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Accurate Multipole Analysis for Leaky
Microcavities in Two-dimensional Photonic Crystals

Shaojie Li and Ya Yan Lu

Abstract—A multipole method is presented to analyze leaky
microcavities in finite two-dimensional photonic crystals. The
eigenfrequency of a leaky mode is solved from the condition
that the eigenvalue with the smallest magnitude (instead ofthe
determinant) of the coefficient matrix is zero. Accurate solutions
are obtained with a relatively small truncation order in the
associated cylindrical wave expansions.

Index Terms—Optical cavities, photonic crystals, numerical
methods, multipole method.

I. I NTRODUCTION

Due to the existence of bandgaps, photonic crystals (PhCs)
are ideal material for developing microcavities with small
mode volumes and high quality factors. Many different types
of microcavities are needed in applications such as filters,
lasers and nonlinear optical devices. In an ideal microcavity
created by local defects in an otherwise perfectly periodic
and infinite PhC, the cavity mode decays exponentially away
from the defects and its eigenfrequency is real. In practice, the
structure surrounding a microcavity cannot be an infinite and
perfectly periodic, because it is necessary to couple lightinto
and out of the microcavity. When the surrounding structure
contains waveguides or unbounded homogeneous media, the
microcavity becomes leaky and the eigenfrequencies of the
cavity modes are complex.

To analyze microcavities in PhCs, both time and frequency
domain numerical methods have been used [1]–[5]. The finite-
difference time-domain (FDTD) [1] method requires small grid
size to resolve material interfaces, and long simulation time
to settle on the cavity modes. On the other hand, frequency
domain methods, such as the finite element method [2], give
rise to eigenvalue problems of large matrices which are diffi-
cult to solve. Furthermore, for leaky microcavities, the cavity
modes exhibit outgoing wave behavior in nearby waveguides
or homogeneous media. Therefore, techniques such as the
perfectly matched layer are needed to truncate the surrounding
structures.

The multipole method is a classical semi-analytic method
for analyzing scattering problems associated with canonical
structures such as circular cylinders and spheres, using cylin-
drical or spherical wave expansions [6]. The method has also
been applied to compute waveguide modes. In particular, the
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multipole method can be used to obtain accurate solutions
for guided and leaky modes in some PhC fibers [7]. In this
Letter, we apply the multipole method to analyze microcavities
surrounded by finite two-dimensional (2D) PhCs. Our study
is restricted to 2D structures consisting of finite number of
parallel and infinitely long circular cylinders embedded in
a homogeneous medium. Similar to the multipole method
for waveguide modes, we can solve the eigenfrequency of a
cavity mode from the condition that a matrixA is singular.
However, when the matrix is large, it is difficult to find
the eigenfrequency fromdet(A) = 0. We use the condition
λ1(A) = 0, whereλ1 is the eigenvalue ofA with the smallest
magnitude. Accurate solutions are obtained for a number of
leaky microcavities in 2D PhCs composed of dielectric rods
or air-holes on square or triangular lattices.

II. T HE MULTIPOLE METHOD

For 2D structures which are invariant in thez direction and
for waves in theE polarization, thez component of the electric
field satisfies the Helmholtz equation

∂2
xu + ∂2

yu + k2
0n

2 u = 0, (1)

wheren = n(r) is the refractive index function,r = (x, y),
k0 = ω/c is the free space wavenumber,ω is the angular
frequency (the assumed time dependence ise−iωt), and c
is the speed of light in vacuum. We are concerned with
microcavities in a finite 2D PhC, where the bulk PhC consists
of circular cylinders arranged as a square or triangular lattice
in a homogeneous medium with refractive indexn0. Two
simple examples are shown in Fig. 1. For each case, a

Fig. 1. Examples of leaky cavities where a missing rod is surrounded by
two rings of rods in a square or triangular lattice.

microcavity corresponds to a missing cylinder at the center
and it is surrounded by two rings of cylinders. Since the PhC
surrounding the microcavity is finite, light cannot be fully
confined, therefore Eq. (1) does not have non-zero solutions
that decay to zero at infinity for any real frequency. For such
a microcavity, we look for leaky modes which are non-zero
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solutions of Eq. (1) satisfying an outgoing radiation condition
at infinity. Clearly, a leaky mode can only exist for a complex
frequency, the imaginary part of which gives the damping
rate of the field amplitude. Since we assumed that the time
dependence ise−iωt, the complex eigenfrequency of a leaky
mode must have a negative imaginary part.

