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Due to the existing nanofabrication techniques, many periodic photonic structures consist of different
parts where the material properties depend only on one spatial variable. The vertical mode expansion
method (VMEM) is a special computational method for analyzing the scattering of light by structures with
this geometric feature. It provides two-dimensional (2D) formulations for the original three-dimensional
problems. In this paper, two VMEM variants are presented for biperiodic structures with cylindrical
objects of circular or general cross sections. Cylindrical wave expansions and boundary integral equations
are used to handle the 2D Helmholtz equations that appear in the vertical mode expansion process. A
number of techniques are introduced to overcome some difficulties associated with the periodicity. The
method is relatively simple to implement, and highly competitive in terms of efficiency and accuracy. ©
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1. INTRODUCTION

Periodic structures such as diffraction gratings, photonic crys-
tals and metamaterials, appear in numerous photonic devices.
A number of mathematical problems are related to the mod-
eling and analysis of periodic structures. An important prob-
lem is to analyze the diffraction of plane waves impinging
upon a biperiodic structure sandwiched between two homoge-
neous media. Standard numerical methods such as the finite-
difference time-domain (FDTD) method and the frequency-
domain finite element method (FEM) [1–4] are widely used,
but they often require too much computer resources. For plas-
monic structures with metallic components, FDTD requires a
very small grid size and a very small time step, and must in-
corporate proper dispersion models for metals. FEM requires
a small mesh size near sharp edges and high-index-contrast in-
terfaces, and gives rise to large, complex, non-Hermitian and
indefinite linear systems that may be expensive to solve. Vol-
ume or surface integral equation methods [5–8] have also been
used to analyze biperiodic structures. However, these methods
are somewhat complicated to implement, especially when the
periodic structure contains multiple material interfaces.

For biperiodic structures with some geometric features, it is
possible to develop special numerical or semi-analytic methods
that are more efficient than the general methods. For exam-
ple, semi-analytic methods based on spherical wave expansions

can be used to analyze biperiodic arrays of spheres [9–12]. If
the biperiodic structure consists of layers that are invariant in
the z direction perpendicular to the plane of periodicity (the xy
plane), numerical modal methods can be used [13–21]. In each
z-invariant layer, the electromagnetic field is expanded in two-
dimensional (2D) eigenmodes with their mode profiles depend-
ing on x and y. A discretization in z is avoided, but the eigen-
modes must be solved numerically. The Fourier modal method
[13–20] and the finite element modal method [21] solve the 2D
vectorial eigenmodes based on Fourier series expansions and
a 2D FEM, respectively. Unfortunately, the numerical modal
methods are not very efficient for three-dimensional (3D) biperi-
odic structures with metallic components, because the eigen-
modes have large variations in the horizontal plane, and many
modes are needed to match the tangential field components be-
tween the layers. These 2D modes are vectorial and expensive
to calculate. To accurately represent such a mode, it is necessary
to keep many terms in the Fourier series, or use a larger number
discretization points.

The vertical mode expansion method (VMEM) [22–24] is a re-
cently developed computational method for analyzing 3D struc-
tures with material properties depending only on one spatial
variable z in different regions of the 3D physical space. The key
idea is to expand the electromagnetic field in each region in the
corresponding one-dimensional (1D) modes with z-dependent
mode profiles. It turns out that the “expansion coefficients” are
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functions of x and y, and satisfy scalar 2D Helmholtz equations.
In [23] and [24], we considered circular and arbitrary cylindrical
structures, respectively, where the scalar 2D Helmholtz equa-
tions are treated by cylindrical wave expansions and bound-
ary integral equations, respectively. Similar to the surface in-
tegral equation method, VMEM reduces the original 3D scatter-
ing problem to a 2D problem formulated on surfaces, but it is
relatively simple.

So far, VMEM has only been implemented for non-periodic
3D structures involving one or more cylindrical structures [23–
27]. In this paper, we present two VMEM variants for biperi-
odic structures involving circular and arbitrary cylindrical ob-
jects. As in [23] and [24], we use cylindrical wave expansions
and boundary integral equations to process the 2D Helmholtz
equations, but the periodicity brings in some difficulties which
lead to numerical instabilities and loss of accuracy for naive im-
plementations. We develop techniques to stabilize the cylindri-
cal wave expansions and maintain the high order accuracy of
the boundary integral equations. The new VMEM is validated
and illustrated by numerical examples involving dielectric and
metallic slabs with a periodic array of air holes, and periodic
arrays of metallic nanoparticles on a substrate.

