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Abstract—An accurate and efficient numerical method is de- a widely used technique for truncating variables in modglin
veloped for computing leaky modes of two-dimensional phottic  outgoing waves, and it has been used to analyze leaky PhC
crystal (PhC) waveguides corresponding to line defects sur waveguides [16]. However, parameters in the PML profile

rounded by finite PhCs. The method reformulates the eigenvalke . . .
problem on a single edge of the defect cell and uses exacthSt be chosen carefully, since the imaginary part of the

boundary conditions at the edges of the surrounding PhC. Uike ~ COMplex propagation constant of a leaky mode is typicalty ve
previous works for leaky modes, perfectly matched layers oother  small and improper PMLs can lead to large relative errors.
absorbing boundary conditions are avoided. In this paper, we develop a new method for computing
leaky modes in two-dimensional (2D) PhC waveguides. As in
[17], we use exact boundary conditions to terminate the semi
infinite homogeneous media outside the finite PhC claddings.

Due to a periodic modulation of the refractive indexypjs allows us to avoid the PMLs, but it also turns the origina
photonic crystals (PhCs) [1] exhibit frequency intervale, |inear eigenvalue problem to a nonlinear one. To solve the

bandgaps, in which propagating electromagnetic waves 40 Benjinear eigenvalue problem effectively, we develop & fas

exist. For frequencies in a bandgap, a line defect in a Phfethog to establish a condition for the eigenvalue on one
can be used to guide light. Such PhC waveguides based ffyje edge. This is achieved by taking advantage of the
the bandgap effect can transmit light through sharp bengds,metric features of a typical PhC waveguide and calogati
[2] and they are expected to play important roles in futuige pirichlet-to-Neumann (DtN) maps of the unit cells. The
photonic integrated circuits. In most theoretical studiess map of a unit cell is an operator (to be approximated by a

often assumed that the core of a PhC waveguide is surroundggh | matrix) that maps the wave field to its normal derivativ
by infinite bulk PhCs. In that case, the PhC waveguide SUppgf the houndary of the cell. In earlier works, the DIN maps

true guided modes with real propagation constants. Inie&ct 5,6 been used to analyze band structures [13], [14], non-

the line defect is often surrounded by a finite PhC, then tr[@aky PhC waveguides [15], microcavities [18], and various

PhC waveguide may have only leaky modes with complessngary value problems for PhC structures and devices-[19]

propagation constants. [21]. Compared with the method in [15], our new method has
Many numerical methods have been developed to analyz@ aqditional capability of computing leaky modes, andsit i

band structures of PhCs [3]-[10]. If we replace the unitbgll 555 more efficient because the problem established on one
one period of the waveguide, all these methods can be u le edge is small and easy to solve.

to analyze PhC waveguides. To find the dispersion relation

of a guide mode in a PhC waveguide, these methods follow Il. EIGENVALUE PROBLEMS

the standard approach that calculates the frequency asgumi \we consider ideal 2D structures which are invariant in the
that the Bloch wave vector component (i.e. the propagatiQngirection and assume that light waves are propagating in
constant of the PhC waveguide) is real anc_i given [1]. Howeveke 1y plane, where{z, y, z} forms a Cartesian coordinate
for leaky modes, the complex propagation constant cann@istem. Under these conditions, we can separately corthigler
be specified. Therefore, it is necessary to use the alteenatyy ang 17 polarizations. For simplicity, we present our method
approach that calculates the propagation constant fore@ngivynly for the £ polarization, since the treatment for tHé

real frequency [11]-[17]. In the transverse direction, akle pojarization is similar. For théZ polarization, the frequency

mode is very different from a guided mode. It behaves lik§omain Maxwell's equations are reduced to the following
an outgoing wave, but its magnitude actually increases @s {e|mnoltz equation:

distance from the waveguide core is increased (except in the 2U 92U
finite PhC cladding). Most existing numerical methods for —— + —— + kIn?U =0, (1)
PhC waveguides require a truncation of the transversehlaria Oz*  Oy?
so that one period of the waveguide is reduced to a finihereU is the z component of the electric field, = n(z,y)
computation domain. The perfectly matched layer (PML) is the refractive indext, = w/c is the free space wavenumber,
w is the angular frequency, the time dependence is assumed
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In that case, Eq. (1) has Bloch mode solutions given as  This approach is especially useful for dispersive medizesi
iBy Eq. (8) is a linear eigenvalue problem even when the refracti
Ulz,y) = e @z, y), () indexn varies withew.

