
1

Mode Reduction for Efficient Modeling of Photonic

Crystal Slab Structures
Lijun Yuan and Ya Yan Lu

Abstract—Rigorous numerical simulations for photonic crystal
(PhC) slab structures and devices are difficult due to the com-
plicated three-dimensional geometry, high index-contrast, sharp
edges, and possibly inhomogeneity at infinity. The approach based
on expanding the field in one-dimensional vertical modes has
great potential, but is currently limited by the relatively large
number of modes needed for maintaining the accuracy of the
solutions. In this paper, we show that if a single hole is first
analyzed with the full set of vertical modes, the number of modes
can be reduced to less than one third of the total in the main
part of the computation. This leads to a speedup of more than 27
times. The method is illustrated by computing the transmission
and reflection spectra for a PhC slab with a finite number of
hole arrays.

I. INTRODUCTION

PHOTONIC crystals have attracted much attention in re-

cent years due to their interesting properties such as

the bandgaps and unusual dispersion effects [1]. Realistic

photonic crystal (PhC) devices are usually fabricated on PhC

slabs which are layered structures with a biperiodic pattern

(typically a triangular lattice of air holes) perpendicular to

the layers. To design and optimize PhC slab devices for

practical applications, large scale numerical simulations must

be performed and efficient numerical methods are needed.

Existing methods such as the finite-difference domain-domain

(FDTD) method [2] and the frequency-domain finite element

method (FEM) [3] are widely used, but their efficiencies

may be limited by the large index-contrast, sharp edges and

complex geometry of the devices. In particular, FDTD requires

a small grid size to resolve material interfaces and a small time

step to maintain numerical stability, and FEM requires efficient

iterative methods for solving the resulting large linear systems.

For linear problems in the frequency domain, it is possible

to develop more efficient computational methods by taking

advantage of the geometric features of the PhC devices. For

PhC slab structures involving circular holes, Boscolo and
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Midrio [4] developed a method based on expanding the field

in one-dimensional (1D) vertical modes and horizontal cylin-

drical waves, where the slab is assumed to be parallel to the

horizontal plane. Their method is applicable to slab structures

with a finite number of holes and was further enhanced by

Pissoort et al. [5]. In a related work [6], we developed a

method based on vertical mode expansions and the so-called

Dirichlet-to-Neumann (DtN) maps for slabs with infinite and

periodic arrays of holes. The DtN-map method can be used

to take advantage of the periodicity or partial periodicity of

PhC devices (i.e., the existence of many identical unit cells),

and it is highly efficient for idealized two-dimensional (2D)

PhC structures that have one invariant spatial direction [7]–

[10]. However, these methods based on expansions in vertical

modes [4]–[6] are still too expensive for simulating practical

PhC slab devices, since many vertical modes are needed to

reach the desired level of accuracy.

The vertical mode expansion method for PhC slab structures

is closely related to the mode-matching method (also called

eigenmode expansion method or modal method) for model-

ing piecewise uniform waveguides [11]–[20] and diffraction

gratings [21]–[31]. In the mode-matching or modal method

for waveguides and gratings, a main propagation direction

(the direction along the waveguide axis or perpendicular to

the grating surface) is first identified, the structure is divided

into segments (or layers) that are invariant in that direction,

the wave fields in each uniform segment are expanded in

the transverse eigenmodes, and the unknown coefficients are

solved from a linear system established by enforcing proper

boundary conditions on the interfaces between the segments.

For PhC slab devices, a main propagation direction usually

does not exist, but there is still a main propagation plane,

i.e., the plane of the slab. Instead of uniform segments, a 3D

slab structure consists of regions where the material properties

vary only in the vertical direction. Therefore, it is possible to

expand the electromagnetic field in each region in 1D vertical

modes.

Since the computation effort of the vertical mode expansion

method depends cubically on the number of modes, it is

highly desirable to use less modes. However, a large number

of modes may be needed to accurately enforce the boundary

conditions on the interfaces between the regions. Furthermore,

since the vertical direction (perpendicular to the slab) is

originally unbounded and only truncated by perfectly matched

layers (PMLs) [32]–[35], many modes are still needed to

model the continuum of radiation modes. It appears difficult

to implement the vertical mode expansion method with a

significantly reduced number of modes without sacrificing the
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accuracy.

Our approach is to reduce the number of modes only after

the scattering properties of a single hole are computed using

the full set of eigenmodes. This is useful since the entire

structure is far more difficult to analyze than a single hole.

A slab with a single hole is easy to analyze, since there

is a rotational symmetry. On the other hand, a slab with

more than one holes no longer has the rotational symmetry,

and is far more difficult to study. We consider a PhC slab

with a finite number of linear hole arrays where each linear

array is a periodic and infinite row of circular holes. The

vertical direction is truncated by PMLs and discretized, so

that the vertical modes are approximated by a finite number of

numerical eigenmodes. In the first stage, we use all numerical

modes to study the scattering properties of a single hole.

