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Abstract—A multipole method is presented to analyze leaky multipole method can be used to obtain accurate solutions
microcavities in finite two-dimensional photonic crystals The for guided and leaky modes in some PhC fibers [7]. In this
erigenrf_]reqqency |°f a !ehak% mode” is solved f:jom_the cgno%i]tion Letter, we apply the multipole method to analyze microgesit
that the eigenvalue with the smallest magnitude (instea ®  surrounded by finite two-dimensional (2D) PhCs. Our study

determinant) of the coefficient matrix is zero. Accurate saltions . L "
are obtained with a relatively small truncation order in the IS restricted to 2D structures consisting of finite number of

associated cylindrical wave expansions. parallel and infinitely long circular cylinders embedded in
Index Terms—Optical cavities, photonic crystals, numerical @ homogeneous medium. Similar to the multipole method
methods, multipole method. for waveguide modes, we can solve the eigenfrequency of a

cavity mode from the condition that a matrix is singular.
However, when the matrix is large, it is difficult to find
the eigenfrequency fromet(A) = 0. We use the condition
Due to the existence of bandgaps, photonic crystals (PhGg) 4) = 0, where), is the eigenvalue oft with the smallest
are ideal material for developing microcavities with smalhagnitude. Accurate solutions are obtained for a number of
mode volumes and high quality factors. Many different typggaky microcavities in 2D PhCs composed of dielectric rods
of microcavities are needed in applications such as filte; air-holes on square or triangular lattices.
lasers and nonlinear optical devices. In an ideal micragavi
created by local defects in an otherwise perfectly periodic
and infinite PhC, the cavity mode decays exponentially away ) . o o
from the defects and its eigenfrequency is real. In practiee For 2D _structures WhICh are invariant in thedirection and_
structure surrounding a microcavity cannot be an infinite afer Waves in they polarization, the: component of the electric
perfectly periodic, because it is necessary to couple figiot field satisfies the Helmholtz equation
and qut of the microcavity. When the surrounding stru<_:ture 0%u + 82u + k2nu = 0, 1)
contains waveguides or unbounded homogeneous media, the Y
microcavity becomes leaky and the eigenfrequencies of tiseren = n(r) is the refractive index function; = (x,y),
cavity modes are complex. ko = w/c is the free space wavenumber,is the angular
To analyze microcavities in PhCs, both time and frequenésequency (the assumed time dependence &), and c
domain numerical methods have been used [1]-[5]. The finie- the speed of light in vacuum. We are concerned with
difference time-domain (FDTD) [1] method requires smaitigr microcavities in a finite 2D PhC, where the bulk PhC consists
size to resolve material interfaces, and long simulatiometi of circular cylinders arranged as a square or trianguléicéat
to settle on the cavity modes. On the other hand, frequerioya homogeneous medium with refractive indey. Two
domain methods, such as the finite element method [2], gisinple examples are shown in Fig. 1. For each case, a
rise to eigenvalue problems of large matrices which are-diffi
cult to solve. Furthermore, for leaky microcavities, theita

I. INTRODUCTION

II. THE MULTIPOLE METHOD

modes exhibit outgoing wave behavior in nearby waveguides ® o000 00
or homogeneous media. Therefore, techniques such as the L L 0000
perfectly matched layer are needed to truncate the suriogind LA L UL L
structures. AR R 0000
AR L N N

The multipole method is a classical semi-analytic method
for analyzing scattering problems associated with carabnic
Str_UCtures Such as circular cyhnders and spheres, usily CyFig. 1. Examples of leaky cavities where a missing rod isaurded by
drical or spherical wave expansions [6]. The method has al§@ rings of rods in a square or triangular lattice.
been applied to compute waveguide modes. In particular, the

. . .. microcavity corresponds to a missing cylinder at the center
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solutions of Eg. (1) satisfying an outgoing radiation caioti where \; is the the eigenvalue ofA with the smallest

at infinity. Clearly, a leaky mode can only exist for a complermagnitude. We use the secant method to salvéom (5).
frequency, the imaginary part of which gives the dampingumerical examples indicate that convergent results csityea
rate of the field amplitude. Since we assumed that the tirbe obtained even using initial guesses that are not close to
dependence is~*, the complex eigenfrequency of a leakythe exact eigenfrequency. The advantage\pfA) will be

