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A one-dimensional periodic array of circular dielectric cylinders surrounded by air is a simple
structure on which guided modes above the lightline, also called bound states in the continuum
(BICs), may exist. Recent studies reveal that such an array supports not only antisymmetric
standing waves which are symmetry-protected BICs, but also propagating Bloch BICs and sym-
metric standing waves. Near a BIC, there is a family of resonant modes (depending on the Bloch
wavenumber β) with arbitrarily large quality factors. Using a perturbation method, we show that
the quality factor of the resonant mode typically depends on β like 1/(β−β∗)

2, where β∗ is the Bloch
wavenumber the BIC, but near a symmetric standing wave (β∗ = 0), the quality factor blows up like
1/β4. This indicates that strong resonances can be more easily induced near a symmetric standing
wave. As an application, we numerically study optical bistability for the periodic array assuming
the cylinders have a Kerr nonlinearity. With the nonlinear effects enhanced by the resonances, it is
possible to have optical bistability for weak incident waves. The numerical results confirm that the
weakest incident wave for optical bistability is realized through the resonances near the symmetric
standing waves.

PACS numbers: 42.65.Hw,42.25.Fx,42.79.Dj

I. INTRODUCTION

Optical bistability (OB) is a classical nonlinear opti-
cal phenomenon that has been extensively studied in the
last four decades [1]. The simplest nonlinear medium in
which OB occurs is probably the Kerr medium, where the
nonlinear effect is modeled by adding a term proportional
to the field intensity to the linear dielectric constant. OB
is proposed for a number of all-optical signal processing
applications, such as optical switches and memory. How-
ever, the nonlinear coefficient of a conventional material
is extremely small. In simple configurations, such as a
slab of nonlinear medium, OB only occurs when the am-
plitude of the incident wave A is proportional to 1/

√
γ

where γ is the nonlinear coefficient, unless the interac-
tion length is very long. This implies that a device based
on OB is either very large or requires a very high power
for its operation. Clearly, such a device is not useful for
nanophotonic applications.

One way to overcome these limitations is to enhance
the nonlinear effects by a local field with a much larger
amplitude than the incident wave. This can be achieved
by resonances such as those in photonics crystal (PhC)
microcavities [2–4]. When an incident wave with ampli-
tude A excites a resonant mode with quality factor Q,
the amplitude of the local field u is on the order of

√
QA.

In addition, the resonance induces sharp peaks or dips
with an O(1/Q) bandwidth in transmission, reflection or
scattering spectra, and OB can occur when γ|u|2 is on
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the order of Q−1. Therefore, with the resonant enhance-
ment, the required incident wave amplitude A for OB
is proportional to 1/(Q

√
γ) [5]. In principle, if resonant

modes with arbitrarily large quality factors are utilized,
OB can occur for arbitrarily weak incident waves. Some
microcavities fabricated on PhC slabs indeed have res-
onant modes with very high quality factors, but once a
microcavity is fabricated, its quality factor is fixed. To
achieve OB at arbitrarily low incident field intensity, it
is desirable to have a fixed physical structure on which a
family of resonant modes exist, their quality factors tend
to infinity, but their resonant frequencies converge to a
constant. Notice that a simple resonator, such as a di-
electric sphere, can not serve the purpose, since although
it has a sequence of resonant modes with quality factors
tending to infinity, the corresponding resonant frequen-
cies also tend to infinity.

The desired family of resonant modes exist on peri-
odic structures, such as PhC slabs and periodic arrays
of cylinders. A periodic structure sandwiched between
two homogeneous media could have guided modes that
are confined around the main periodic part of the struc-
ture and decay exponentially into the surrounding ho-
mogeneous media. In addition to the well-known guided
modes below the lightline, there could also be special
guided modes above the lightline, i.e., their frequencies
lie in the frequency intervals where radiation modes ex-
ist [6–20]. These guided modes above the lightline (i.e.,
in the radiation continuum) are special bound states in
the continuum (BICs) [21–23], and mathematically they
correspond to discrete eigenvalues in a continuous spec-
trum. On a two-dimensional (2D) structure with one pe-
riodic direction, resonant modes exist continuously with
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respect to the Bloch wavenumber β. It is known that the
quality factor tends to infinity as β tends to the Bloch
wavenumber β∗ of a BIC. In fact, the quality factor is
typically proportional to 1/(β − β∗)