where 3 is the Bloch wavenumber (i.e. the propagation con- The eigenvalue problems above are formulated on one
stant) and® is periodic iny with the same period. Such Period of the waveguide, i.e. on domash After a truncation

a solution only exists whew and 3 satisfy some dispersion©f S and a discretization, both formulations give matrix
relations. The Bloch mode (3) is a guided mode3ifs real eigenvalue problems involving relatively large matricés.
and® — 0 as|z| — co. To calculate dispersion relations ofconnection with the second approach that sof¥dsr a given
guided modes, a popular approach solvesssuming3 is real - it is possible to reformulate the eigenvalue problem on the
[1]. In that case, we can solve Eq. (1) directly in one peridgoundary ofS, i.e., on the two lines ay = 0 andy = a.

of the waveguide These boundary formulations can be obtained by scattering
matrices [11], [12] or the Dirichlet-to-Neumann (DtN) map
S={(z,y)| —o0 <z <00,0<y<al, (4) [15]. For domainS, the DtN map is the x 2 operator matrix

subject to the following quasi-periodic conditions: M satisfying
U .%',0) ]\/[11 ]\/[12 U :C,O 0 U .%',0)
U(z,a) = pU(z,0), Z—U(w,a) =ug—U(w,0), G M {UE:C,@)} - [Mgl Mgg] [UExaﬂ oy {UE:C,@)} ’

Y Y 9)
whereu = exp(ifa). This is an eigenvalue problem whetg where M;; (1 < j,k < 2) are operators acting on functions
(or w?) is the eigenvalue. The domaifi is still unbounded of z. If the two lines aty = 0 andy = « are truncated and
in both positive and negative directions of In practical discretized byN points each, thed{;; is approximated by
numerical implementationsy has to be truncated. This isan N x N matrix. Using the quasi-periodic conditions (5), we
relatively simple, since the field of a guided mode decayitain a linear eigenvalue problem far= exp(ifa):
exponentially to zero ag:| — oo. The truncated domain is
discretized in the finite element [4], [5] and finite diffecen {Mu —1} {UO] . {—Mlz 0] [UO] (10)
[9] methods. Alternatively, as in the plane wave expansion Mo 0] [Vo —Ma 1] Vo]’
method [3], [6], the wave field on the truncated domain i\?/herer — U(z,0) andVp = 8,U(z,0).
approximated by a finite sum of given functions. ’ v ’

However, th? abqve approach is not appllc_able to Ie_aléy(one period of the waveguide) or the two linegyat 0 and
modes for Whlch@ is_complex. If the Wavegu_|de_core _'Sy = a. In both cases, the variable is still unbounded. For
surrounded by finite PhCs so that the refractive index 'Saaguided mode, the field decays exponentially away from the
constantng for |z .sufﬁciently large, and if the refraCtivewaveguide coré, and we can use some simple boundary con-
index of the core IS not larger tham, then the structure ditions for truncatinge. In the supercell approach of the plane
may have no guided modes. In that case, a general w

. . ) 7 e expansion method, one usually uses a periodic conditio
field in such a structure consists of only radiation mode® Tkl}1 b y P

X x. For the finite element and finite difference methods,
leaky modes are relevant because they provide the lead| 9 can simply assum& — 0 on the truncated boundaries

asymptotic behavior for the radiation fields. The imaginagg]c 2. For a leaky mode, the field exhibits outgoing radiation

The eigenvalue problems above are formulated on domain

part_tofﬁ 'S asstoua;ted W'(;h tlhe atttinuatlon of _t:e Iegky Imot Sehavior and diverges 48| — oo, therefore the periodic and
?s ' propa:jga ets. orwalr Eongd € \;\_/af\_/egw te a}x'sﬁ S ple zero boundary conditions are incorrect. In facts¢he
ransverse directions, a leaky mode satisties outgoinghiad boundary conditions will only produce solutions with a real