Based on that, we reduce the number of modes and study the

hole arrays in the second stage. We found that the accuracy

is acceptable if one-third of the total number of numerical

eigenmodes are retained. In that case, we obtain a speedup of

27 times.

II. VERTICAL MODE EXPANSIONS

Due to the many practical applications of PhC slabs, it is

important to study the scattering of light by holes in a slab.

We consider a finite number of linear hole arrays in a slab,

where each linear array is infinite and periodic, and the centers

of the holes are located on a triangular lattice. In Fig. 1(a) we

Fig. 1. (a): Top view of a photonic crystal slab with seven hole arrays; (b):
Cross section Ω0 of a hexagon unit cell Ω.

show the top view of a slab with seven linear hole arrays.

Since the slab has a finite thickness, the structure is three

dimensional, and it must be analyzed using the full set of

Maxwell’s equations. In the frequency domain, these equations

are

∇×E = ik0µH, ∇×H = −ik0εE, (1)

where E is the electric field, H is the magnetic field mul-

tiplied by the free space impedance, k0 is the free space

wavenumber, µ is the relative magnetic permeability, ε is the

dielectric function, and the time dependence is assumed to be

e−iωt for an angular frequency ω. The slab without holes is a

simple waveguide with some propagating modes. Our problem

is to calculate the transmitted and reflected waves, as well as

the out-of-plane radiation loss, for a given incident wave which

is usually a propagating mode of the slab.

Assuming the slab is parallel to the horizontal xy plane,

the structure has only two distinct vertical profiles. That is,

ε = εs(z) and µ = µs(z) in the slab region, and ε = εh(z)
and µ = µh(z) in the hole region. The electromagnetic

field in these two regions can be expanded in the 1D modes

corresponding to the respective vertical profiles. To avoid the

continuous spectra, the z variable can be truncated by PMLs

[32]–[35]. If z is truncated to (z0, z∗), then the vertical modes

in the slab region satisfy

ρs
S

d

dz

[

1

Sρs

dφ
(p)
s

dz

]

+ k20εsµsφ
(p)
s = [η(p)s ]2φ(p)

s (2)

for z0 < z < z∗, where p = 1 and ρs = µs for the transverse

electric (TE) polarization, p = 2 and ρs = εs for the transverse

magnetic (TM) polarization, and S = S(z) is a complex

function related to the PMLs (S 6= 1 only in the PMLs).

Furthermore, we assume the boundary conditions are

φ(1)
s = 0,

dφ
(2)
s

dz
= 0 at z = z0, z∗, (3)

then the eigenvalue problems (2) and (3) have infinite sequence

of eigenpairs. We denote them as φ
(p)
s,j (z) and η

(p)
s,j for j = 1,

2, 3, ...

In the slab region, since εs and µs depend only on z, it

can be proved that Hz and Ez satisfy separate 3D Helmholtz

equations, and they can be expanded in the vertical TE and

TM modes respectively as follows:

Hz(x, y, z) =
1

µs(z)

∞
∑

j=1

φ
(1)
s,j (z)V

(1)
s,j (x, y), (4)

Ez(x, y, z) =
1

εs(z)

∞
∑

j=1

φ
(2)
s,j (z)V

(2)
s,j (x, y), (5)

where V
(p)
s,j satisfies the following 2D Helmholtz equation

∂2V
(p)
s,j

∂x2
+

∂2V
(p)
s,j

∂y2
+ [η

(p)
s,j ]

2 V
(p)
s,j = 0. (6)

The derivation of (4), (5) and (6) can be found in earlier works

[4], [6]. The other components of the electromagnetic field are

related to Hz and Ez . In the hole region, there are similar TE

and TM modes, and similar expansions for Hz and Ez . We

only need to change the subscript from “s” to “h”.

For a slab with a single circular hole, we use the cylindrical

coordinate system {r, θ, z} such that the z axis is the axis of

the cylindrical hole, then the field inside and outside the hole

can be further expanded in horizontal cylindrical waves. We

have

V
(p)
h,j (x, y) =

∞
∑

m=−∞

c
(p)
jmJm(η

(p)
h,jr) e

imθ, r < a, (7)

V
(p)
s,j (x, y) =

∞
∑

m=−∞

[

a
(p)
jmJm(η

(p)
s,j r) (8)

+b
(p)
jmH(1)

m (η
(p)
s,j r)