2. PROBLEM FORMULATION

We consider structures that are periodic in both x and y direc-
tions with the same period L, where {x, y, z} is a Cartesian coor-
dinate system, z is identified as the vertical coordinate, and xy
plane is the horizontal plane. Two simple examples are shown
in Fig. 1, where the left and right panels depict a slab with a

Fig. 1. Two biperiodic structures. Left: a slab with a periodic
array of air holes. Right: a periodic array of particles on a sub-
strate.

periodic array of air holes and a periodic array of particles on
a substrate, respectively. We further assume that the main peri-
odic part of the structure is bounded by two horizontal planes
at z = 0 and z = D, and the top (z > D) and bottom (z < 0)
media are homogeneous. Let ε and µ be the relative permittiv-

ity and relative permeability, respectively, we assume ε = ε(t),

µ = µ(t) for z > D, and ε = ε(b), µ = µ(b) for z < 0, where

ε(t), µ(t), ε(b) and µ(b) are real positive constants. The periodic
structure has a unit cell which is assumed to be

S =

{

(x, y, z) : |x| <
L

2
, |y| <

L

2
, −∞ < z < ∞

}

.

Notice that S is an infinitely-long cylinder and its cross section
Ω is a square with side length L centered at the origin. For
the second periodic structure shown in Fig. 1, the domain Ω is
shown in Fig. 2.

The VMEM is applicable to structures for which the material
properties are one-dimensional in different regions. In this pa-
per, we assume S consists of two cylindrical regions S0 and S1

(with cross sections Ω0 and Ω1, respectively), such that

ε = ε(l)(z), µ = µ(l)(z), (x, y, z) ∈ Sl , (1)

Ω
1

Ω
0

Γ

Γ
e

Fig. 2. Horizontal cross section Ω of a unit cell S for a biperi-
odic structure.

for l = 0, 1. For the first case shown in Fig. 1, S1 and Ω1 are
related to the air hole, and S0 and Ω0 are related to the slab. The
unit-cell cross section Ω contains exactly two subdomains Ω0

and Ω1. For simplicity, we assume Ω0 encloses Ω1. In that case,
the boundary of Ω1, denoted as Γ, is also the inner boundary of
Ω0. We denote the outer boundary of Ω0 by Γe. Note that Γe is
also the boundary of Ω and it consists of four edges as shown

in Fig. 2. Of course, the definitions of ε(l)(z) and µ(l)(z) must
be consistent with the assumptions about the top and bottom

media. Therefore, we must have ε(l)(z) = ε(t), µ(l)(z) = µ(t) for

z > D, and ε(l)(z) = ε(b), µ(l)(z) = µ(b) for z < 0.
In the top homogeneous medium (z > D), we specify a

plane incident wave {E(i), H(i)}, where E is the electric field, H
is a scaled magnetic field (the magnetic field multiplied by the
free space impedance). The wave vector of the incident wave is

(α0, β0,−γ
(t)
00 ), where α0 and β0 are real,

γ
(t)
00 =

√

k2
0ε(t)µ(t) − α2

0 − β2
0

is positive, and k0 is the free space wavenumber. To analyze
the diffraction of the incident wave, it is necessary to solve the
linear frequency-domain Maxwell’s equations:

∇× E = ik0µH, ∇× H = −ik0εE, (2)

where ω is the angular frequency, the time dependence is e−iωt,
and i is the imaginary unit.

3. VERTICAL MODE EXPANSION METHOD

In [23] and [24], the VMEM was presented for non-periodic
structures involving a single layered cylindrical object sur-
rounded by a layered background. For biperiodic structures,
the VMEM follows the same six steps as follows.

1. For 1D media with ε = ε(l)(z) and µ = µ(l)(z) (l = 0, 1) and

the given incident wave {E(i), H(i)}, solve the Maxwell’s

equations and denote the solutions as {E(l), H(l)} (the 1D
solutions).

2. Truncate z by perfectly matched layers, discretize z by N
points, solve the 1D vertical transverse electric (TE) and

transverse magnetic (TM) modes φ
(l,p)
j (z), where l ∈ {0, 1}

is the location index, p ∈ {e, h} is the polarization index,
and j ∈ {1, 2, ..., N} is the mode index. The corresponding

propagation constants are η
(l,p)
j .
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3. Discretize Γ by M points and approximate the tangential
derivative operator along Γ by an M × M matrix T (the
differentiation matrix).

4. For each triple (l, p, j) and function V
(l,p)
j (x, y) satisfying

the following 2D Helmholtz equation

∂2
xV

(l,p)
j + ∂2

yV
(l,p)
j + [η

(l,p)
j ]2V

(l,p)
j = 0 (3)

in Ωl , find either the Dirichlet-to-Neumann (DtN) operator

Λ
(l,p)
j or the Neumann-to-Dirichlet (NtD) operator N

(l,p)
j

(the inverse of Λ
(l,p)
j ), satisfying

Λ
(l,p)
j V

(l,p)
j |Γ = ∂νV

(l,p)
j |Γ, (4)

N
(l,p)
j ∂νV

(l,p)
j |Γ = V

(l,p)
j |Γ, (5)

where ∂ν is the normal derivative operator on Γ. When Γ

is discretized by M points, Λ
(l,p)
j and N

(l,p)
j are approxi-

mated by M × M matrices.