cond|t|onsA But schﬁ IS comptlebx, It act_:a!y _?!OWS up asg if the medium is lossless. To overcome this difficulty, the
lx| - oofh S alltcomf_ ex3 canno hethSpteC' Ile  I11S NECESSaMYa rfectly matched layer (PML) technique can be used. A PML
1o use the afternative approac at so \&_sassuml_ngw corresponds to a complex coordinate stretching wherie
is given. If we insert the 3Ioch mode solgtlon (3) into thereplaced bys = IOIS(T)dT for some complex function(z).
governing Helmholtz equation (1), we obtain In [16], leaky modes are solved from the eigenvalue problem
9% 9% 9 9 0P 9 (8) using a PML for truncating. However, a PML introduces
22+ Er + kgn”® + 2lﬁa—y —pe=0. (6) a smaIII unkdesirggd ihma%nzry pa:t i) e\r/]en if the waveguide
o is non-leaky and’ should be real. As the true imaginary part
lTher;eforg, we c?n solve I(qu' (6? %S a qbqadtrc':t\tlctﬁlg?nl\l/alt_te P8y 0 of a leaky mode is often very small, it is not obvious that
em (cj)r e'gegff‘ ue@I, on domains: subject to the Tollowing 1he optained small imaginary part gfis correct when PMLs
periodic conditions- are used. Furthermore, if PMLs are used with the eigenvalue
8_<I>( ) = 8_<I>( 0) ) problem (8), the truncated domain is still quite large corepa
Oy »Ha) = Oy &5 with the unit cell of the bulk PhC. A discretization leads to a

The above quadratic eigenvalue problem can be easily rddu{:E.\amx eigenvalue problem which is expensive to solve,esinc

to a linear eigenvalue problem. F#r = 0,® +i3®, we have 1€ matrices are large, compl_ex _a_nd non-Herm|t|a_1n. White th
size of the matrices can be significantly reduced if we use the

Oy -1 |®| _ —i8 P ) DtN formulation (10), it is desirable to completely avoiceth
D2+ kn? 9, (V| Pl PMLs. We present such a method in the following sections.

®(z,a) = &(z,0),



I1l. EXACT BOUNDARY CONDITIONS a small and negative imaginary part, then the standard squar

For simplicity, we consider 2D PhCs composed of cif00t function would produce an; with a negative imaginary
cular cylinders on a square lattice (of lattice constajt Part. Thisleads to incorrect exponential grow of the eveers
surrounded by a homogeneous medium of refractive ingex Waves. To overcome this difficulty, we define the square root
The cylinders can be dielectric rods or air columns, whefénction by rotating the branch cut to the negative imaginar
the surrounding medium can be air or a dielectric mediurfX!S:
respectively. The cylinders are infinitely long and patatite i0/2 i0 4l
thez axis. X\ PhC V\yaveguide is formedyby regmoving one row Ve=yie 7 iz = |2]e™ for — 2 <fs 2 (13)
of cylinders which is assumed to be along thexis. In the With this definition, whens has a small imaginary part,

z direction, the bulk PhC is finite, and we assume that thegg given in (12) is always close to the positive real axis
arem rows of cylinders for bothc <0 andz > 0. In Fig. 1, or the positive imaginary axis. This ensures the continuous
we show one period of the PhC waveguide (i.e. the domaj@pendence ofy; on the imaginary part off. Notice thatoy

may have a small negative imaginary part and a positive real

3T

y part for somé. This corresponds to an outgoing wave (towards
****** T AT AT T T AL AT AT T T x = +o00) with a growing amplitude.
lOlOlOl ‘ lOlOlQJ Let us define a linear operatdr by
C L&Y —jo Py, [ =0,+1,42, ... (14)

Fig. 1. One period of a leaky PhC waveguide withows of dielectric rods FQV a general quallsi—per-iod-ic .funCtiQﬁ satisfying g(y) =
in each side of a missing row. e’®Yh(y), whereh is periodic iny with period a, we can

expandh in its Fourier series and re-writg as
S) for the special case ah = 3. Besides the homogeneous o
medium that extends to plus and minus infinity, the donain g(y) = Z hyetPry
contains2m + 1 square unit cellsXn regular and one defect

l=—0c0
unit cells). We assume that the vertical edges of these alist ¢ where
are located at; for 0 < j <2m + 1, wherez; =z;_1 +a u u
and$2m+.1 = —Xp : (m + 0.5)&. . ;Ll — 1/ h(y)e—i27rly/ady _ 1/ g(y)e"ﬂ”’dy.
To avoid truncatingz by PMLs or other absorbing layers, a Jo a Jo

we can use exact boundary conditions @at= 1z, and From the linearity ofC, we evaluateCg by
T = xom+1 [17]. The price we pay is that the boundary -

conditions depend on both and w, and thus the eigenvalue (Lg)(y) = Z ioyhyeP
problems become nonlinear. In fact, these boundary camdgiti

are identical to those used in the theory of diffraction igigg

[22]. However, some care is needed when these conditions Bf8M (11), we can easily evaluaieU'. This leads to the exact
extended to cover leaky modes with compléx boundary condition ats,,+1 involving the operator_:

To obtain the boundary condition at,,;1, we consider oU

l=—00

the Bloch mode given in (3). Using Fourier seriesdofor its r LU at z=zmi1. (15)
y variable, we obtain The exact boundary condition at is similar. We have
S oU
U(I,y) _ Z a ez(azerﬁly) for x> Toam+1, (11) 8_ =—LU at == To. (16)
X
l=—0o0

If we use K sampling points on each vertical edge fox

y < a, the operatoL can be approximated by/d x K matrix.
Since the operatof depends ow and 3, the eigenvalue

problems with the exact boundary conditions are nonlinear.

the next section, we develop an efficient method by reducing
ap =4/ kgng — 67 (12)  the nonlinear eigenvalue problem to a condition on one singl
If kono < |Bi|, we should havey, = i\/87 — kin3, then edge.
the terms in (11) are either outgoing plane waves propagatin
towardsxz = +oo or evanescent waves that decayas—
+00. Notice that the standard complex square root function is The boundary conditions (15) and (16) allow us to formulate
defined asy/z = \/|z[e??/? if z = |z]e? for -1 < 0 < T, the problem on the finite domain
and it has a branch cut along the negative real line. For a real
3, this definition still gives the correet; for kgng < |3 due
to its special choice for phase andgle= w. However, for a The Helmholtz equation (1), the quasi-periodic conditi®is

leaky mode, has a small positive imaginary part. For somand the exact boundary conditions (15) and (16) give rise to a
I, the complex numbekZn? — 37 has a negative real part andnonlinear eigenvalue problem ¢f. In general, it is expensive

where, = 3+ 2xl/a, oy satisfiesa? + 2 = k2n2, ng is the

real refractive index of the medium surrounding the cylirsde
and ¢; is an unknown coefficient. Wheg is real, we can
chooseq; as

IV. CONDITION ON A SINGLE EDGE

Sy = {(z,9)|r0 < & < Tam41,0 <y < a}. a7)



to solve this nonlinear eigenvalue problem 6p directly. At xy, we have the exact boundary condition (16), therefore

Tausch and Butler [17] suggested to calculate the opera@s = —L. Now for j = 1, 2, ...,m, if Q;_; is known, we

P such that can find @; based on the reduced DtN ma. Using (20)
Ul(zo,y) 9 Ul(zo,y) at the right hand side of (19), we obtain

{U(IQ’”H’ 1/)} O [U(IQ’”H’y)] Qj = May + May (Qj—1 — M11) "' Mya. (21)

for all U satisfying the Helhomtz equation (1) and the quasiryis |eads t00,,
periodic condition (5), and usé to obtain a nonlinear
condition on the two vertical edges at and x2,,+1. While

the final nonlinear condition on the two edges is small, the

at z,,. Similarly, we can calculat®,, ., at
T = Ty Starting fromQq,, 11 = L atx = xopmy1.
The DtN map of the defect cef?,,,; satisfies

operatorP is expensive to calculate. In particuld,depends Um Dzt
on § andw. Therefore, in an iterative scheme for solvifig Al Wo | — dywo (22)
it is necessary to calculate a néwfor each iteration. w1 Oywr |’

We present a special method for PhC waveguides. As in Um+1 OpUm+1

Section 3, the domaiiy; is composed ofm + 1 unit cells.  wherewy = vy,11.0 = U(z,0) andw; = vmi1.0 = U(z,a)
Our approach is to calculate the DtN maps of these unit ceflsy ,,  — » < z,..,. Writing A in 4 x 4 blocks (\;; for
and use them to establish a condition foon one single edge. | < i ; < 4) where each block is & x K matrix, using the
Unlike the operato® above, the DIN maps of the unit cellsyyasj-periodic condition (5) and the operat@s andQ,,,1,

do not depend o and they only need to be calculated oncgye can eliminateos, u,, andu.m,1, and obtain
Although we can use these DtN maps of the unit cells to find

‘P and establish a condition on the two vertical edgesand Awo =0 (23)
ZTam+1 @S in [17], it is easier and more convenient to eStab"Where
a condition on one horizontal edge in the waveguide core. ~ ~ ~ ~