mode must have a negative imaginary part. illustrated by an example in Section Il
To use the multipole method, we choose thecoordinate
system such that the center of the microcavity is the origin I1. NUMERICAL EXAMPLES
and expand the cavity mode outside all cylinders as In this section, we illustrate our method by a few numerical
N examples. The first example was previously analyzed by a
u(r) => > bimHS (konort) exp(im6;),  (2) number of authors [1]-[5]. A microcavity is created itPax P
I=1 m=—o00 square lattice of circular rods by removing the rod at thaegn

whereN is the number of cylindersy, is the refractive index whereP is an odd integer. The radius and the refractive index
of the homogeneous medium outside the cylindgysis the of the rods areR? = 0.2a (a is the lattice constant) and =
coordinates for the center of thh cylinder, (r;,6;) are the 3.4, respectively. The medium surrounding the cylinders is air
polar coordinates of — p;, that isr; = |r — py| and §; is The case forP = 5 is shown in Fig. 1 (left). Our results are
the polar angle of — p;. Notice thatu given in (2) satisfies listed in Table | below. From its complex frequency, the gyal
the outgoing radiation condition automatically. The ndte TABLE |

method gives rise to a homogeneous linear system for aktheg,cenrrequENCIES AND QUALITY FACTORS OF LEAKY CAVITY MODES
coefficientsb;,,,. If the Ith cylinder has a radiug?; and a IN A FINITE SQUARE LATTICE OF DIELECTRIC RODS

refractive indexn;, the system can be written as

Lattice size| Normalized frequencwa/(2wc) | Q factor

I ST —=S1Tis -7 [bs 3x3 0.37941433-0.010197088261 | 18.60405

— 85Ty I — STy - b 5% 5 0.37843574-0.00106497948i | 177.6728
CSaTa  —SaT 7 b.| =0 (3 TXT 0.37808105-0.00013372758i | 1413.624
3431 3432 3 9x9 0.37802694-0.00001838746i | 10279.48

where b, is the infinite column vector ofy,, for all m, I factor of a leaky cavity mode is cqlculated by the for.mula
is the identity matrix,S; is a given infinite diagonal matrix @ = [0-5R&(w)/Im(w)|. The results in Table | are obtained
andT}; is a (gi)ven infinite matrix. Them, q) entry of T; is g;:gglgtl'gn:s 4,s'igdla$gegr hi\lleets)e;ﬁn Vﬁ:"::tc‘?dfbﬁ ggdg;gnal
_ 0 j , j i i ulati usi valu e , fu u
t(: g )prgrila? gg&g;ﬂggrgfipgff] FoTchlgfwgglg(izgt%rz,irhee precision results (accurate to about 15 digits) can be oédtai
(m,m) entry of S, is with m*.z 8. The result§ f_om* >_8 are identical .to those f_or
’ m, = 8in a double precision environment. The first four digits

(S = 1 Im (§) S5, (1) — nodm(n)J7, (§) of the Q values in Table | agree with the frequency domain
mm — 7 5 .. .
_mHg)(g)Jrzn(n) +n0Jm(n)H7(nl> (€) finite element results by Rodriguez-Esqueeteal. [2]. For

P =5, 7 and9, they obtainedy) = 178, 1414 and 10276,

where¢ = konoR; andn = kon;R;. For the H polarization, . N -
ng and n; should be switched in the above formula forrespectlvely. For? = 5, the same resultyf = 178) was also

: obtained by Obayya [3] using a finite element method with
(S1)mm- In practice, we truncaten to —m, < m < m, . . : .
o a complex time marching technique. On the other hand, it

for a positive integerm.., thenb; becomes a vector of length

M = 2m.+1,T;; andS, becomeM x M matrices. Therefore, seems that the available tlr_ne-domam results_can only_a_gree
. . with these frequency-domain results for the first two digits
Eq. (3) is approximated by

. For example, the time domain results &e= 180 in [2] and
A(w)b =0, (4) Q=184in[4]for P =5,and@ = 1423 in [2] and@Q = 1450
in [5] for P =17.

whereb is a column vector with blockby, b,, ..., by, and Next, we consider microcavities in finite PhCs composed of

A= A(w)isan(MN) x (MN) matrix. Sinceky is involved . ' . . : ;
in'S, and T, the matrix A depends on the frequen dielectric rods in a triangular lattice, where the refreeindex
! i P quency and the radius of the rods are= 3 and R = 0.378a (a is