2. Therefore, reso-
nant modes with arbitrarily large quality factors can be
obtained if β is sufficiently close to β∗. In that case, for
incident waves with a wavevector component equal to β,
it is possible to have OB with very small incident wave
amplitudes. However, this requires high precision for the
incident wave vector.
A one-dimensional (1D) periodic array of parallel and

infinitely long circular dielectric cylinders is a particular
simple structure on which BICs exist [8, 16, 17, 20]. A
well-known class of BICs are standing waves having a
symmetry incompatible with that of the outgoing radia-
tion modes. The existence of these so-called symmetry-
protected BICs can be rigorously proved [6, 8, 17, 24].
The array also supports other BICs that are not pro-
tected by symmetry [16, 20]. For a fixed array, the BICs
are isolated points in the frequency-wavenumber plane,
but they exist continuously with respect to the radius
and dielectric constant of the cylinders. In particular,
for cylinders with their radius and the dielectric constant
satisfying a proper condition, there are standing waves
which are not protected by symmetry [16, 20].
In Sect. II, we describe the periodic array, present the

the mathematical formulation, and recall some results
on BICs. In Sect. III, we show that resonant modes near
standing waves unprotected by symmetry have quality
factors proportional to 1/(β − β∗)

4, where β∗ = 0 and
β (real and close to β∗) is the Bloch wavenumber of the
resonant mode. This is very different from the resonant
modes near ordinary BICs. The inverse fourth power re-
lation indicates that the quality factor can be very large,
even when |β−β∗| is not so small. Consequently, resonant
modes with high quality factors can be obtained with
a much relaxed accuracy requirement for the wavenum-
ber β. In Sect. IV, based on rigorous numerical simula-
tions, we analyze OB enhanced by resonances near three
distinct BICs. Numerical results for a fixed and small
|β − β∗| confirm that the minimum incident wave am-
plitude A for OB is proportional to (β − β∗)

2/
√
γ for

ordinary BICs and (β − β∗)
4/
√
γ for the standing waves

without symmetry protection.

II. FORMULATION AND BICS

In Fig. 1, we show a 1D periodic array of parallel and
infinitely long circular cylinders surrounded by air. A
Cartesian coordinate system is chosen so that the cylin-
ders are parallel to the z axis, the array is periodic in
y with period L, and the origin lies in the center of one
cylinder. Therefore, the structure is symmetric with re-
spect to both x and y axes. We assume that the cylinders
are made from a dielectric material with a Kerr non-
linearity. The dielectric constant and the radius of the
cylinders are ǫ1 and a, respectively, where ǫ1 > 1 and
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FIG. 1. A 1D array of circular cylinders with radius a, di-
electric constant ǫ1 and nonlinear coefficient γ1. The array is
periodic in y with period L.

a < L/2.
For the E polarization, the z component of the elec-

tric field, denoted by u, satisfies the following nonlinear
Helmholtz equation [25–30]:

∂2u

∂x2
+

∂2u

∂y2
+ k20

(

ǫ+ γ|u|2
)

u = 0, (1)

where k0 = ω/c is the free space wavenumber, ω is the
angular frequency, c is the speed of light in vacuum, ǫ =
ǫ(r) is the dielectric function, r = (x, y), γ = γ(r) is the
nonlinear coefficient, and the time dependence is e−iωt.
In particular, we have ǫ = ǫ1 and γ = γ1 > 0 in the
cylinders, and ǫ = 1 and γ = 0 outside the cylinders.
Equation (1) can be derived from the nonlinear Maxwell’s
equations with the assumption that higher harmonics can
be ignored, and γ = 3

4χ
(3) where χ(3) is an element of the

third order nonlinear susceptibility tensor.
We study the nonlinear diffraction problem for an in-

cident plane wave given by

u(in)(r) = Aeiβy+iα(x+L/2), x < −a, (2)

where A is the amplitude, (α, β) is the wavevector, β is
real, α is positive, and they satisfy α2 + β2 = k20. The
reflected and transmitted waves can be expanded as

u(r)(r) =
∞
∑

m=−∞

c−meiβmy−iαm(x+L/2), x < −a, (3)

u(t)(r) =

∞
∑

m=−∞

c+meiβmy+iαm(x−L/2), x > a, (4)

where m is an integer, and

βm = β +
2πm

L
, αm =

√

k20 − β2
m. (5)

If α0 = α is the only real number among all αm, then
the reflection and transmission coefficients for normalized
power are

R = |c−0 /A|2, T = |c+0 /A|2. (6)
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The nonlinear diffraction problem may have multi-
ple solutions related to optical bistability and symmetry
breaking phenomena [31]. To understand the nonlinear
properties, it is necessary to first study the linear solu-
tions of the periodic array. A BIC on the periodic array
is a special Bloch mode solution of the linear Helmholtz
equation [i.e. γ ≡ 0 in Eq. (1)] without any incident
wave. It is given by

u(r) = φ(r)eiβy, (7)

where φ is periodic in y with period L, φ → 0 as |x| →
∞, and β is the real Bloch wavenumber (or propagation
constant) satisfying k0 > |β| (i.e., above the lightline).
Due to the periodicity of φ and the reflection symmetry
in y, β can be restricted to the interval [0, π/L]. Notice
that the array can be regarded as a periodic waveguide,
and it has Bloch guided modes below the lightline (i.e.,
k0 < |β|) that depend continuously on β and ω. On the
other hand, the BICs only exist as isolated points in the
frequency-wavenumber plane.

