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Abstract

A new iterative method is developed for solving the two-dimensional non-
linear Helmholtz equation which governs polarized light in media with the
optical Kerr nonlinearity. In the strongly nonlinear regime, the nonlinear
Helmholtz equation could have multiple solutions related to phenomena such
as optical bistability and symmetry breaking. The new method exhibits
a much more robust convergence behavior than existing iterative methods,
such as frozen-nonlinearity iteration, Newton’s method and damped New-
ton’s method, and it can be used to find solutions when good initial guesses
are unavailable. Numerical results are presented for the scattering of light by
a nonlinear circular cylinder based on the exact nonlocal boundary condition
and a pseudospectral method in the polar coordinate system.

Keywords: Helmholtz equation, Wave propagation, Kerr nonlinearity,
Iterative method, Optical bistability.

1. Introduction

Wave propagation in a medium where the effective permittivity varies
with the intensity of the wave, can often be modeled by a scalar nonlinear
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Helmholtz equation (NLH) [1]. For electromagnetic waves and light, the NLH
can be derived from the nonlinear Maxwell’s equations with a third order
nonlinearity, under the assumptions that the electric field is linearly polarized
and third harmonic generation can be ignored [1, 2, 3]. The equation has been
used to analyze important nonlinear optical effects, such as optical bistability
[4, 5, 6, 7, 8], spatial solitons [9], self-focusing of laser beams [10, 11, 12, 13],
symmetry breaking [14, 15, 16, 17, 18], etc. Since the nonlinear coefficient
of a typical medium is very small, the nonlinear effects are only significant if
the field intensity is very high or the interaction length (for example, along
an optical fiber) is very long. In recent years, many optical microcavities
with very high quality factors and small mode volumes have been fabricated
and used to enhance nonlinear optical effects [19]. Potentially significant
applications, such as ultra-small optical switches with very low operating
powers may be realized based on enhanced nonlinear effects in microcavities
[20]. To analyze these structures, it is important to have efficient numerical
methods for solving the NLHs and the more general nonlinear Maxwell’s
equations in the strongly nonlinear regime.

Boundary value problems of the NLH could have multiple solutions re-
lated to optical bistability, symmetry breaking, etc. Due to the nonlinearity,
all numerical methods are iterative. The one-dimensional NLH can be easily
solved by a shooting method where the iterations are performed on a sin-
gle parameter at the boundary [21, 22, 23, 24]. The two-dimensional (2D)
and three-dimensional (3D) NLHs are much more difficult to solve, since the
iterations are performed on the solutions defined on the entire domain. Ex-
isting iterative schemes include the frozen-nonlinearity iteration, Newton’s
method, the damped Newton’s method, etc [25]. The frozen-nonlinearity
iteration converges to a solution very slowly, and often fails to converge,
especially when there are multiple solutions. Newton’s method has a fast
quadratic convergence rate, but its domain of convergence is often too small.

In this paper, we develop a new iterative method for the 2D NLH in the
strongly nonlinear regime. Like the damped Newton’s method, our method
has a linear convergence rate, but it appears to have a very large convergence
domain and it does not involve any parameters. The method is easier to
implement than Newton’s method. It can be used to find the solutions of
the NLH directly, or find good approximations that can be further improved
by Newton’s method. To illustrate the method, we analyze the scattering
of plane incident waves by a nonlinear circular cylinder, and consider the
strongly nonlinear regime where the problem has multiple solutions.
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2. Formulation and linear properties

We consider the following 2D NLH:

∂2u

∂x2
+

∂2u

∂y2
+ k2

0(ε+ γ|u|2)u = 0, (1)

where k0 = ω/c is the free space wavenumber, ω is the angular frequency, c is
the speed of light in vacuum, ε = ε(x, y) is the relative permittivity (dielectric
function), γ = γ(x, y) is the nonlinear coefficient, u is the z component of
the electric field, and the time dependence is exp(−iωt). We further assume
that the nonlinear structure is a circular cylinder of radius a surrounded by
a linear homogeneous medium with

