compute. For two-dimensional step-index structures, it is

possible to compute the eigenmodes analytically by solving a nonlinear equation. Due

to the presence of the PMLs, there are leaky modes and Berenger modes with complex

propagation constants [10]. It is not a simple task to find all solutions of this nonlinear

equation in the complex plane [4, 11, 12, 13]. The BiBPMs rely on rational approxima-

tions of a square root operator and its exponential (i.e. the one-way propagator). For
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piecewise uniform structures with large longitudinal discontinuities (as in deeply etched

waveguide gratings), a correct modeling of the evanescent modes is important. This im-

plies that the rotating branch-cut Padé approximants [14] must be used, but they do not

have a high accuracy unless the degree is relatively large. The FDTD method is generally

applicable, but it appears to be less efficient, especially when the medium is dispersive.

In this letter, we develop a bidirectional propagation method based on the Dirichlet-

to-Neumann (DtN) map of each z-invariant segment. The DtN map is computed nu-

merically by a Chyebyshev collocation method in the z direction for each segment. The

method requires about the same number of operations as the BiBPM based on the scat-

tering operators [8], but it is more accurate, since rational approximations for operators

are mostly avoided. Compared with the method using the full eigenvalue decomposition

of the transverse operator, our method is much more efficient.

2 The Dirichlet-to-Neumann map

We consider the transverse electric (TE) polarization of a two-dimensional piecewise

uniform wave-guiding structure. The governing equation is

∂2
zu + ∂2

xu + k2
0n

2(x, z) u = 0, (1)

where u is the y-component of the electric field, k0 is the free space wavenumber and

n = n(x, z) is the refractive index function. For a piecewise z-invariant structure, we

assume that

n(x, z) = nj(x) for zj−1 < z < zj and j = 0, 1, ...,m + 1, (2)

where z−1 = −∞, z0 < z1 < ... < zm and zm+1 = ∞. In a z-invariant segment given by

zj−1 < z < zj for 1 ≤ j ≤ m, we define the Dirichlet-to-Neumann (DtN) map M as the

operator that maps u at zj−1 and zj to its z-derivative there. That is

M
[
u(x, zj−1)

u(x, zj)

]
=

[
∂zu(x, zj−1)

∂zu(x, zj)

]
. (3)

When x is discretized by N points, the operator M is approximated by a (2N)× (2N)

matrix. Let M be given in 2× 2 blocks as

M =

[
M11 M12

M21 M22

]
, (4)

it is easy to see that M12 = −M21 and M22 = −M11.

The transverse variable x can be truncated by the PML technique. In this case, the

term ∂2
xu is replaced by s−1∂x(s

−1∂xu), where s = s(x) is a function of x and s 6= 1 only

in the PML regions. Therefore, Eq. (1) in the segment (zj−1, zj) becomes

∂2
zu + Lu = 0, L =

1

s(x)

∂

∂x

(
1

s(x)

∂

∂x

)
+ k2

0n
2
j(x). (5)
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To findM, we need an efficient method for solving the standard Dirichlet problem: given

u at zj−1 and zj, find ∂zu at zj−1 and zj. The matrixM is obtained if we repeatedly solve

the Dirichlet problem N times by taking [u(x, zj−1), u(x, zj)]
T as the first N columns of

the (2N)× (2N) identify matrix.

In the following, we develop a Chebyshev collocation method that computes M in

O(qN2) operations, where q is the number of points for discretizing (zj−1, zj) as

ξk = zj−1 +
zj − zj−1

2

[
1− cos

(
kπ

q

)]
, k = 0, 1, ..., q.

Notice that ξ0 = zj−1 and ξq = zj. For a function of z, its derivative can be evaluated by

multiplying the differentiation matrix C:
v′(ξ0)

v′(ξ1)
...

v′(ξq)

 = C


v(ξ0)

v(ξ1)
...

v(ξq)

 ,

where v is an arbitrary function of z, v′ is its derivative. The (k, l) entry (for k, l = 0,

..., q) of the matrix C is [15]

ckl = − 2

zj − zj−1

×


(2q2 + 1)/6 if k = l = 0,

−(2q2 + 1)/6 if k = l = q,

−0.5τk/(1− τ 2
k ) if 0 < k = l < q,

(−1)k+lσkσ
−1
l /(τk − τl) otherwise,

where

τk = cos

(
kπ

q

)
, σk =

{
2 if k = 0, q

1 if 0 < k < q.