The simplest BICs on the periodic array shown in
Fig. 1 are antisymmetric standing waves satisfying β = 0
and u(x,−y) = −u(x, y) [16, 17]. The solution u given
in Eq. (7) can be expanded in Fourier series for |x| > a,
as in Eqs. (3) and (4). If β = 0 and k0 < 2π/L, then
α0 is real and all other αm for m 6= 0 are pure imagi-
nary, and the only outgoing radiation channel is the plane
wave for m = 0 in Eqs. (3) and (4). But if u is an odd
function of y, the coefficients c±0 are zero automatically,
thus u → 0 as |x| → ∞ is guaranteed. Since these anti-
symmetric standing waves have incompatible symmetry
with the outgoing radiating waves, they are symmetry-
protected BICs. However, the array also supports BICs
that are not protected by symmetry, and they are prop-
agating Bloch BICs with β 6= 0 or symmetric standing
waves (even functions of y) [16, 20]. In particular, these
Bloch BICs are quite robust, since they exist continu-
ously with respect to the radius and dielectric constant
of the cylinders [20].

In Fig. 2(a), we show a symmetry-protected BIC for
a = 0.382L and ǫ1 = 5. The normalized frequency
of this standing wave is ωL/(2πc) = 0.532688. For
the same radius a and dielectric constant ǫ1, there is
a propagating Bloch BIC with normalized frequency
ωL/(2πc) = 0.647949 and normalized wavenumber
βL/(2π) = 0.07228, and it is shown in Fig. 2(b). If we
fix radius a = 0.382L and allow ǫ1 to vary, then we can
find a family of BICs for 2.524 < ǫ1 ≤ 6.44974. Both
ω and β depends continuously on ǫ1. At the endpoint
ǫ1 = 6.44974, we have β = 0 and ωL/(2πc) = 0.573935,
thus the Bloch BIC becomes a standing wave, and it
has a symmetric (i.e., y-even) field pattern as shown in
Fig. 2(c). From Figs. 2(b) and 2(c), we can see that this
family of BICs without symmetry protection are even
functions of x. It turns out that there is also a family of
x-odd BICs for larger values of ǫ1 [20].
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FIG. 2. Wave field patterns (i.e. the real parts of u) of three
BICs on a periodic array of circular cylinders with radius a =
0.382L. (a) Antisymmetric (y-odd) standing wave for ǫ1 = 5
and ωL/(2πc) = 0.532688; (b) Propagating BIC for ǫ1 = 5,
ωL/(2πc) = 0.647949 and βL/(2π) = 0.07228; (c) Symmetric
(y-even) standing wave for ǫ1 = 6.44974 and ωL/(2πc) =
0.573935. The x and y axis are given in unit L.

III. PERTURBATION ANALYSIS

For a fixed periodic array, a BIC corresponds to an iso-
lated point in the ω-β plane. Let (ω∗, β∗) be a frequency-
wavenumber pair of a BIC, then for any real β close to
but not equal to β∗, the array has a resonant mode with
a complex frequency ω near ω∗. A resonant mode is a
nonzero solution of the linear Helmholtz equation (with-
out incident waves) satisfying outgoing radiation condi-
tions. Since we assume the time-dependence is e−iωt,
the imaginary part of the complex frequency, i.e., Im(ω),
should be negative, so that the amplitude of the mode de-
cays with time. The quality factor of the resonant mode
is Q = −0.5Re(ω)/Im(ω), where Re(ω) is the real part
of ω. In the following, we show that if ω is expanded as
a power series of β − β∗, then the first nonzero term in
the series of Im(ω) is in general (β−β∗)

2, but it becomes
(β − β∗)

4 for the symmetric (i.e. y-even) standing wave
shown in Fig. 2(c).