]

eimθ, r > a, (9)

where Jm is a Bessel function and H
(1)
m is a Hankel function

of the first kind. The terms with the coefficients {a
(p)
jm}, {b

(p)
jm}

and {c
(p)
jm} correspond to the incident wave impinging upon

the hole, the scattered wave outside the hole and the wave
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transmitted into the hole, respectively. For given {a
(p)
jm}, the

coefficients {b
(p)
jm} and {c

(p)
jm} can be solved. Due to the

rotational symmetry, there is no coupling for different values

of m, i.e., for different Fourier modes. On the other hand, the

vertical modes including both TE and TM modes, are coupled

together. Matching Hz , Ez , Hθ and Eθ (the θ components of

the electromagnetic field) on the interface between the slab

and hole regions, i.e., at r = a, we can find matrices Dm and

Cm for each m [4], such that
[

b
(1)
m

b
(2)
m

]

= Dm

[

a
(1)
m

a
(2)
m

]

,

[

c
(1)
m

c
(2)
m

]

= Cm

[

a
(1)
m

a
(2)
m

]

, (10)

where a
(p)
m , b

(p)
m and c

(p)
m are column vectors for {a

(p)
jm, j =

1, 2, ...}, {b
(p)
jm, j = 1, 2, ...} and {c

(p)
jm, j = 1, 2, ...}, respec-

tively.

Many different implementations of the vertical mode ex-

pansion method are possible, and they correspond to different

ways for computing the eigenmodes and enforcing the bound-

ary conditions on the interfaces. If ε and µ are piecewise

constant in z, the eigenvalue problems (2) and (3) can be

solved analytically, in the sense that the eigenfunctions are

given analytically, but the eigenvalues are solved numerically

as the zeros of a transcendental function. This approach is

not so convenient, since it is not easy to systematically find

zeros in the complex plane, and it is not clear how to choose

finite number of modes to truncate the expansions. On the

other hand, it is very simple to solve the 1D eigenvalue

problems by a numerical method. We use a fourth order

finite difference method with a staggered grid [6]. The TE

and TM eigenvalue problems are approximated by matrix

eigenvalue problems involving N1×N1 and N2×N2 matrices,

respectively, where N2 = N1 + 1. Furthermore, we enforce

the boundary conditions at r = a by simply matching the

four field components at all discretization points of z. As a

result, the matrices Dm and Cm can be computed in O(N3)
operations where N = N1+N2. If we keep M Fourier modes

(by truncating m to −M/2 ≤ m < M/2 if M is even), then

the scattering problem of a single hole in a slab can be solved

using O(MN3) operations.

III. DTN-MAP METHOD

For a slab with a finite number of hole arrays, we developed

a computational method based on vertical mode expansions

and DtN maps [6]. Since the centers of the holes lie on a

triangular lattice, we may consider hexagon unit cells with a

hole at the center. The horizontal cross section Ω0 of a unit

cell Ω is shown in Fig. 1(b). The DtN map of unit cell Ω is an

operator that maps Hz and Ez to their normal derivatives on

the vertical boundary of Ω. In connection with vertical mode

expansions (4), we can define a more practical DtN map as

the operator Λ̃ satisfying

Λ̃

[

V
(1)
s

V
(2)
s

]

=
∂

∂ν

[

V
(1)
s

V
(2)
s

]

on Γ, (11)

where Γ is the boundary of Ω0, ∂ν is the normal derivative op-

erator on Γ, V
(p)
s is a column vector for {V

(p)
s,j , j = 1, 2, ...}.

The DtN map Λ̃ can be used to compute the reflected and

transmitted waves for a given incident wave impinging on the

hole arrays. The procedure is given in [6] and it is an extension

of the method first developed for pure 2D problems in [36].

In practice, the DtN map Λ̃ is approximated by a matrix.

When Γ is discretized by M points, V
(p)
s,j becomes a column

vector of length M . If we keep a total of N modes, then

Λ̃ becomes an (MN) × (MN) matrix. To calculate Λ̃, we

consider the solution (4) and (8) again, but now keep M

Fourier terms and consider the coefficients {a
(p)
jm} as arbitrary.

Evaluating this general solution at the M points on Γ, we get

a linear relation between V
(p)
s,j and {a

(p)
jm}. We can also write

down ∂νV
(p)
s,j analytically, then evaluate them at the M points

on Γ, and get a linear relation between ∂νV
(p)
s,j and {a

(p)
jm}. The

DtN map Λ̃ is obtained by eliminating {a
(p)
jm}. This process

requires O(M3N3) operations. Due to the cubic dependence

on M , it is far more difficult to analyze hole arrays than a

single hole.

IV. MODE REDUCTION

To speed up the DtN-map method for analyzing PhC

slab structures, we develop a mode reduction technique to

construct approximate DtN maps for the unit cells. The

procedure depends on the incident wave for the problem being

considered. For hole arrays in a slab, the incident wave is

usually the fundamental TE or TM mode with a plane wave

behavior in the horizontal plane. If the incident wave is the

first TE mode with the vertical profile φ
(1)
s,1(z), we can find

the most relevant vertical modes by analyzing the scattering

problem of a single hole with two cylindrical incident waves

φ
(1)
s,1(z)Jm(η

(1)
s,1r)e

imθ for m = 0 and 1.