5. Solve a linear system for all V
(l,p)
j |Γ or all ∂νV

(l,p)
j |Γ, de-

pending on whether Λ
(l,p)
j or N

(l,p)
j are available. The lin-

ear system involves 4NM unknowns.

6. Construct the solution {E, H} based on the vertical mode
expansions which involve the 1D solutions, the vertical

modes, and the functions V
(l,p)
j , and calculate desired

quantities such as transmittance and reflectance.

The key idea of the VMEM is to expand the field in regions
S0 and S1 where ε and µ depend only on z. The 1D solutions of
Step 1 are introduced, so that the differences between the total
field and the 1D solutions exhibit outgoing behavior as |z| → ∞,
and satisfy homogeneous Maxwell’s equations. The expansions

involve the vertical modes φ
(l,p)
j (z) and the 2D unknown func-

tions V
(l,p)
j (x, y). The vertical modes are first calculated in Step

2, typically by a Chebyshev pseudospectral method [28]. Al-

though the unknown functions V
(l,p)
j are defined on 2D do-

mains Ωl , we only solve them (or their normal derivatives) on
curve Γ in Step 5. The linear systems of Step 5 are established
from the continuity conditions of tangential field components
on the vertical boundary between S0 and S1. Since the tangen-

tial and normal derivatives of V
(l,p)
j appear in the expansions,

we approximate the tangential derivative operator ∂τ by a ma-
trix in Step 3, and calculate the DtN or NtD operators in Step
4. The matrix approximating the tangential derivative operator
can be constructed by the Fourier pseudospectral method [28].

Steps 1-3 and 5 are identical to the non-periodic cases stud-
ied in [23] and [24]. The main difference appears in Step 4 in

the construction of Λ
(l,p)
j or N

(l,p)
j for domain Ω0. In sections 4

and 5, we present the details of Step 4 for circular and arbitrary
cylindrical objects, respectively. The periodicity also brings in
some differences for Step 6, and they are described in section 6.
We emphasize that although many DtN or NtD operators must
be calculated in Step 4, they are associated with 2D Helmholtz
equations, and the computing time for Step 4 is negligible com-
pared with that for Step 5.

4. CIRCULAR CYLINDERS

In this section, we present a method to approximate the opera-

tors Λ
(l,p)
j and N

(l,p)
j for periodic structures with circular cylin-

drical objects. Let a (a < L/2) be the radius of the cylinders,

then Ω1 is the circular disk given by r =
√

x2 + y2 < a, and Ω0

is the domain outside Ω1 and inside the square Ω. In [23], we
used cylindrical wave expansions to find the DtN operators for
2D Helmholtz equations in Ω1 and in the infinite exterior do-
main Ω∞ given by r > a. In the following, we show that cylin-
drical wave expansions can still be used to construct the DtN
and NtD operators for domain Ω0, but special care is needed to
avoid numerical instability.

Due to the plane incident wave, the function V
(0,p)
j satisfying

Eq. (3) in Ω0 (thus l = 0) must also satisfy the following quasi-
periodic boundary conditions:

V
(0,p)
j (L/2, y) = eiα0 LV

(0,p)
j (−L/2, y) (6)

∂xV
(0,p)
j (L/2, y) = eiα0 L∂xV

(0,p)
j (−L/2, y) (7)

V
(0,p)
j (x, L/2) = eiβ0 LV

(0,p)
j (x,−L/2) (8)

∂yV
(0,p)
j (x, L/2) = eiβ0 L∂yV

(0,p)
j (x,−L/2), (9)

where α0 and β0 are the horizontal components of the incident

wave vector. Our objective is to find the operators Λ
(0,p)
j and

N
(0,p)
j satisfying Eqs. (4) and (5) on Γ, where Γ is the circle r =

a. To simplify the notations, we drop the subscript j and the

superscript (0, p) for η
(0,p)
j , V

(0,p)
j , Λ

(0,p)
j and N

(0,p)
j .

In Ω0, a solution of Eq. (3) can be expanded in cylindrical
waves as

V(x, y) =
∞

∑
m=−∞

[

am
Jm(ηr)

Jm(ηa)
+ bm

Ym(ηr)

Ym(ηa)

]

eimθ (10)

where r and θ are the polar coordinates, Jm and Ym are the mth
order first and second kinds of Bessel functions, respectively.
Expansions for ∂xV, ∂yV and ∂rV can be easily obtained by tak-
ing the partial derivatives of Eq. (10). To find the DtN and NtD
operators, we can follow the steps below.

1. Choose a positive integer Me = 4M0, discretize each edge
of Γe by M0 points, discretize Γ by M = 4M0 points, and
truncate the expansions for V, ∂xV, ∂yV and ∂rV to M
terms given by −M/2 ≤ m ≤ M/2 − 1.