ε(x, y) = ε0 > 0, γ(x, y) = 0, r > a, (2)

where r =
√

x2 + y2.
In the homogeneous medium outside the nonlinear cylinder, we specify a

plane incident wave

u(i)(x, y) = Aeik0n0x, r > a, (3)

where n0 =
√
ε0 is the refractive index of the medium and A is the amplitude

of the incident wave. The total field outside the cylinder is the sum of u(i)

and the scattered wave u(s), and u(s) can be expanded in outgoing cylindrical
waves as

u(s)(x, y) =
∞
∑

m=−∞

cmH
(1)
m (k0n0r)e

imθ, r > a, (4)

where θ is the polar angle, H
(1)
m is the Hankel function of the first kind and

order m.
It is possible to introduce a nonlocal boundary condition at r = a, so

that Eq. (1) can be solved on the disk of radius a. Let Λ be a linear operator
acting on 2π-periodic functions of θ such that

Λeimθ = λme
imθ, λm = k0n0

H
(1)′
m (k0n0a)

H
(1)
m (k0n0a)

(5)

for all integers m, where H
(1)′
m is the derivative of H

(1)
m , then it is easy to

verify that ∂ru
(s) = Λu(s) at r = a+. At r = a, u is continuous since it is a
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tangential component (the z component) of the electric field along the surface
of the cylinder. Meanwhile, ∂u/∂r is also continuous, since it is related to
the horizontal components of the magnetic field which are always continuous.
Therefore, we obtain the following well-known Dirichlet-to-Neumann (DtN)
boundary condition

∂u

∂r
= Λu+ Ah, r = a, (6)

where h = (∂r − Λ)eik0n0x|r=a is a function of θ. Using this condition, it is
only necessary to solve Eq. (1) on the disk Ω = {(x, y) : r < a}.

If the cylinder is linear and homogeneous, i.e., ε(x, y) = ε1 > 0 and
γ(x, y) = 0 for r < a, then the scattering problem can be solved analytically.
The field inside the cylinder can be expanded as

u(x, y) =
∞
∑

m=−∞

bmJm(k0n1r)e
imθ, r < a, (7)

where n1 =
√
ε1, and Jm is the Bessel function of the first kind and order

m. The coefficients bm and cm can be solved analytically. Based on the
solution, we can calculate the scattered power Ps by integrating the real part
of the r component of the complex Poynting vector (of the scattered field)
along the circle r = a. To obtain the normalized scattered power, we divide
Ps by the intensity of the incident field Iin = A2n0/Z0 where Z0 is the free
space impedance, and by the diameter of the cylinder 2a. In Fig. 1, we show
the normalized scattered power as a function of the normalized frequency
ωL/(2πc) = k0L/(2π), where L = 1µm, for a dielectric cylinder surrounded
by air. The radius and the dielectric constant of the cylinder are a = 0.4L
and ε1 = 6.25, respectively, and the dielectric constant of air is ε0 = 1.

The peaks in Fig. 1 correspond to the resonant frequencies. The resonant
modes are nontrivial solutions of the linear homogeneous Helmholtz equation
satisfying the exact outgoing DtN boundary condition, i.e., Eq. (6) with
A = 0. They exist at a discrete sequence of complex frequencies. The real
part of a complex frequency is the resonant frequency, and the imaginary
part is the decay rate in time. The resonant modes are solutions of an
improper eigenvalue problem. Since k0 is complex, these modes actually
blow up at infinity. In Fig. 1, the third peak corresponds to a resonant
mode with the complex frequency ω∗L/(2πc) = 0.9779 − 0.0087i. In Fig. 2,
we show the magnitude of the total field for an incident plane wave with
ωL/(2πc) = 0.9779. Notice that the field is enhanced by a factor about 4.
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Figure 1: Normalized scattered power, Ps/(2aIin), as a function of the normalized fre-
quency for a linear dielectric cylinder illuminated by a plane incident wave.