The unit cells inS; are A = Asy— phos + phsg3 — p?Aos

[Asi — phar, Asq — phos] X,

Qi ={(z,y) | zj-1 <z <zj, 0<y<a},

for 1 < 7 < 2m + 1. Notice thatQ2,,,; is the defect unit and ¥’ satisfies

cell of a homogeneous medium and all other unit cells are the /~\11~— Om A ] _ Plz + W}m}
regular unit cells of the bulk PhC. For a regular unit e}, A Ay — Qi Ago + phas|

j#m+1, we “”0_' the DN oper_ato_A that mapsU/ on the Notice that the operatotd, Q; and.M all depend ong3, but
boundary of}; to its normal derivative. More precisely, We\ 2nd A are independent of. To actually find3, we apply

have _ ) a nonlinear equation solver such as the Muller's method to
Uj—1 8m’UJJ,1
Af = gyza_-o 7 (18) M (A) =0, (24)
a a
9 ay 9 where \; is the smallest eigenvalue of in absolute value.
Uj zUj

Our method is efficient, sincel can be approximated by a
wherew; 1 = Ul(zj-1,y), u; = Ulz;,y) for 0 <y < a  very small matrix.
andv;o = U(z,0), vj, = U(z,a) for z;_1 < z < z;, etc.
The components in the right hand side of (18) aredhar y
derivatives ofU evaluated on the four edges@f. When each
edge of(2; is discretized byK points, A is approximated by
a(4K) x (4K) matrix. A simple method for constructing is

V. NUMERICAL EXAMPLES

For numerical examples, we consider PhC waveguides
formed by removing one row from a square lattice of dielectri
épds in free space. As in [16], we assume that the radius
and the refractive index of the rods a@i€a and+/11.9, re-
spectively, and analyze the waveguide at the fixed nornthlize
frequencywa/(27c) = 0.35. In the direction perpendicular to

For a givens, using the DtN map\ and the quasi-periodic the waveguide axis, the PhC is finite, and thererarsows in

conditions (5), we can eliminate the horizontal edges ardl fiﬁach side of the _waveguide core (i:e., Fhe missiqg row at the
the reduced DtN map satisfying center). One period of the waveguide is shown in Fig. 1 for

m = 3. The structure has been previously analyzed by Zhang
M |1 = M Mg |uj—1 _ Opuj—1 (19) and Jia [16] based on the scattering matrix for one periodef t
Uj Mo Maa| | uj Opuj |- waveguide. The scheme is similar to the eigenvalue problem

This is a simple elimination step and an explicit formula i%o) formulated on the two lines %:_Ohafndlg = a, SINCe
given in [19]. In the discrete case\l is approximated by D€ Scattering matrix is associated with field expansions on

a (2K) x (2K) matrix. Next, we consider a sequence Oﬁhese two lines. The scattering matrix requires extra effor
operatorsQ;, for 0 < j < 2m4’_ 1, satisfying calculate, but it gives rise to much smaller matrices comgbar
]l i i )

with the eigenvalue problem (8) formulated on dom&itone
Ozu; = Qju;. (20) period of the waveguide) directly. In [16], Zhang and Jiaduse

solution of the Helmholtz equation i; by a sum of4K
cylindrical waves. Similarly, we can find the DtN mayp of
the defect celf?,,, ;.



PMLs to terminate the transverse direction, Fourier sdries VI. CONCLUSION
the x direction for discretization, divided into many small In this paper, we developed an efficient numerical method
y-invariant segments, calculated the scattering matrixeémh f '

r computing leaky modes in 2D PhC waveguides. These
segment and then obtained the scattering matrix for theewhgx puting y g

) . 9 odes have a complex propagation constgntit a real
domainS. Both the staircase approximatiorngjrand the PMLs frequency. The small imaginary part ¢f is an important
can limit the accuracy of their solutions.

. parameter that indicates the attenuation of the field prafirag
Based on our method that formulates the eigenvalue pr%ﬁbng the waveguide. Finding the imaginary part@accu-

lem on one edge of the defect cell (i.eyat 0 for |z < a/2),  ately is not easy using existing numerical methods invivi
we have obtained accurate solutions with minimal compurtati perfectly matched layers and staircase approximations for

effort. The normalized propagation constant up to 7 digiés ayje|ectric interfaces. Instead of solving an eigenvalugbfem

given as follows: on a 2D domain covering one period of the waveguide, we
Ba/(27) ~ 0.2128996 + 0.0012394i, m = 2, reduce the problem to one single edge of the defect cell.
, The reduction process makes use of the the DtN maps of the

Ba/(2m) ~ 0.2126575 + 0.0000956, m = 3, unit cells. Our method also avoids PMLs by imposing exact
Ba/(2m) =~ 0.2126399 + 0.0000006i, m = 4. boundary conditions that terminate the homogeneous semi-

Th di . d h i Fig. 2 Oinfinite media outside the PhC claddings. The accuracy and
€ corresponding eigenmodes are shown in F1g. <. Sifiiciency of our method are illustrated in numerical exasspl
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