2. Evaluate V and ∂rV at the M points on Γ by their truncated
expansions, and obtain

v = A11a + A12b, (11)

∂rv = A21a + A22b, (12)

where a and b are column vectors of the retained expan-
sion coefficients am and bm, v and ∂rv are column vectors
of V and ∂rV at the M points on Γ, A11, A12, A21, and A22

are M × M matrices.

3. Evaluate Eqs. (6)-(9) at the 4M0 points on Γe by the trun-
cated expansions of V, ∂xV and ∂yV, and obtain

A31a + A32b = 0, (13)

where A31 and A32 are M × M matrices.
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4. Solve M × M matrices X11, X12, X21 and X22 from the fol-
lowing equations

[X11, X12]





A11 A12

A31 A32



 = [A21, A22], (14)

[X21, X22]





A21 A22

A31 A32



 = [A11, A12], (15)

then the DtN and NtD operators are approximated by Λ ≈
X11 and N ≈ X21, respectively.

In the second step above, we have r = a, since the points
lie on Γ. The matrices A11 and A12 in Eq. (11) are identical,
their entries are simply eimθ for different m and θ. The expan-
sion for ∂rV involves the derivatives of the Bessel functions.
Since the derivative of a Bessel function of order m is related
to Bessel functions of orders m ± 1, we need to evaluate terms
like Jm±1(ηa)/Jm(ηa). As η is in general complex and its imag-
inary part (which should be nonnegative) can be quite large for
some vertical modes, we use scaled Bessel functions defined as

J̃m(z) = e−|Im(z)| Jm(z).

It then follows that

Jm±1(ηa)/Jm(ηa) = J̃m±1(ηa)/ J̃m(ηa).

For the third step, each row in Eq. (13) corresponds to one of
the conditions (6) - (9) for a pair of points on opposite edges
of the boundary Γe, and these two points have the same value
of r. Again, we use scaled Bessel functions which give rise to

common factor eIm(η)(r−a). This factor is removed in Eq. (13),
so that the matrices A31 and A32 are better scaled.

Even with the above scalings, the (2M)× (2M) matrices in
Eqs. (14) and (15) can be difficult to invert, because they are
near singular when Im(η) is large. In that case, the solution of
the Helmholtz equation (3) exhibit exponential behavior. If V
or ∂rV is given on Γ, then V decays rapidly away from Γ, and
it is almost zero on Γe. Therefore, the quasi-periodic conditions
(6)-(9) are not so important when Im(η) is large. As a result, we
may approximate the DtN or NtD operator for domain Ω0 by
the corresponding operator for the infinite domain Ω∞ given
by r > a. For Ω∞, we expand the solution as

V(x, y) =
∞

∑
m=−∞

cm
H

(1)
m (ηr)

H
(1)
m (ηa)

eimθ , r > a, (16)

where H
(1)
m is the mth order Hankel function of first kind. As de-

scribed in [23], to find the DtN or NtD operator for Helmholtz
equations in Ω∞, we truncate Eq. (16) to M terms, evaluate V
and ∂rV at the M points on Γ, and eliminate the coefficients cm.
In practice, we approximate the DtN and NtD operators for Ω0

by those for Ω∞ when Im(η)L > 60.

5. ARBITRARY CYLINDERS

If the cylindrical regions S1 and S0 have more general cross sec-
tions (Ω1 and Ω0 as shown in Fig. 2), a fully numerical method
is needed to calculate the DtN or NtD operators. In [24], we
developed a boundary integral equation (BIE) method to com-
pute the NtD operators for domains Ω1 and Ω∞ (the infinite
domain outside Ω1), assuming their boundaries are smooth. In

this section, we extend the BIE method to domain Ω0 which is

bounded by Γ and Γe. The NtD operator N
(0,p)
j is defined on

Γ for V
(0,p)
j satisfying Eq. (3) in Ω0 and the quasi-periodic con-

ditions (6)-(9). As before, we assume Γ is smooth, but Γe has
four corners. Therefore, the BIE method must be revised to in-
corporate the quasi-periodic conditions, and to take care of the
corners so that the high accuracy of the method is maintained.

To simplify the notations, we drop the subscript and super-

script for V
(0,p)
j , η

(0,p)
j , etc. For any r = (x, y) in Ω0 and V satis-

fying Eq. (3), the Green’s representation formula gives V(r) in
terms of V and ∂νV on the boundary of Ω0, i.e., Γ ∪ Γe, where
∂νV is the normal derivative of V. More precisely,

V(r) =
∫

Γ∪Γe

[

G(r, r
′)

∂V

∂ν
(r′)

−
∂G(r, r′)

∂ν(r′)
V(r′)

]

ds(r′), r ∈ Ω0, (17)

where ν(r′) is the outward unit normal vector of Γ ∪ Γe at r′,
and G is the fundamental solution of the Helmholtz equation
(3), i.e.,

G(r, r
′) =

i

4
H

(1)
0 (η|r − r

′|), r 6= r
′.