Assuming the vertical modes in the slab region are normal-

ized by
∫ z∗

z0

ρ−1
s (z)S(z)[φ

(p)
s,j (z)]

2 dz = 1,

the cylindrical incident wave above gives rise to a scattered

wave as the second term in (8), where the coefficients {b
(p)
jm}

are given as the first column of matrix Dm. That column

consists of two parts fm and gm with N1 and N2 elements,

respectively, and they are the coefficients of the TE and TM

vertical modes in the scattered wave. We select the TE modes

based on the magnitudes of the elements in f0 and f1. More

precisely, for an integer Ñ1 < N1, we choose Ñ1 elements

with the largest magnitude in f0 and f1, respectively, and

find the mode indices for all these elements, and finally get

N∗

1 TE modes that we need to keep. Similarly, we find

N∗

2 TM modes from the two vectors g0 and g1. Based on

the total N∗ = N∗

1 + N∗

2 selected modes, we can find an

(MN∗) × (MN∗) matrix approximating the DtN map. The

required number of operations is O(M3N3
∗
).

V. NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate

the efficiency of our mode reduction technique. We consider

a dielectric slab with seven hole arrays parallel to the x
axis as shown in Fig. 1(a). The centers of the holes are
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lattice points of a triangular lattice with lattice constant L.

The radius of the holes and thickness of the slab are 0.25L
and 0.5L, respectively. The dielectric constant of the slab is

ε = 11.56, and it is surrounded by air. The incident wave is the

fundamental TE mode propagating in the negative y direction,

i.e.,

H(i)
z (x, y, z) = φ

(1)
s,1(z)e

−iη
(1)
s,1y, E(i)

z (x, y, z) = 0.

In the following calculations, the vertical direction is trun-

cated to an interval with the total length 4.5L. The eigenvalue

problems (2) are discretized by a fourth order finite difference

scheme [6] with grid size ∆z = 4.5L/136. This gives rise

to N1 = 135 TE modes and N2 = 136 TM modes (the

total number of modes is N = 271). In the horizontal plane,

we keep M = 42 Fourier modes in the cylindrical wave

expansions, and choose the same number of sampling points

on Γ. Since the structure and the incident wave are both

symmetric with respect to the middle plane of the slab, only

the vertical modes with the same symmetry are excited. The

total of number of such modes is Nsym = 136 including

68 TE modes and 68 TM modes. Using the mode reduction

technique, we are able to obtain a satisfactory accuracy with

less than one third of the total modes. Fig. 2 compares the

reflection and transmission spectra computed by the DtN-map

method with and without the mode reduction technique. The

0.24 0.26 0.28 0.3 0.32

0.2

0.4

0.6

0.8

ωL/2πc

Reflection

Transmission

Fig. 2. Reflection and transmission spectra shown in red and blue respectively,
for 7 hole arrays in a slab. The incident wave is the fundamental TE mode
of the slab in normal incidence. Solid lines: solutions with all 136 vertical
modes. “◦”: solutions with N∗ = 30 modes.

numbers of vertical modes used are N∗ = 30 (for 15 TE

modes and 15 TM modes) and Nsym = 136, respectively.

The maximum absolute error for reflection and transmission

is 0.011 and 0.032, respectively. Notice that N∗ is only about

23% of Nsym.

VI. CONCLUSION

A PhC slab structure or device can be quite complicated

in the horizontal plane parallel to the slab, but it has only

two distinct vertical profiles (in the slab and hole regions,

respectively) and both are very simple. The approach based

on expanding the field in vertical modes [4] may lead to

efficient computational methods, but is currently limited by the

relatively large number of vertical modes needed to maintain

the accuracy of the solution. It appears that many of these

modes are only needed to enforce the boundary conditions

on the interfaces between the slab and hole regions. If the

interfaces are first analyzed with the full set of modes, it

is possible to have a significant reduction for the number of

modes in the remaining computations.

The above idea has been realized by first analyzing the

scattering properties for a single hole in a slab using the full

set of vertical modes, then construct a DtN map for the unit

cells using reduced number of vertical modes, and apply the

DtN map for analyzing a slab with a finite number of hole

arrays. The first step for the single hole requires O(MN3)
operations, where N is the total number of numerical vertical

modes and M is the number of retained Fourier modes. With

the mode reduction technique, the required operations for the

the main step is reduced from O(M3N3) to O(M3N3
∗
). Since

typically N∗ < N/3, we achieve a speedup of more than 27

times.
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