First, we consider a general 2D periodic structure sur-
rounded by air. We assume that the dielectric func-
tion ǫ(r) is real, is periodic in y with period L, and
ǫ = 1 for |x| ≥ L/2. Let u(r) = eiβyφ(r) (for a
complex frequency ω) be a resonant mode near a BIC
u∗(r) = eiβ∗yφ∗(r), we develop a perturbation theory
for the resonant mode assuming |β − β∗| is small. Since
u belows up as |x| → ∞, the perturbation theory should
be developed in a bounded domain with proper boundary
conditions for truncating x.
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The linear Helmholtz equation for u gives rise to

∂2φ

∂x2
+

∂2φ

∂y2
+ 2iβ

∂φ

∂y
+ (gǫ− β2)φ = 0, (8)

where g = k20 = (ω/c)2 is now complex. For |x| ≥ L/2,
we can expand u as in Eqs. (3) and (4). Comparing
these expansions with their x derivatives at x = ±L/2,
we obtain the following boundary condition for φ [32]:

±∂φ

∂x
= T φ, x = ±L

2
, (9)

where T is a linear operator acting on periodic functions
of y with period L, such that

T ei2πmy/L = µm ei2πmy/L (10)

for all integers m and µm = i
√

g − β2
m. Since g is com-

plex, the square root must be carefully defined. It is
necessary to insist that the complex square root is con-
tinuous as β → β∗ and ω → ω∗ [or g → g∗ = (ω∗/c)

2].
For simplicity, we assume g∗ − β2

∗ > 0, and g∗ − β2
∗m < 0

for all m 6= 0, where β∗m = β∗ + 2πm/L.
Let δ = β−β∗, we expand φ, g, µm and operator T as

follows

φ = φ∗ + δφ1 + δ2φ2 + ... (11)

g = g∗ + δg1 + δ2g2 + ... (12)

µm = µ∗m + δµ1m + δ2µ2m + ... (13)

T = T∗ + δT1 + δ2T2 + ... (14)

The explicit formulas for µ∗m, µ1m and µ2m are given in
Appendix. Similar to the definition of T in Eq. (10), the
actions of T∗, T1 and T2 on ei2πmy/L are simply ei2πmy/L

multiplied by µ∗m, µ1m and µ2m, respectively.
Inserting Eqs. (11), (12) and (14) into the governing

equation (8) and boundary conditions (9), we get

Lφ∗ = 0, (15)

Lφ1 = −2i∂yφ∗ + (2β∗ − ǫg1)φ∗, (16)

Lφ2 = −2i∂yφ1 + (2β∗ − ǫg1)φ1 + (1− ǫg2)φ∗, (17)

where

L = ∂2
x + ∂2

y + 2iβ∗∂y + g∗ǫ− β2
∗ , (18)

and

±∂xφ∗ = T∗φ∗, x = ±L/2, (19)

±∂xφ1 = T∗φ1 + T1φ∗, x = ±L/2, (20)

±∂xφ2 = T∗φ2 + T1φ1 + T2φ∗, x = ±L/2. (21)

Equations (15) and (19) are satisfied by the BIC. From
Eqs. (16) and (20), we can show that

g1 =
2β∗

∫

Ω
|φ∗|2dr − 2i

∫

Ω
φ∗∂yφ∗ dr +B1

∫

Ω
ǫ|φ∗|2 dr +B0

, (22)

where Ω is the square given by |x| < L/2 and |y| < L/2,

B0 =
L

2

∑

m 6=0

|c+∗m|2 + |c−∗m|2
(β2

∗m − g∗)1/2
, (23)

B1 = L
∑

m 6=0

β∗m
|c+∗m|2 + |c−∗m|2
(β2

∗m − g∗)1/2
, (24)

and c±∗m are the Fourier coefficients of φ∗ at x = ±L/2,
i.e.,

φ∗(±L/2, y) =
∞
∑

m=−∞

c±∗m ei2πmy/L. (25)

The derivation of Eq. (22) is given in Appendix.
Since φ∗ is period in y with period L, we have

0 =

∫

Ω

∂|φ∗|2
∂y

dr =

∫

Ω

[

φ∗

∂φ∗

∂y
+ φ∗

∂φ∗

∂y

]

dr.

Thus the term 2i
∫

Ω
φ∗∂yφ∗ dr in Eq. (22) is real. Since

all other terms in Eq. (22) are clearly real, we conclude
that g1 is real. From Eq. (12), it is easy to get

ω = ω∗ +
c2g1
2ω∗

δ +O(δ2). (26)

Therefore, Im(ω) is in general O(δ2) and the quality fac-
tor is proportional to 1/δ2.
Next, we consider resonant modes near standing waves

(β∗ = 0) on symmetric (i.e. y-even) periodic struc-
tures. If u(x, y) = eiβyφ(x, y) is a resonant mode on
such a structure, then so is its reflection u(x,−y) =
e−iβyφ(x,−y). This implies that if the resonant mode
is non-degenerate, ω (also g) should be an even function
of β. Thus, Eq. (12) becomes

g = g∗ + δ2g2 + δ4g4 + ... (27)

where δ = β. We can also apply the reflection transform
to standing waves. This leads to the conclusion that a
standing wave φ∗ on a symmetric periodic structure must
be either symmetric (y-even) or antisymmetric (y-odd),
since otherwise, we can construct them from φ∗(x, y) +
φ∗(x,−y) or φ∗(x, y) − φ∗(x,−y). The results shown in
Figs. 2(a) and (c) confirm this conclusion. Whether φ∗ is
symmetric or antisymmetric, φ∗∂yφ∗ is always odd in y,

thus
∫

Ω
φ∗∂yφ∗dr = 0. Moreover, the Fourier coefficients

satisfy |c±∗m| = |c±∗,−m|, β∗m = 2πm/L, thus B1 = 0.
From Eq. (22), we again conclude that g1 = 0.
The equations for φ1 and φ2 are simplified as