Taking the limit of Eq. (17) as r tends to points on Γ ∪ Γe, one
obtains the following BIE:

ρ(r)

2
V(r) =

∫

Γ∪Γe

[

G(r, r
′)

∂V

∂ν
(r′)

−
∂G(r, r′)

∂ν(r′)
V(r′)

]

ds(r′), r ∈ Γ ∪ Γe, (18)

where ρ(r) is the inner angle of the boundary at point r divided
by π. If r is a smooth point on Γ or Γe, then ρ(r) = 1. At the
four corners of Γe, ρ(r) = 1/2.

We assume the curves Γ and Γe are given periodically in
parametric forms with period 1 as r = r(t) for 0 ≤ t ≤ 1
and r = re(t) for 0 ≤ t ≤ 1, respectively. For two positive
integers M and Me, we discretize these two curves by uniform
samplings in t. More precisely, Γ is discretized as ri = r(i/M)
for 0 ≤ i ≤ M, and Γe is discretized as re,i = re(i/Me) for
0 ≤ i ≤ Me. To take care of the corners of Γe, we use a spe-
cial formula for re(t), so that the discretization points have a
much higher density near the corners. This so-called graded-
mesh technique has been used in earlier works on 2D BIEs for
domains with corners [29], and an explicit formula of re is given
in Appendix A. With these discretizations, we have two vectors
for V on Γ and Γe, respectively, namely,

v =

















V(r1)

V(r2)

...

V(rM)

















, ve =

















V(re,1)

V(re,2)

...

V(re,Me
)

















. (19)

We also have two vectors for ∂νV on Γ and Γe. For Γe, it is ad-
vantageous to scale ∂νV by σ(t) = |dre(t)/dt|. Therefore, we
have

∂νv =

















∂νV(r1)

∂νV(r2)

...

∂νV(rM)

















, we =

















σ1∂νV(re,1)

σ2∂νV(re,2)

...

σMe
∂νV(re,Me

)

















, (20)
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where σj = σ(j/Me).
Following the discretization process given in Appendix A,

the BIE (18) is approximated by





A11 A12

A21 A22









v

ve



 =





B11 B12

B21 B22









∂νv

we



 , (21)

where A11 is an M × M matrix, A12 is an M × Me matrix, etc.
The quasi-periodic conditions can be written as

C1ve = 0, C2we = 0, (22)

where C1 and C2 are (Me/2) × Me matrices. To find the NtD
map, we rewrite Eqs. (21) and (22) as

















A11 A12 −B12

A21 A22 −B22

0 C1 0

0 0 C2



























v

ve

we











=

















B11

B21

0

0

















∂νv, (23)

and solve the linear system

















A11 A12 −B12

A21 A22 −B22

0 C1 0

0 0 C2



























X1

X2

X3











=

















B11

B21

0

0

















,

where X1 is an M × M matrix that approximates the NtD oper-
ator N .

In the above, ν(r) is an outward unit normal vector of Ω0,
it thus points into Ω1 for r ∈ Γ. To be consistent with section
4 and our previous work [24], we may reset ν(r) on Γ as the
unit normal vector pointing into Ω0. In that case, N should be
approximated by −X1.

6. TRANSMISSION AND REFLECTION COEFFICIENTS

After the DtN or NtD operators are calculated, we set up and

solve a linear system1 for either V
(l,p)
j on Γ [23] or ∂νV

(l,p)
j on Γ

[24]. After that, V
(l,p)
j in Ωl can be evaluated using cylindrical

wave expansions such as Eq. (10), or the Green’s representation
formula Eq. (17). The total field or the transmitted and reflected
waves can be further evaluated using the vertical mode expan-
sions [23, 24]. In [23], it is shown that the transmitted or re-
flected power can be evaluated by some integrals along Γ. That
method remains valid for periodic problems where the field sat-
isfies the quasi-periodic conditions (6)-(9). In the following, we
present a simpler approach that first calculates the coefficients
of the diffraction orders.

For an incident wave with the given wavevector

(α0, β0,−γ
(t)
00 ), the reflected and transmitted waves can be

expanded in plane waves with wavevectors (αm, βn, γ
(t)
mn) and

1There are some typos in the linear system for V
(l,p)
j given on page 297 of [23].

In the equation for A
(41)
ij , φ

(s,1)
j should be φ

(0,e)
j . In the equation for A

(43)
ij , φ

(h,1)
j

should be φ
(1,e)
j .