3. Iterative methods

To solve Eq. (1), an iterative method is needed. The simplest iterative
method may be the frozen-nonlinearity iteration

Lu(l+1) + k2
0γ|u(l)|2u(l+1) = 0, (8)

where L = ∂2
x+∂2

y+k2
0ε, u

(l) is the current iteration (or initial guess if l = 0),

u(l+1) is the next iteration to be determined. Notice that Eq. (8) is a linear
Helmholtz equation for u(l+1), and it should be solved with the boundary
condition (6).

The frozen-nonlinearity iteration converges very slowly and often fails
to converge, especially when the nonlinear effect is strong. A much better
alternative is Newton’s method. Since both u and its complex conjugate u
appear in the NLH, we re-write Eq. (1) as

f(u, u) = Lu+ k2
0γu

2u = 0. (9)

Assuming u = u(l) + s, where s is small, Eq. (9) is approximated by

f(u(l), u(l)) +
∂f

∂u
(u(l), u(l))s+

∂f

∂u
(u(l), u(l))s = 0, (10)

where
∂f

∂u
(u, u) = L+ 2k2

0γ|u|2,
∂f

∂u
(u, u) = k2

0γu
2.
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Figure 2: Magnitude of the wave field excited by a plane wave with amplitude A = 1 and
frequency ωL/(2πc) = 0.9779.

Newton’s method is simply

u(l+1) = u(l) + s, (11)

where s must be solved from Eq. (10). An explicit version of Newton’s
method for Eq. (1) is

Lu(l+1) + k2
0γ

{

2|u(l)|2u(l+1) + [u(l)]2u(l+1)
}

= 2k2
0γ|u(l)|2u(l). (12)

Since u(l+1) appears in Eq. (12), it is necessary to solve an equivalent sys-
tem of two partial differential equations for the real and imaginary parts of
u(l+1). Newton’s method converges rapidly due to its quadratic convergence.
However, it only converges if the initial guess is sufficiently close to the exact
solution. To enlarge the domain of convergence, it is often useful to use the
damped Newton’s method

u(l+1) = u(l) + ηs, (13)

where η is a damping parameter between 0 and 1. The explicit version of
the damped Newton’s method is

Lu(l+1) + k2
0γ

{

2|u(l)|2u(l+1) + [u(l)]2u(l+1)
}

= (1− η)Lu(l) + (3− η)k2
0γ|u(l)|2u(l). (14)

The simplest damped Newton’s method is to choose η as a constant in all
iterations. In that case, the method has a linear convergence rate. However,
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it is often difficult to choose a proper η for practical applications. Therefore,
the damped Newton’s method is often implemented so that ||f || decreases
in each iteration [25]. The so-called Armijo rule determines η as the largest
number in a decreasing sequence (e.g., {1, 1/3, 1/9, 1/27, ...}), such that

||f(u(l+1), u(l+1))|| < (1− αη)||f(u(l), u(l))||, (15)

where α is a small positive constant (e.g., α = 10−4) and u(l+1) is the next
iteration given in Eq. (13) for the accepted η.

Replacing u(l+1) in Eq. (12) by u(l), we obtain the following iterative
method

Lu(l+1) + 2k2
0γ|u(l)|2u(l+1) = k2

0γ|u(l)|2u(l). (16)

To the best of our knowledge, the above is not a special case of any existing
variations of Newton’s method. Although it is very simple, the method is
specially derived for the NLH with an approximation related to u. In the
following sections, we show that the above method is much more robust than
Newton’s method and damped Newton’s method. Furthermore, since u(l+1)

has been avoided, Eq. (16) is easier to implement than Newton’s method.
Like the damped Newton’s method with a constant damping parameter,
the above method has a linear convergence rate. To obtain highly accurate
solutions to the NLH, we can use the method to find a sufficiently accurate
approximation, then further improve the solution by Newton’s method.