Lφ1 = −2i∂yφ∗, (28)

Lφ2 = (1− ǫg2)φ∗ − 2i∂yφ1, (29)

where L = ∂2
x + ∂2

y + g∗ǫ. In Appendix, we show that

g2 =

∫

Ω

[

|φ∗|2 − |∇φ1|2 + g∗ǫ|φ1|2
]

dr −B2 +B3
∫

Ω
ǫ|φ∗|2dr +B0

, (30)
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where B0 is given in Eq. (23),

B2 =
Lg∗
2

∑

m 6=0

|c+∗m|2 + |c−∗m|2
(β2

∗m − g∗)3/2
(31)

B3 = L
∑

m

µ∗m(|c+1m|2 + |c−1m|2), (32)

and c±1m are the Fourier coefficients of φ1 at x = ±L/2,
that is

φ1(±L/2, y) =

∞
∑

m=−∞

c±1mei2πmy/L. (33)

Moreover, µ∗0 = i
√

g∗ − β2
∗ = iω∗/c is pure imaginary,

and all µ∗m, for m 6= 0, are real and given in Appendix.
Equation (27) implies that

ω = ω∗ +
c2g2
2ω∗

δ2 +O(δ4) (34)

for standing waves. Thus,

Im(ω) = − Lc
(

|c+10|2 + |c−10|2
)

2
(∫

Ω
ǫ|φ∗|2 dr +B0

)δ2 +O(δ4). (35)

For a y-even standing wave φ∗, we notice that T1φ∗ in
Eq. (20) is odd in y, ∂yφ∗ in Eq. (28) is also odd in y, thus
φ1 is an odd function of y, the coefficients c±10 vanish, and
Im(g2) = 0. As a result, we have Im(ω) = O(δ4) and the
quality factor is proportional to 1/δ4.
For the three BICs shown in Fig. 2, we calculate the

complex resonant frequency ω for some β close to β∗.
In Fig. 3, we show the relations between the normalized
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FIG. 3. Logarithmic relations between −Im(ω)L/(2πc) and
(β − β∗)L/(2π) for the three BICs shown in Fig. 2.

−Im(ω) and normalized β − β∗ in a logarithmic scale. It
can be seen that the two curves for the antisymmetric
standing wave and the propagating BIC have a relatively
small slope (close to 2), while the curve for the symmetric
standing wave has a larger slope (close to 4). These nu-
merical results confirm the theoretical results developed
in this section.

IV. OPTICAL BISTABILITY

In this section, we consider the nonlinear diffraction
problem formulated in Sect. II for a periodic array of
circular cylinders with the Kerr nonlinearity. Since res-
onances with arbitrarily high quality factors can be ob-
tained when the wavenumber β is close to the wavenum-
ber β∗ of a BIC, we consider incident waves with a real
frequency ω and a real wavevector (α, β), where ω is close
to the frequency ω∗ of the BIC, and β is close to β∗. It
should be pointed that OB is a robust nonlinear optical
phenomenon. Its appearance does not sensitively depend
on the choice of ω. For the three BICs shown in Fig. 2, es-
pecially the symmetric standing wave shown in Fig. 2(c),
we show that OB occurs for incident waves with small
amplitudes if |β − β∗| is small.
For the linear problem (γ ≡ 0), let Q be the quality

factor of the resonant mode with a real wavenumber β
and a complex frequency ωc, and A be the amplitude of
the incident wave with the real frequency ω = Re(ωc)
and the real wave vector (α, β), then the field amplitude
around the array is O(