(αm, βn,−γ
(b)
mn), respectively, where

αm = α0 +
2πm

L
, (24)

βn = β0 +
2πn

L
, (25)

γ
(t)
mn =

√

k2
0ε(t)µ(t) − α2

m − β2
n, (26)

γ
(b)
mn =

√

k2
0ε(b)µ(b) − α2

m − β2
n. (27)

These are the (m, n)th reflected and transmitted diffraction or-
ders, respectively, and they carry power only when they are

propagating, that is, when γ
(t)
mn or γ

(b)
mn are real. The coefficients

of these diffraction orders can be determined from the Fourier
series of the reflected and transmitted waves at a fixed z ≥ D
and z ≤ 0, respectively. Since there are two linearly indepen-
dent plane waves for a given wavevector, we need to determine
the Fourier coefficients for two field components.

The Hz and Ez components are related to V
(l,e)
j and V

(l,h)
j ,

respectively. To find their Fourier coefficients, we need to eval-
uate

∫

Ωl

V
(l,p)
j (x, y)Φ(x, y) dr,

where Φ(x, y) = e−i(αm x+βny). Notice that

∂2
xΦ + ∂2

yΦ + κ2Φ = 0 (28)

for κ2 = α2
m + β2

n. Green’s formula gives rise to

(

κ2 − [η
(l,p)
j ]2

)

∫

Ωl

V
(l,p)
j Φ dr

=
∫

∂Ωl

[

Φ∂νV
(l,p)
j − V

(l,p)
j ∂νΦ

]

ds, (29)

where ∂Ωl is the boundary of Ωl , and ∂ν is the outward nor-
mal derivative operator. Notice that ∂Ω1 = Γ and ∂Ω0 = Γ ∪ Γe.

While V
(0,p)
j satisfies the quasi-periodic conditions (6)-(9), Φ sat-

isfies the “reverse” quasi-periodic conditions, i.e., the complex
conjugate of (6)-(9). As a result, it can be shown that the line
integral on Γe is zero. Therefore, for both l, the line integral in
Eq. (29) only needs to be evaluated on Γ.

For a normal incident wave, the z components of the (0, 0)th
reflected and transmitted orders are zero. Therefore, we need
to evaluate the Fourier coefficients for the x and y components
of the wave field. In the vertical mode expansions [23], the hori-
zontal field components are related to the partial derivatives of

V
(l,p)
j with respect to x and y. Therefore, we need to evaluate

the integrals

∫

Ωl

∂xV
(l,p)
j Φ dr,

∫

Ωl

∂yV
(l,p)
j Φ dr.

Notice that
∫

Ωl

∂xV
(l,p)
j Φ dr =

∫

∂Ωl

νxV
(l,p)
j Φ ds −

∫

Ωl

V
(l,p)
j ∂xΦ dr, (30)

where νx is the x component of the outward unit normal vector
ν on ∂Ωl . The second term in the right hand side of Eq. (30) can
be evaluated by a formula like (29), since ∂xΦ satisfies the same
Eq. (28). As before, for l = 0, the part of the line integral on Γe

in Eq. (30) is zero. Therefore, the line integral only needs to be
evaluated on Γ.
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7. NUMERICAL EXAMPLES

In this section, we present a few numerical examples to vali-
date and illustrate our method. The first example is a photonic
crystal slab first analyzed by Fan and Joannopoulos [30]. It is
a dielectric slab with a square lattice of circular air holes. The
thickness of the slab and the radius of the holes are D = 0.5L
and a = 0.2L, respectively, where L is the lattice constant. The
dielectric constant of the slab is ε = 12. Assuming the slab is
surrounded by air and parallel to the xy plane, and the air holes
are periodic in x and y directions, we calculate the transmission
spectrum for a normal incident wave with its electric field in the
x direction. Using the VMEM developed in previous sections,
we obtain the spectrum shown in Fig. 3 where the horizontal
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Fig. 3. Transmission spectrum of a photonic crystal slab with a
square lattice of air holes.

axis is the normalized frequency k0L/(2π) = L/λ, λ is the free
space wavelength, and the vertical axis is the transmittance (the
ratio between the transmitted power under a unit cell and the
power of the incident wave impinging on the unit cell). Within
the frequency range shown in Fig. 3, there are three total trans-
mission peaks at normalized frequencies L/λ = 0.5058, 0.5260
and 0.5422. This problem has also been studied by Liu and Fan
[20] and Dossou et al. [21], by a Fourier modal method and a
finite element modal method, respectively. Our results are in-
distinguishable from those reported in [20] and [21]. In partic-
ular, the three peak frequencies are accurate to four significant
digits.

For this example, the numerical results are obtained by the
two versions of our method corresponding to sections 4 and 5,
respectively. For the method based on cylindrical wave expan-
sions, we discretize the z variable by N = 75 points and the
circle Γ by M = 28 points. For the version based on the BIE, we
use N = 115 points to discretize z, M = 32 points to discretize
Γ, and Me = 120 points to discretize Γe. Due to the reflection
symmetries of the structure and the incident wave with respect
to the x and y axes, the size of the final linear system can be
reduced by a factor of 4.