A cavity mod.e corresponds to a non-zero §olut|on of ﬂ}ﬁe lattice constant), respectively, and the medium suatng
homogeneous linear system (3) or (4) approximately. Therg- . ) : . >~
: : 7 the rods is air. A simple microcavity corresponds to a mgsin
fore, we can find the eigenfrequency from the condition tha

the matrix A is singular. The standard approach is to salve fod surrounded by a feyv rings of _rods in a triangular Iatt!ce.
. L The case where the microcavity is surrounded by two rings
from det(A) = 0. However, the determinant of a matrix is not

a good indicator for its singularity when the size of the rixatrOlc rods is shown in Fig. 1 (right). In Table I, we show

) . . the results obtained using, = 8. This example is more
is large. If an iterative method, such as the secant meth%r.ﬁ. . . : .
ifficult than the first one, since the radius of the rods is

is used to solve the eigenfrequency fratet(A) = 0, it is . o
o o larger, and more terms are needed in the cylindrical wave
difficult to find initial guesses that lead to a convergenutes ; . .
expansions. Nevertheless, we are able to obtain results wit

Our approach is to solve from full double precision usingn, = 16. This example was
A(4) =0, (5) previously analyzed by Rodriguez-Esqueeteal. [2] using



TABLE Il TABLE Il
EIGENFREQUENCIES AND QUALITY FACTORS FOR LEAKY CAVITY MODES EIGENFREQUENCIES AND QUALITY FACTORS OF LEAKY CAVITY MODES

IN A FINITE TRIANGULAR LATTICE OF DIELECTRIC RODS. IN A 3-RING TRIANGULAR LATTICE OF AIR-HOLES.
No. of rings | Normalized frequencywa/(27c) | @ factor Modes Normalized frequencywa/(27c) | Q factor
1 0.46657438 - 0.0045872082i | 50.85603 Monopole 0.41940227 - 0.0002397509i | 874.6626
2 0.46704334 - 0.0020896908i | 111.7494 Quadrupoles|  0.39514759 - 0.0001009359i | 1957.418
3 0.46759852 - 0.0001811422i | 1290.695 Hexapole 0.45555802 - 0.0000695536i | 3274.868
4 0.46781022 - 0.0001328438i | 1760.753
5 0.46788203 - 0.0000144513i | 16188.19

m, = 15, 16 and 17, respectively. These results are validated
o ) ) ) . by additional calculations with even larger valuesof. This
a finite element method. For the microcavity with four riNgSsxample has been previously analyzed by Patl. [5] using
the frequency-domain and time-domain finite element resulf fiite volume time domain method. THg values given in
given in [2] areQ = 1745 and Q = 1754, respectively. Once [5] are 779, 1660 and 3223, respectively.
the eigenfrequency is calculated, we can find the eigenfuncyypijje the examples above involve either a missing rod
tion. Since A(w) is singular, the vectob is the eigenvector 5 filled air-hole at the center, the multipole method is
corresponding to the zero eigenvalue of matfifw). applicable to more general structures where the cylindans c
For this example (cavity with three rings) and. = 8, pe grhitrarily located and can have different radii andedét
we show the real and imaginary parts @ft(A) and Ai(4)  refractive indices. Since the eigenfrequency of a leaky enod
in Fig. 2, where the horizontal axis is the real frequency soved from Eq. (5), we need(M3N3) operations to
calculate the smallest eigenvalue in each iteration, wheig
x 10° Determinant the number of cylinders andi/f = 2m, + 1 is the number of
‘ ‘ ‘ ‘ cylindrical waves for each cylinder. For the cavity with five
rings of dielectric rods in a triangular lattice and, = 8, i.e.,
the last row of Table Il, we havé/ = 90 and M N = 1530.
On a personal computer with a 2.33GHz CPU and using
MATLAB, it takes about 4s to generate the matrik and
‘ ‘ ‘ ‘ 12s to find its eigenvalues. Since the number of iterations in
0.46 0.465 0.47 0.475 the secant method is typically less than 10, the total requir
Smallest eigenvalue time is less than 3 minutes.

IV. CONCLUSION

In this Letter, we use the multipole method to analyze
microcavities in finite 2D PhCs composed of infinitely long
and parallel circular cylinders. The eigenfrequency ofakyje

\ \ \ \ cavity mode is determined from the condition that the srsélle
0.46 0-46&/2 0.47 0.475 eigenvalue (in magnitude) of the coefficient matrix is zero.

(2re) Accurate results are obtained with a relatively small where
Fig. 2. The determinant and the smallest eigenvalue (in inaig) of the 7' is the truncation order of the cylindrical wave expansions.

matrix A(w) as functions of a real frequency, for cavity with three rimgsi  Full precision results can also be obtained using a langer
msx = 8.
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