√
QA) [33]. In addition, a lin-

ear perturbation theory shows that if ǫ1 of the cylinders
is slightly increased, the real part of the complex fre-
quency ωc decreases slightly. For the nonlinear problem,
the term γ|u|2 effectively increases the dielectric constant
ǫ1 of the cylinders, thus the most dramatic resonance en-
hancement occurs at a real frequency ω slightly smaller
than Re(ωc).
Although OB has been widely studied, it is difficult

to predict the precise values of the incident amplitude
A for which OB actually occurs. However, it is possible
to obtain some estimates based on related linear prob-
lems. Due to the coupling of the incident plane wave
with the resonant mode, the linear transmission or reflec-
tion spectrum for a fixed β typically exhibits an asym-
metric lineshape for frequencies around Re(ωc). Fur-
thermore, the spectrum contains two frequencies around
Re(ωc) for total transmission and total reflection, respec-
tively, and the difference between these two frequencies
is O(1/Q) [33, 34]. It appears that OB can only occur
when the nonlinear term γ|u|2 induces an O(1/Q) shift
in the resonant frequency, i.e., the resonant frequency ω̃c

for ǫ̃1 = ǫ1 + γ|u|2 differs from the original ωc by an
O(1/Q) amount. In addition, to the first order, ω̃c − ωc

varies linearly with ǫ̃1 − ǫ1. Therefore, OB requires that
γ1|u|2 = O(γ1QA2) = O(1/Q), or

A = O

(

1

Q
√
γ1

)

. (36)

Based on the results of Sect. III, we conclude that near
a typical BIC, OB may occur when

A = O

(

(β − β∗)
2L2

√
γ1

)

, (37)

but near the symmetric standing wave, the condition be-
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comes

A = O

(

β4L4

√
γ1

)

. (38)

For the three BICs shown in Fig. 2, we solve the non-
linear diffraction problem assuming the incident wavevec-
tor component β satisfies (β − β∗)L/(2π) = 0.01 and
the nonlinear coefficient of the cylinders is γ1 = 1.125 ×
10−17 m2/V2. The first BIC is the antisymmetric stand-
ing wave shown in Fig. 2(a). Its normalized frequency is
ω∗L/(2πc) = 0.532688. For the β given above (β∗ = 0),
the array has a resonant mode with complex frequency
ωcL/(2πc) = 0.532479 − 0.0000086i. The corresponding
quality factor is Q ≈ 3.1×104. The frequency of the inci-
dent wave is chosen to be ωL/(2πc) = 0.53246. In Fig. 4,
we show a curve relating the reflection coefficient R and
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FIG. 4. Reflection coefficient of a nonlinear diffraction prob-
lem related to the BIC shown in Fig. 2(a), for different inci-
dent amplitude A (with unit V/m), wavenumber βL/(2π) =
0.01 and frequency ωL/(2πc) = 0.53246.

the incident amplitude A. For A between 4.93× 104 and
5.21 × 104 V/m, R has multiple values corresponding to
the multiple solutions related to the OB phenomenon.
The second BIC is the propagating mode shown

in Fig. 2(b). Its frequency and wavenumber are
ω∗L/(2πc) = 0.647949 and β∗L/(2π) = 0.07228, respec-
tively. For β given above, there is a resonant mode with
complex frequency ωcL/(2πc) = 0.650409 − 0.0000048i.
The corresponding quality factor is Q ≈ 6.8 × 104. For
incident waves with frequency ωL/(2πc) = 0.65040 and
the given β, we solve the nonlinear diffraction problem
and obtain the multi-valued amplitude-dependent reflec-
tion coefficient R shown in Fig. 5. Notice that OB occurs
when A is between 2.73× 104 and 2.81× 104 V/m.
The third BIC shown in Fig. 2(c) is the symmet-

ric standing wave on an array with radius a = 0.382L
and dielectric constant ǫ1 = 6.44974. Its frequency
is ω∗L/(2πc) = 0.573935. For βL/(2π) = 0.01, the
array has a resonant mode with complex frequency
ωcL/(2πc) = 0.574086 − 0.000000022i and quality fac-
tor Q ≈ 1.3 × 107. For incident waves with frequency
ωL/(2πc) ≈ 0.574086 and the given β, we find the re-
lation between reflection coefficient R and amplitude A
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FIG. 5. Reflection coefficient of a nonlinear diffraction prob-
lem related to the BIC shown in Fig. 2(b), for different inci-
dent amplitude A (with unit V/m), wavenumber βL/(2π) =
0.08228 and frequency ωL/(2πc) = 0.65040.
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FIG. 6. Reflection coefficient of a nonlinear diffraction prob-
lem related to the BIC shown in Fig. 2(c), for different inci-
dent amplitude A (with unit V/m), wavenumber βL/(2π) =
0.01 and frequency ωL/(2πc) ≈ 0.574086.

as shown in Fig. 6. We can see that OC occurs for A
between 139.9 and 143.5V/m. Compared with the two
previous cases, a much weak incident wave is needed to
realize OB, even though β − β∗ is identical in all three
cases.