The second example is a gold film with a periodic array of
elliptic apertures on a glass substrate. The structure was first
studied by Elliott et al. [31] for polarization control. The thick-
ness of the gold film is 40 nm, and its refractive index is taken
from [32]. The refractive index of the glass substrate is assumed
to be 1.5163. The holes in the film form a square array which is
periodic in the x and y directions with a period L = 500 nm. The
main axes of the elliptic apertures are tilted to form 45◦ angles
with the x and y axes, and their lengths are 500 nm and 250 nm,
respectively. The top view of the structure and a unit cell are

shown in Fig. 4. For this problem, we consider normal incident

x

y
φ

Fig. 4. A gold film with a periodic array of elliptic apertures
on a glass substrate. Left: top view of the structure. Right:
cross section of a unit cell.

plane waves given in the top medium (air). Let φ be the hor-
izontal angle between the incident electric field and the y axis
as shown in the right panel of Fig. 4, we show the transmis-
sion spectra for a number of incident waves with different φ in
Fig. 5. Notice that the transmittance is independent of the hor-
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Fig. 5. Transmission spectra of a gold film with a periodic ar-
ray of elliptic holes for incident waves with different horizon-
tal angle φ.

izontal angle for two wavelengths around 720 nm and 800 nm.
These results are obtained by the BIE version of the VMEM us-
ing N = 114, M = 32 and Me = 128, and they agree well with
those reported in [31].

The third example is a square periodic array of circular gold
disks on a glass substrate and surrounded by water. The radius
and height of the gold disks are a = 90 nm and D = 40 nm,
respectively. The structure was previously studied by Chu et
al. [33]. The refractive index of gold is taken from [34], and the
refractive indices of glass and water are assumed to be 1.517
and 1.327, respectively. We consider a plane incident wave il-
luminating the device from the glass substrate at normal inci-
dence, assuming the incident electric field is parallel to the x
axis (one of the periodic directions). In Fig. 6, we show the ex-
tinction cross section for different values of the period L. Here,
the extinction cross section is defined as L2(1 − T), where T is
the transmittance. From Fig. 6, we can see that the period L
is strongly related to the peak value and peak position of the
extinction cross section. As the separation of the particles is in-
creased, spectrum has a narrowing and red-shifting peak. Our
results agree very well with the experimental results of [33]. For
this example, we use the cylindrical wave expansion version of
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Fig. 6. Extinction spectra of a periodic array of gold disks for
different period L.

the VMEM, and discretize z by N = 179 points, and discretize
the circle Γ by 32 points.

Finally, we follow Li et al. [35] and consider a periodic ar-
ray of gold elliptic nanoparticles on a glass substrate. The
nanoparticles have a height D = 100 nm, a 70 nm semi-minor
axis, and a semi-major axis R. The refractive index of gold is
taken from [32]. The structure is periodic in both x and y di-
rections with period L = 500 nm, and is surrounded by a di-
electric medium with refractive index 1.33. The refractive index
of the glass substrate is assumed to be 1.5163. The top view of
the structure and a unit cell are shown in Fig. 7. For a normal

RL

Fig. 7. A periodic array of gold elliptic cylinders on a glass
substrate. Left: top view of the structure. Right: cross section
of a unit cell.

incident plane wave given in the top medium with its electric
field parallel to the x axis, we consider the effect of R on the
extinction spectrum. Here, the extinction coefficient is defined
as −10 × log10(T) where T is the transmittance. Using the BIE
version of our method, we obtain the results shown in Fig. 8.
As R is increased, the peak of the extinction spectrum exhibits
a red-shift. Our results agree with those reported in [35], and
they are obtained with N = 156, M = 32, and Me = 128.

8. CONCLUSION

The VMEM is a special computational method to analyze 3D
structures that are layered (i.e., material properties depend only
on one spatial variable z) in different regions. In the previous
sections, two VMEM variants are presented and validated for
biperiodic structures sandwiched between two homogeneous
media. These two variants are closely related to our early works
on non-periodic structures [23, 24], and they rely on cylindrical
wave expansions and BIEs (for 2D Helmholtz equations that
appear in the expansion process), respectively. The periodicity
gives rise to possible numerical instabilities for 2D Helmholtz
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Fig. 8. Extinction spectra of a periodic array of gold elliptic
cylinders for different semi-major axis R.

equations with complex wavenumbers, and may reduce the or-
der of accuracy of the BIEs due to the corners of the unit cells.
In sections 4 and 5, we presented techniques to overcome these
difficulties. The VMEM based on cylindrical wave expansions
is only useful for structures with circular cylindrical objects, but
it is simpler than the more general VMEM based on BIEs.