4. Discretization

In this section, we briefly describe a numerical method for discretizing
Eq. (1) and the iterative schemes Eqs. (8), (12), (14) and (16). Due to the
circular geometry and the polar coordinate system, we use a mixed pseu-
dospectral method with Chebyshev and Fourier collocations in the radial
and angle directions, respectively [26]. To avoid the singularity at r = 0, the
radial variable is extended to [−a, a] by u(r, θ) = u(−r, θ̃) for r < 0, where
θ̃ = (θ + π)mod(2π), so that the equations for u are supposed to be valid
for r ∈ (−a, a) and θ ∈ [0, 2π]. However, the unknowns associated with the
negative r will be eliminated, so that the final system is only related to u for
r > 0.

LetQ = 2N+1 andM be two positive odd and even integers, respectively,
we discretize the polar coordinates by

rj = a cos(jπ/Q), 0 ≤ j ≤ Q, (17)

θk = (2k − 1)π/M, 1 ≤ k ≤ M. (18)
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Let ujk be the numerical approximation of u(rj, θk), we introduce a column
vector uj = [uj1, uj2, ..., ujM ]T for unknowns on the circle of radius rj, and
the larger column vector

u = [uT

1 ,u
T

2 , ...,u
T

N ]
T (19)

for all unknowns inside the disk Ω.
For the partial derivative with respect to r, the Chebyshev collocation

method gives rise to an (Q + 1) × (Q + 1) differentiation matrix that links
a column vector of ujk (for fixed k and 0 ≤ j ≤ Q) to a corresponding
vector approximating ∂ru(rj, θk). The second order derivative operator ∂2

r

can be approximated by the square of that matrix. Similarly, the Fourier
collocation method gives rise to an M ×M differentiation matrix that links
uj to a vector approximating ∂θu(rj , θk) for fixed j and all k. Using these
differentiation matrices, we can approximate Eq. (1) at (rj, θk) for 1 ≤ j < Q
and 1 ≤ k ≤ M . After eliminating the unknowns corresponding to r < 0, we
obtain

(B +D)u+ B0u0 = 0, (20)

where u0 is a vector for u on the circle r = a, B is an (MN)× (MN) matrix,
D = D(u) is a diagonal matrix with the diagonal entries k2

0γ(rj, θk)|ujk|2,
and B0 is an (MN) ×M matrix. Using the differentiation matrix for ∂r at
j = 0 and eliminating those unknowns for r < 0, the boundary condition (6)
is discretized as

Cu+ C0u0 = Ah, (21)

where C is an M × (MN) matrix, C0 is an M ×M matrix, and h is a column
vector of h(θk) for 1 ≤ k ≤ M . We can eliminate u0 from Eqs. (20) and (21),
and obtain a nonlinear system for u:

(F +D)u = Ag, (22)

where F is an (MN)× (MN) matrix and g is a column vector related to the
incident field. We can re-write Eq. (22) as f(u) = 0 where

f(u) = (F +D)u− Ag (23)

and the dependence on u is suppressed.
The above discretization scheme can be easily applied to the iterative

methods given in Eqs. (8), (12), (14) and (16). For example, Newton’s
method (12) can be discretized as

[F + 2D(l)]u(l+1) + D̃(l)u(l+1) = 2D(l)u(l) + Ag, (24)
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where D(l) is the diagonal matrix with diagonal entries k2
0γ(rj, θk)|u

(l)
jk |2, and

D̃(l) is a diagonal matrix with diagonal entries k2
0γ(rj, θk)[u

(l)
jk ]

2. The damped
Newton’s method can be discretized as

[F + 2D(l)]u(l+1) + D̃(l)u(l+1) = [(1− η)F + (3− η)D(l)]u(l) + ηAg. (25)