V. CONCLUSION

On periodic structures such as an array of circular
cylinders, there could be special guided modes in the
radiation continuum, and they are referred to as BICs.
Near a BIC with Bloch wavenumber β∗, there are reso-
nant modes that depend continuously on a given Bloch
wavenumber β. As β → β∗, the resonant frequencies of
these modes converge to that of the BIC, and their qual-
ity factors tend to infinity. Using a perturbation theory,
we show that for a typical BIC, the quality factors is
proportional to 1/(β − β∗)

2, but for a symmetric stand-
ing wave (β∗ = 0) on a symmetric periodic structure,
the quality factors is proportional to 1/β4. The latter
case is particularly interest, since it gives rise to strong
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resonances with a relaxed requirement on β.
As an application of the resonances near the BICs, we

study optical bistability for single arrays of circular cylin-
ders with a Kerr nonlinearity. Since the nonlinear coef-
ficient of a conventional dielectric material is very small,
usually OB is only possible for very strong incident waves.
With resonance enhancement, the required incident wave
amplitude for OB can be significantly reduced. Since the
quality factors of the resonant modes near a BIC can be
arbitrarily high, in principle, OB can happen for inci-
dent waves with arbitrarily low intensity. Our numerical
results for three different BICs and the same β− β∗ con-
firm that the smallest incident amplitude needed for OB
can be realized by resonances near a symmetric standing
wave.
It should be pointed out that the existence of BICs and

nearby resonances with arbitrarily high quality factors
requires an infinite structure with perfect periodicity. In
practice, the array is always finite, the cylinders are not
perfectly identical, the length of the cylinders is also fi-
nite, and the incident wave cannot be a true plane wave.
Clearly, it is important to study these practical issues.
For a finite array of possibly distorted cylinders, the res-
onant modes form a discrete sequence, but it is worth-
while to find out whether there are particularly strong
resonances when the related ideal periodic array supports
symmetric standing waves. It is also highly relevant to
consider incident waves with a finite beam-width, and
study optical bistability when the frequency and the main
wavevector of the beam are related to different kinds of
BICs.
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APPENDIX

The perturbation theory is developed for resonant
modes near a BIC on a 2D periodic structure with a
dielectric function ǫ(x, y), where ǫ is real, periodic in y
with period L, and ǫ = 1 for x ≥ L/2. A BIC is a spe-
cial solution u∗ = eiβ∗yφ∗ for a real frequency ω∗. For a
real β close to but not equal to β∗, the linear Helmholtz
equation has a resonant mode u = eiβyφ for a complex
ω near ω∗, where φ is periodic in y and satisfies the out-
going radiation condition (9). The perturbation theory

is developed for g = (ω/c)2 and φ, assuming δ = β − β∗

is small. The operator T appeared in the boundary con-
dition (9) is related to µm which has been expanded in
Eq. (13). For m = 0, we have

µ∗0 = i
√

g∗ − β2
∗ ,

µ10 =
i(g1 − 2β∗)

2
√

g∗ − β2
∗

,

µ20 =
i(g2 − 1)

2
√

g∗ − β2
∗

− i(g1 − 2β∗)
2

8(g∗ − β2
∗)

3/2
.

For m 6= 0, we have

µ∗m = −
√

β2
∗m − g∗,

µ1m =
g1 − 2β∗m

2
√

β2
∗m − g∗

,

µ2m =
g2 − 1

2
√

β2
∗m − g∗

+
(g1 − 2β∗m)2

8(β2
∗m − g∗)3/2

.

Based on the expansions for φ, g and T , we obtain the
equations and boundary conditions for φ∗, φ1 and φ2.
Multiplying Eq. (16) by φ∗ (the complex conjugate of

φ∗), and integrating the result on the square Ω (given by
|x| < L/2 and |y| < L/2), we obtain

∫

Ω

φ∗Lφ1dr = −2i

∫

Ω

φ∗

∂φ∗

∂y
dr + 2β∗

∫

Ω

|φ∗|2dr

−g1

∫

Ω

ǫ|φ∗|2dr. (39)

For the left hand side above, we notice that

φ∗Lφ1 = φ1Lφ∗ +∇ · (φ∗∇φ1 − φ1∇φ∗) + 2iβ∗∂y(φ∗φ1).

The first term in the right hand side vanishes. Due to
the periodicity in y, the integral of the last term on Ω is
zero. Using Green’s theorem, we obtain

∫

Ω

φ∗Lφ1dr =

∫

∂Ω

[

φ∗

∂φ1

∂ν
− φ1

∂φ∗

∂ν

]

ds,

where ∂Ω is the boundary of Ω, ν is the outward unit nor-
mal vector of ∂Ω, ∂ν becomes ∂y, −∂y, −∂x and ∂x on the
top, bottom, left and right edges of Ω, respectively. Due
to the periodicity in y, the line integral on the top and
bottom edges cancel out. Using the boundary conditions
(19) and (20), we obtain