To simplify the presentation, we considered only structures
that are periodic in x and y with the same period. This restric-
tion can be easily removed. In particular, the method can be
used to study structures with a triangular lattice of cylindrical
objects. The method is also applicable to structures with more
complicated unit cells, such as those with more than one cylin-
drical objects in each unit cell. Like the surface integral equa-
tion methods, the VMEM gives 2D formulations for 3D prob-
lems. Although it is necessary to calculate many DtN or NtD
operators in Step 4 of the method, the most expensive step is to
solve the final linear system (as in Step 5). For applications in
nanoplasmonics, the size of the linear system is often not very
large and can be further reduced by symmetry considerations.
To further extend the capability of the VMEM, it is worthwhile
to develop a fast iterative method for the linear system

APPENDIX A

The boundary Γe of the square Ω is first parameterized by its
arclength s as follows:

r = (x, y) =



















(−L/2 + s,−L/2), 0 ≤ s ≤ L,

(L/2,−3L/2 + s), L ≤ s ≤ 2L,

(5L/2 − s, L/2), 2L ≤ s ≤ 3L,

(−L/2, 7L/2 − s), 3L ≤ s ≤ 4L.

To obtain the parametric representation r = re(t) used in the
graded mesh technique, we let s be a function of t, such that
s(τj) = sj for 0 ≤ j ≤ 4 where sj = jL and τj = j/4, and
require that the first a few derivatives of s(t) vanish at τj [29].
An explicit formula for s(t) is

s(t) =
sjw

p
1 + sj−1w

p
2

w
p
1 + w

p
2

, τj−1 ≤ t ≤ τj, 1 ≤ j ≤ 4,
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where p ≥ 2 is a parameter, and

w1 =

(

1

2
−

1

p

)

ξ3 +
ξ

p
+

1

2
, w2 = 1 − w1,

ξ =
2t − τj−1 − τj

τj − τj−1
.

In Fig. 9, we show the function s(t) for p = 3 and for t on
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Fig. 9. Function s(t) on [0, 1/4] for p = 3.

[τ0, τ1] = [0, 1/4]. A simple translation gives s(t) on other in-
tervals.

Consider a boundary integral operator defined on Γ ∪ Γe by

f (r) =
∫

Γ∪Γe

K(r, r
′)g(r′) ds(r′), r ∈ Γ ∪ Γe, (31)

where K(r, r′) is the kernel. For ri ∈ Γ, we have

f (ri) =
∫ 1

0
K(ri, r(t))g(r(t))

∣

∣

∣

∣

dr(t)

dt

∣

∣

∣

∣

dt

+
∫ 1

0
K(ri, re(t))g(re(t))

∣

∣

∣

∣

dre(t)

dt

∣

∣

∣

∣

dt. (32)

For the first term above, we approximate g(r(t)) by its trigono-
metric interpolation, that is,

g(r(t)) ≈
M

∑
j=1

g(rj)LM(t − tj),

where tj = j/M, rj = r(tj) and

LM(t) =
sin(Mπt)

M tan(πt)
.

This leads to the integral

K
(11)
ij =

∫ 1

0
K(ri, r(t))

∣

∣

∣

∣

dr(t)

dt

∣

∣

∣

∣

LM(t − tj) dt. (33)

For the second integral in (32), we can approximate g(re(t)) or
g(re(t))σ(t) where σ(t) = |dre(t)/dt|, by its trigonometric in-
terpolation. For the latter case, we have

g(re(t))σ(t) ≈
Me

∑
j=1

hjLMe
(t − te,j),

where te,j = j/Me, re,j = re(te,j), and hj = g(re,j)σ(te,j). There-
fore, we need to evaluate

K
(12)
ij =

∫ 1

0
K(ri, re(t))LMe

(t − te,j) dt. (34)

In summary, Eq. (32) is approximated by

f (ri) ≈
M

∑
j=1

K
(11)
ij g(rj) +

Me

∑
j=1

K
(12)
ij hj.

Since ri is not on Γe, the integrand in (34) is smooth, and we
can use the standard trapezoidal rule. On the other hand, since
ri ∈ Γ, if the kernel K has a logarithmic singularity at r = r′,
then we can evaluate (33) by Alpert’s hybrid Gauss-trapezoidal
rule [24, 36].

For re,i ∈ Γe, we may approximate Eq. (31) by

f (re,i) ≈
M

∑
j=1

K
(21)
ij g(rj) +

Me

∑
j=1

K
(22)
ij hj,

where K
(21)
ij and K

(22)
ij are similarly defined, and they can be

evaluated by the standard trapezoidal rule and Alpert’s hybrid
Gauss-trapezoidal rule, respectively.

In the right hand side of Eq. (18), we have two boundary in-
tegral operators with G(r, r′) and ∂νG(r, r′) as the kernels. Both
kernels have a logarithmic singularity at r = r′, and we can dis-
cretize these two integral operators following the general pro-
cedure given above.
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