The Armijo rule can be implemented with

||f(u(l+1))|| < (1− αη)||f(u(l))||, (26)

where || · || is simply the vector 2-norm. Since u(l+1) appears in Eqs. (24)
and (25), it is necessary to rewrite these two equations as real linear systems
for 2MN unknowns, i.e., the real and imaginary parts of u(l+1). The new
iterative method given in Eq. (16) can be discretized as

[F + 2D(l)]u(l+1) = D(l)u(l) + Ag. (27)

Notice that the above is a linear system for u(l+1).
If we take advantage of the reflection symmetry with respect to the x axis,

the number of unknowns in Eqs. (24), (25) and (27) can be further reduced
by a factor of two. This leads to linear systems with only MN/2 unknowns,
which are ujk for 1 ≤ j ≤ N and 1 ≤ k ≤ M/2.

5. Numerical results

In this section, we present numerical results for the scattering of a plane
incident wave by a nonlinear circular cylinder. As in section 2, we assume
ε1 = 6.25, ε0 = 1, and a = 0.4L, where ε1 and ε0 are the dielectric constants
of the cylinder and the surrounding medium, respectively, a is the radius of
the cylinder, and L = 1µm. The cylinder is assumed to have a constant
nonlinear coefficient γ1 = 2 × 10−12m2/V2. Since the plane incident wave
given in Eq. (3) propagates in the x direction and the center of the cylinder
is located at the origin, the problem has a reflection symmetry with respect
to the x axis. However, this is a nonlinear boundary value problem, unique-
ness cannot be guaranteed, and the solutions may or may not preserve the
symmetry. In fact, for some parameter ranges, the problem has asymmetric
solutions related to the symmetry breaking phenomenon [18]. Since our ob-
jective is to investigate the iterative methods for Eq. (1), we consider only the
symmetric solutions which are even functions of y. Furthermore, although
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we state the problem in physical units, our results can be easily scaled, and
they depend on two dimensionless quantities k0a and γ1|A|2, where A is the
amplitude of the incident wave and k0 is the free space wavenumber.

From the NLH, it is clear that strong nonlinear effects may be realized
if γ1|u|2 (in the cylinder) is comparable with ε1, i.e, O(1). Since γ1 is very
small, the field must have a large amplitude in the nonlinear cylinder. The
nonlinear effects can be enhanced by resonances, since the amplitude of the
wave field in the resonator can be much larger than that of the incident
wave. For a circular cylinder, the resonant frequencies (real part of the
complex frequencies of the resonant modes) can be calculated analytically,
and as functions of ε1, they decrease as ε1 is increased. Since γ1 is positive,
the nonlinear term γ1|u|2 has the effect of increasing the dielectric function
ε. Therefore, the nonlinear effect is more significant when the frequency is
slightly below a resonant frequency.

For the cylinder considered above, we recall that ωL/(2πc) = 0.9779
is a resonant frequency. For the nonlinear case, we choose the normalized
frequency ωL/(2πc) = 0.9346 for which a strong optical bistability phe-
nomenon occurs. In Fig. 3, we show the scattered power Ps versus the in-
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Figure 3: Normalized scattered power as the function of the normalized incident wave
intensity at frequency ωL/(2πc) = 0.9346.

tensity Iin of the incident wave. A reference incident wave with amplitude
A0 = 105V/m and intensity I0 is introduced for scaling. The vertical and
horizontal axes in Fig. 3 are Ps/(2aI0) and Iin/I0 = (A/A0)

2, respectively.
For 3.62 ≤ Iin/I0 ≤ 10.67, the NLH has three solutions with different val-
ues of Ps. This corresponds to the optical bistability phenomenon, since the
two solutions corresponding to the upper and lower branches in Fig. 3 are
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presumably stable, and other solution is unstable. A rigorous stability anal-
ysis can be performed starting from the original time-dependent nonlinear
Maxwell’s equations. For Iin = 7I0, i.e., A =

√
7A0, the NLH has three

solutions marked as A, B and C in Fig. 3. The electric field patterns of these
solutions are shown in Fig. 4. These results are obtained using the new iter-
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Figure 4: Wave field patterns (magnitude of u) of the three solutions marked as A, B and
C in Fig. 3.

ative method given in Eq. (16) with Q = 51 and M = 50. In each iteration,
we only need to solve a linear system with (MN)/2 = 625 unknowns.