Similarly, the second derivative v′′ at these discrete points can be evaluated by multiplying

C2. Let us write down the matrices C and C2 as follows:

C =


c00 c̃0 c0q
...

...
...

cq0 c̃q cqq

 , C2 =


d00 · · · d0q

d̂0 D̂ d̂q

dq0 · · · dqq

 , (6)

where c̃0 and c̃q are row vectors of length q − 1, d̂0 and d̂q are column vectors of length

q− 1, and D̂ is a (q− 1)× (q− 1) matrix. Eq. (5) is assumed to be valid at ξk for k = 1,

2, ..., q − 1. Thus

d̂0u(x, zj−1) + D̂U + d̂qu(x, zj) + LU = 0, (7)

where U = [u(x, ξ1), u(x, ξ2), ..., u(x, ξq−1)]
T . We can diagonalize the matrix D̂ as

D̂ = R


µ1

µ2
. . .

µq−1

R−1.
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Eq. (7) is then reduced to the following q− 1 un-coupled ordinary differential equations:

Lwk + µkwk = −αku(x, zj−1)− βku(x, zj), k = 1, 2, ..., q − 1, (8)

where 
w1

w2
...

wq−1

 = R−1U,


α1

α2
...

αq−1

 = R−1d̂0,


β1

β2
...

βq−1

 = R−1d̂q.

If u is given at zj−1 and zj, we can solve the functions wk(x) in O(qN) operations. Using

the first and last rows of the matrix C, we can evaluate ∂zu at zj−1 and zj. Therefore

∂zu(x, zj−1) = c00 u(x, zj−1) +
q−1∑
k=1

γkwk(x) + c0q u(x, zj), (9)

∂zu(x, zj) = cq0 u(x, zj−1) +
q−1∑
k=1

δkwk(x) + cqq u(x, zj), (10)

where

[γ1, γ2, ..., γq−1] = c̃0R, [δ1, δ2, ..., δq−1] = c̃qR.

The matrix M is obtained in O(qN2) operations, since we have to repeatedly solve

the Dirichlet problem for N times. However, we only need to compute matrices C and C2,

the eigenvalue decomposition of D̂ and the vectors (αk), (βk), (γk) and (δk) once. Overall,

computing the DtN mapM is much easier than computing the eigenvalue decomposition

of transverse operator L.

3 An operator marching scheme

For the piecewise z-invariant structure specified in (2), we assume that an incident wave

u+ is given in z < z0 and there are only outgoing waves for z > zm. Therefore, u = u++u−

for z < z0, where u+ is given and u− is the unknown reflected field. The directional wave

field components satisfy one-way Helmholtz equations involving the square root operator

B0 =
√

∂2
x + k2

0n
2
0(x):

∂zu
+ = iB0u

+, ∂zu
− = −iB0u

−, z < z0.

The following boundary condition for u is obtained if we eliminate u−:

∂zu + iB0u = 2iB0u
+(x, z0−), z = z0. (11)

For z > zm, we have u = u+. This leads to the boundary condition

∂zu− iBm+1u = 0, z = zm, (12)
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where Bm+1 =
√

∂2
x + k2

0n
2
m+1(x).

While it is unstable to solve the Helmholtz equation (1) as an initial value problem

in the z direction (due to evanescent modes that grow or decay exponentially in z), it is

possible to formulate stable initial value problems for a pair of operators. One possibility

is to use the scattering operators. In our case, it is more convenient to use the Dirichlet-

to-Neumann (DtN) map Q and Fundamental Solution (FS) operator Y [16] defined at

each fixed z as

Q(z)u(x, z) = ∂zu(x, z), Y (z)u(x, z) = u(x, zm), (13)

where u is an arbitrary solution of (1) satisfying the outgoing radiation condition (12).