∫

Ω

φ∗Lφ1dr = J(F0) + J(F1) = J(F1), (40)

where

F0 = φ∗(T∗φ1)− φ1(T∗φ∗), F1 = φ∗T1φ∗,

and for each integer j,

J(Fj) =

∫ L/2

−L/2

[Fj(L/2, y) + Fj(−L/2, y)] dy. (41)
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Since φ∗ decays to zero as |x| → ∞, we have c±∗0 = 0,
where c±∗m are the Fourier coefficients of φ∗ at x = ±L/2,
as in Eq. (25). In addition, µ∗m (for T∗) is real if m 6= 0.
Using these results, we can verify that J(F0) = 0. Using
the Fourier series of φ∗ at x = ±L/2 and the definition
of T1, we obtain

J(F1) = g1B0 −B1, (42)

where B0 and B1 are given in Eqs. (23) and (24), respec-
tively. Combining Eqs. (39), (40) and (42), we obtain
Eq. (22) for g1.
Next, we assume that the periodic structure has a re-

flection symmetry along the y axis, i.e., ǫ is an even func-
tion of y, and consider resonant modes around a standing
wave φ∗ which is either symmetric (even in y) or anti-
symmetric (odd in y). Due to the symmetry, g is an even
function of δ. The conditions β∗ = 0 and g1 = 0 lead to
some simplifications. Notice that β∗m = 2πm/L, and for
m 6= 0,

µ1m =
−β∗m

√

β2
∗m − g∗

,

µ2m =
g2

2
√

β2
∗m − g∗

+
g∗

2(β2
∗m − g∗)3/2

.

Multiplying Eq. (29) by φ∗ and integrating the result
on Ω, we obtain

∫

Ω

φ∗Lφ2dr =

∫

Ω

|φ∗|2dr − g2

∫

Ω

ǫ|φ∗|2dr

−2i

∫

Ω

φ∗

∂φ1

∂y
dr. (43)

For the left hand side, we notice that

φ∗Lφ2 = φ2Lφ∗ +∇ · (φ∗∇φ2 − φ2∇φ∗).

This leads to
∫

Ω

φ∗Lφ2 dr =

∫

∂Ω

[

φ∗

∂φ2

∂ν
− φ2

∂φ∗

∂ν

]

ds

= J(F2) + J(F3) + J(F4)

= J(F2) + J(F3),

where

F2 = φ∗T2φ∗,

F3 = φ∗T1φ1,

F4 = φ∗T∗φ2 − φ2(T∗φ∗),

and J(Fj), for j = 2, 3, 4, are defined in Eq. (41). In the
above, we notice that the line integrals on the top and
bottom edges of Ω cancel out, the boundary conditions
(19) and (21) are applied, and J(F4) = 0. Therefore, we
can rewrite Eq. (43) as

2i

∫

Ω

φ∗

∂φ1

∂y
dr + J(F3)

=

∫

Ω

|φ∗|2dr − g2

∫

Ω

ǫ|φ∗|2dr − J(F2). (44)

Multiplying Eq. (28) by φ1, integrating the result on
Ω, and taking a complex conjugate, we obtain

2i

∫

Ω

φ1
∂φ∗

∂y
dr =

∫

Ω

[

g∗ǫ|φ1|2 − |∇φ1|2
]

dr

+ J(F5) + J(F6) (45)

where F5 = φ1T∗φ1, F6 = φ1T1φ∗. Using the properties
of φ∗ and T∗ mentioned above, we can verify that

J(F6) = J(F3).

In addition, we notice that

∫

Ω

[

φ∗

∂φ1

∂y
+ φ1

∂φ∗

∂y

]

dr =

∫

Ω

∂(φ∗φ1)

∂y
dr = 0.

Therefore, Eq. (45) can be written as

2i

∫

Ω

φ∗

∂φ1

∂y
dr + J(F3)

=

∫

Ω

[

|∇φ1|2 − g∗ǫ|φ1|2
]

dr − J(F5). (46)

Using the Fourier series of φ∗ and φ1 at x = ±L/2 and
the definitions of T∗ and T2, we obtain

J(F2) = L
∑

m

µ2m(|c+∗m|2 + |c−∗m|2) = g2B0 +B2,

J(F5) = L
∑

m

µ∗m(|c+1m|2 + |c−1m|2) = B3,

where B0, B2 and B3 are defined in Sect. III. The formula
for g2, i.e., Eq. (30), can be easily obtained from the
above two equations, and Eqs. (45), (46).
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[3] M. Soljačić and J. D. Joannopoulos, “Enhancement of

nonlinear effects using photonic crystals,” Nat. Mater. 3,
211–219 (2004).

[4] J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson,
J. D. Joannopoulos, and M. Soljačić, “Enhance nonlinear
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