6. Convergence behavior

In this section, we compare the iterative methods presented in section 3.
The convergence behaviors of these methods are studied for two cases where
the initial guess u(0) is either zero or the converged solution for a slightly
different incident wave. The stop criterion used in the iterations is

max

{ ||u(l) − u(l−1)||
||u(l)|| ,

||f(u(l))||
||Ag||

}

< 10−9. (28)

Notice that both terms in the curly brackets above are required to be small.
The second term is the normalized residual for Eq. (22). The first term is
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Figure 5: Convergence behaviors of the iterative methods for zero initial guess and incident
wave intensity Iin = (8 + 0.1k)I0, k = 0, 1, 2, ..., 60. A method is convergent if Flag = 1,
and non-convergent if Flag = 0. (a) Newton’s method; (b) damped Newton’s method with
Armijo rule; (c)-(e) damped Newton’s method with constant parameter η = 0.1, 0.4 and
0.7, respectively; (f): our iterative method Eq. (16).

introduced to ensure that the iterations smoothly converge to a solution,
instead of jumping on the solution accidentally. The maximum number of
iterations is set to be 2000. If the stop criterion is not satisfied for all 2000
iterations, the iterative method is considered as non-convergent for the par-
ticular initial guess.

For a large range of the incident wave amplitude, we attempt to solve the
NLH by various iterative methods starting from u(0) = 0. The convergence
behaviors of Newton’s method, damped Newton’s method with Armijo rule
(with parameter α = 10−4), damped Newton’s method with constant param-
eter η = 0.1, 0.4 and 0.7, and our method given in Eq. (16) are shown in
Figs. 5(a)-(f), respectively. As in the last section, the horizontal axis in each
of these figures is the ratio of the incident wave intensity Iin to a reference
intensity I0. The vertical axis is an integer Flag which is either 1 or 0 corre-
sponding to convergence or non-convergence, as defined by the stop criterion
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Figure 6: Normalized residuals of the iterations. (a) non-convergent cases: Newton’s
method, damped Newton’s method with Armijo rule and with η = 0.1; (b) convergent
cases: damped Newton’s method with η = 0.4 and 0.7, and our method Eq. (16).

(28) and the maximum of 2000 iterations. All these iterative methods work
well for a relatively small incident wave intensity satisfying Iin ≤ 10.6I0, and
the iterations converge to the solution corresponding to the lower branch in
Fig. 3. Newton’s method is the most efficient for these cases. On the other
hand, if Iin > 10.6I0, the solution goes to the upper branch in Fig. 3. In that
case, Newton’s method and damped Newton’s method with a constant η have
rather unpredictable convergence behavior. The damped Newton’s method
with Armijo rule always fails, since it attempts to minimize the residual in
each step and converges to a nonzero local minimum of the residual. As
shown in Fig. 5(f), our iterative method always converges. The results in
Fig. 5 are only for 8 ≤ Iin/I0 ≤ 15, but we have tested our method up to
Iin = 150I0, and it always converges starting with the zero initial guess and
the number of iterations is always less than 200.