Here, the operator Q is also a DtN map, but it follows a different definition as M. From

the boundary condition (12) and the definition of Y , we have

Q(zm) = iBm+1, Y (zm) = I, (14)

where I is the identity operator. Using the DtN map M, we can manipulate Q and Y

from zj to zj−1. For M given in its block form (4), we write down the two equations in

(3) and obtain

Q(zj−1) = M11 +M12[Q(zj)−M22]
−1M21, (15)

Y (zj−1) = Y (zj)[Q(zj)−M22]
−1M21. (16)

The above recursion formulas can be applied from j = m to j = 1. Once Q(z0) is

calculated, we use the boundary condition (11) and solve u(x, z0) from

[Q(z0) + iB0] u(x, z0) = 2iB0u
+(x, z0−). (17)

The reflected wave is obtained from u−(x, z0−) = u(x, z0)−u+(x, z0−). The transmitted

wave is obtained from the operator Y (z0), that is

u(x, zm) = Y (z0)u(x, z0). (18)

When x is discretized by N points, the operators B0, Bm+1, Q, Y and Mkl are

all approximated by N × N matrices. The square root operators B0 and Bm+1 are

still approximated by a rotating branch-cut Padé approximant and this requires O(pN2)

operations, where p is the degree of the Padé approximant. By formulas (15) and (16),

the step from zj to zj−1 requires O(N3) operations. Therefore, the total required number

of operations is O(mN3).
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4 Examples

To validate our method, we consider two examples in this section. The first example is a

modeling exercise of COST 268 [17]. It is about a high-contrast optical waveguide with a

deeply etched short Bragg grating. The original waveguide is formed by a Si3N4 layer of

the thickness 0.5µm deposited onto a SiQ2 substrate. The refractive indices of waveguide

core and the substrate are frequency dependent and given in Ref. [17]. The Bragg grating

is composed of 20 rectangular grooves with a grating period of 0.43µm. The widths of

the “tooth” and “groove” are chosen to be equal, i.e., 0.215µm. This implies that m = 39

and zj−zj−1 = 0.215µm for j = 1, 2, ..., m. For the groove depth 0.125µm (the width of

the waveguide core under a groove is 0.375µm), we obtain the power reflectance R, the

transmittance T and the loss L = 1−R− T of the fundamental transverse electric (TE)

mode as shown in Fig. 1. Our numerical results are nearly identical to the earlier results

0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

λ [µm]

T

R
L=1−R−T

Figure 1: Reflectance, transmittance and loss of the fundamental TE mode in a high

contrast optical waveguide with 20 rectangular grooves (COST 268 [17]).

reported in Ref. [17]. In our calculations, the transverse variable x is truncated to the

total of 3µm with a 1.5µm substrate and a 1µm air superstrate. The transverse operator

is approximated by a finite difference method using 200 grid points in x. For each end of

the x interval, we use a PML with a thickness corresponding to 20 grid points. For this

structure, we only have to calculate two DtN maps (for the “teeth” and the “grooves”,

respectively). They are obtained with q = 10.

For another example, we consider the segmented waveguide studied in [18]. This is

a symmetric waveguide with air claddings. It corresponds to the top view of the 3-D

waveguide D2 in Ref. [18]. The width and the refractive index of the waveguide core
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are 2.5µm and n = 3.165, respectively. The waveguide has a five-period grating with

a defect in the middle. This is obtained by putting six air slots of thickness 0.2µm in

the waveguide. The thickness of the middle segment is 1.01µm and thickness of the

remaining four segments is 0.88µm. This implies that m = 11 and

zj − zj−1 =


0.20µm if j = 1, 3, 5, ..., 11,

1.01µm if j = 6,

0.88µm if j = 2, 4, 8, 10.

Our results for the power reflectance, transmittance and loss of the fundamental TE mode

of this structure are shown in Fig. 2. These calculations are obtained with a truncated
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L=1−R−T

Figure 2: Reflectance, transmittance and loss of the fundamental TE mode in a segmented

waveguide [18].

x interval of 5µm and they confirm the earlier results [18] using the BiBPM based on

the scattering operators [8]. The transverse operator is discretized by a finite difference

method with 200 grid points in x and a PML with a thickness of 20 grid points is used

at each end of the x interval. The DtN maps for the large segment in the middle, the

four smaller segments and the air slots are calculated with q = 20, q = 16 and q = 8,

respectively.

5 Conclusions

We have developed a new method for analyzing two-dimensional piecewise z-invariant

wave-guiding structures. The method is suitable for structures with large longitudinal
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discontinuities, where a correct modeling of the evanescent mode is often necessary. Com-

pared with existing BiBPMs, our new method is more accurate, since operator rational

approximations are mostly avoided, except for the square root operators at the two ends

of the structure. These rational approximants cannot easily approximate both the prop-

agating modes and evanescent modes accurately. Since a computation of the eigenmodes

in each uniform segment is not needed, the method is more efficient than modal methods

based on the eigenvalue decomposition of the transverse operator.
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