To take a closer look at the convergence processes, we consider the partic-
ular case of Iin = 11.4I0. For this incident wave, Newton’s method, damped
Newton’s method with Armijo rule, and damped Newton’s method with con-
stant η = 0.1 do not converge. The normalized residuals ||f(u(l)||/||Ag|| of
these three methods are shown in Fig. 6(a). It can be seen that the normal-
ized residual of Newton’s method changes erratically with the iterations and
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exceeds 10 at the 25th iteration. The damped Newton’s method with Armijo
rule reduces the residual quickly for the first a few iterations, but then settles
down to a constant. The damped Newton’s method for constant η fails to
converge for η = 0.1, but converges for η = 0.4 and η = 0.7. In Fig. 6, we
show the convergence processes for the two latter cases and for our method
given in Eq. (16). These methods show linear convergence rates. To satisfy
the stop criterion (28), i.e., to reach a relative error of 10−9, our method
requires 158 iterations, while the damped Newton’s method for η = 0.4 and
0.7 requires 78 and 48 iterations, respectively. However, the required CPU
time for one iteration of our method is less than one half of that for Newton’s
method or damped Newton’s method. This is related to the difference for
solving a complex linear system and a real linear system of twice the size. As
a result, in terms of the total CPU time, our method actually outperforms
the damped Newton’s method for η = 0.4.

To analyze the dependence of the solutions on the amplitude of the in-
cident wave, and to obtain the curve shown in Fig. 3, it is natural to use a
numerical continuation scheme where the obtained solution for one incident
wave is used as the initial guess to solve the NLH for a slightly different
incident wave. Starting from a small Iin and increase Iin by 0.1I0 in each
step, all iterative methods are able to determine the lower branch of Fig. 3.
However, when Iin is increased from 10.6I0 to 10.7I0, the solution jumps
to the upper branch, then Newton’s method, the damped Newton’s method
with Armijo rule, and the damped Newton’s method for η = 0.1, 0.4 and 0.7
all fail to converge. Our method converges, i.e., reaches the stop criterion,
in 184 iterations. Actually, the damped Newton’s method for η = 0.05 also
converges, but it only converges in 1443 iterations, and is about 18 times
slower than our method.

Since our method converges for Iin ≥ 10.7I0, we can use the continuation
scheme to calculation the upper branch of the solution curve by decreasing
or increasing Iin slightly in each step. The middle branch is more difficult to
calculate. We choose Iin = 7I0, and try to find the solution corresponding to
point B in Fig. 3. There is no straightforward way to choose the initial guess
so that the iterations converge to point B. Our initial guess is the solution
corresponding to point C multiplied by a real constant. For a properly cho-
sen constant, our iterative method converges to the solution correspond to
point B. After that, we can easily find the middle branch by decreasing or
increasing Iin slightly in each step.
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7. Conclusion

In this paper, we developed a new iterative method, Eq. (16), for solving
the 2D NLH. The method is specially designed for the NLH and it has excel-
lent global convergence behavior. As shown by numerical results involving a
nonlinear circular cylinder, when good initial guesses near the exact solution
are not available, Newton’s method and damped Newton’s method often fail
to converge, but it appears that our method always converges. To take ad-
vantage of the local quadratic convergence of Newton’s method, our method
can be used in the first stage of a hybrid method to find a sufficiently good
approximation, and Newton’s method can be used in the second stage to
further improve the solution. Further studies are needed to gain a better
understanding of the new iterative method. Numerical results show a linear
convergence rate, but a theoretical justification is yet to be developed. The
most interesting property of our method is its robust convergence behavior.
However, the reasons for its robustness are still unknown.

So far, we have only considered a relatively small problem where the
linear system in each iteration can be easily solved. For problems where
the size of the nonlinear domain is much larger than the wavelength, the
linear system becomes the main bottleneck, and quasi-Newton and inexact
Newton methods become important. We expect that our method still has
the advantage in global convergence for large problems, and believe that it is
worthwhile to develop variants of our method, similar to quasi-Newton and
inexact Newton methods, that are more efficient for large scale problems.
Our study is further limited by the 2D NLH itself. For 2D problems in the
strongly nonlinear regime, a system of equations is needed when the harmonic
generation process becomes important. For 3D nonlinear optical problems,
the scalar model is usually not valid, and it is necessary to solve the full
system of nonlinear Maxwell’s equations. Clearly, it is important to develop
methods similar to Eq. (16), with a good global convergence property, for
2D systems and 3D Maxwell’s equations.
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