To use the multipole method, we choose thexy coordinate
system such that the center of the microcavity is the origin
and expand the cavity mode outside all cylinders as

u(r) =

N
∑

l=1

∞
∑

m=−∞

blmH(1)
m (k0n0rl) exp(imθl), (2)

whereN is the number of cylinders,n0 is the refractive index
of the homogeneous medium outside the cylinders,pl is the
coordinates for the center of thelth cylinder,(rl, θl) are the
polar coordinates ofr − pl, that is rl = |r − pl| and θl is
the polar angle ofr − pl. Notice thatu given in (2) satisfies
the outgoing radiation condition automatically. The multipole
method gives rise to a homogeneous linear system for all these
coefficientsblm. If the lth cylinder has a radiusRl and a
refractive indexnl, the system can be written as
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where bl is the infinite column vector ofblm for all m, I
is the identity matrix,Sl is a given infinite diagonal matrix
andTlj is a given infinite matrix. The(m, q) entry of Tlj is
(Tlj)mq = H

(1)
m−q(k0n0r

j
l ) exp[i(q−m)θj

l ], where(rj
l , θ

j
l ) are

the polar coordinates ofpj − pl. For theE polarization, the
(m, m) entry of Sl is

(Sl)mm =
nlJm(ξ)J ′

m(η) − n0Jm(η)J ′

m(ξ)

−nlH
(1)
m (ξ)J ′

m(η) + n0Jm(η)H
(1)
m

′

(ξ)
,

whereξ = k0n0Rl andη = k0nlRl. For theH polarization,
n0 and nl should be switched in the above formula for
(Sl)mm. In practice, we truncatem to −m∗ ≤ m ≤ m∗

for a positive integerm∗, thenbl becomes a vector of length
M = 2m∗+1, Tlj andSl becomeM×M matrices. Therefore,
Eq. (3) is approximated by

A(ω) ~b = 0, (4)

where~b is a column vector with blocksb1, b2, ..., bN , and
A = A(ω) is an(MN)× (MN) matrix. Sincek0 is involved
in Sl andTlj , the matrixA depends on the frequencyω.

A cavity mode corresponds to a non-zero solution of the
homogeneous linear system (3) or (4) approximately. There-
fore, we can find the eigenfrequency from the condition that
the matrixA is singular. The standard approach is to solveω
from det(A) = 0. However, the determinant of a matrix is not
a good indicator for its singularity when the size of the matrix
is large. If an iterative method, such as the secant method,
is used to solve the eigenfrequency fromdet(A) = 0, it is
difficult to find initial guesses that lead to a convergent result.
Our approach is to solveω from

λ1(A) = 0, (5)

where λ1 is the the eigenvalue ofA with the smallest
magnitude. We use the secant method to solveω from (5).
Numerical examples indicate that convergent results can easily
be obtained even using initial guesses that are not close to
the exact eigenfrequency. The advantage ofλ1(A) will be
illustrated by an example in Section III.

III. N UMERICAL EXAMPLES

In this section, we illustrate our method by a few numerical
examples. The first example was previously analyzed by a
number of authors [1]–[5]. A microcavity is created in aP×P
square lattice of circular rods by removing the rod at the center,
whereP is an odd integer. The radius and the refractive index
of the rods areR = 0.2a (a is the lattice constant) andn =
3.4, respectively. The medium surrounding the cylinders is air.
The case forP = 5 is shown in Fig. 1 (left). Our results are
listed in Table I below. From its complex frequency, the quality

TABLE I
EIGENFREQUENCIES AND QUALITY FACTORS OF LEAKY CAVITY MODES

IN A FINITE SQUARE LATTICE OF DIELECTRIC RODS.

Lattice size Normalized frequencyωa/(2πc) Q factor
3× 3 0.37941433-0.01019708826i 18.60405
5× 5 0.37843574-0.00106497948i 177.6728
7× 7 0.37808105-0.00013372758i 1413.624
9× 9 0.37802694-0.00001838746i 10279.48

factor of a leaky cavity mode is calculated by the formula
Q = |0.5Re(ω)/Im(ω)|. The results in Table I are obtained
using m∗ = 4, and they have been validated by additional
calculations using larger values ofm∗. In fact, full double
precision results (accurate to about 15 digits) can be obtained
with m∗ ≥ 8. The results form∗ > 8 are identical to those for
m∗ = 8 in a double precision environment. The first four digits
of the Q values in Table I agree with the frequency domain
finite element results by Rodrı́guez-Esquerreet al. [2]. For
P = 5, 7 and 9, they obtainedQ = 178, 1414 and 10276,
respectively. ForP = 5, the same result (Q = 178) was also
obtained by Obayya [3] using a finite element method with
a complex time marching technique. On the other hand, it
seems that the available time-domain results can only agree
with these frequency-domain results for the first two digits.
For example, the time domain results areQ = 180 in [2] and
Q = 184 in [4] for P = 5, andQ = 1423 in [2] andQ = 1450
in [5] for P = 7.

Next, we consider microcavities in finite PhCs composed of
dielectric rods in a triangular lattice, where the refractive index
and the radius of the rods aren = 3 and R = 0.378a (a is
the lattice constant), respectively, and the medium surrounding
the rods is air. A simple microcavity corresponds to a missing
rod surrounded by a few rings of rods in a triangular lattice.
The case where the microcavity is surrounded by two rings
of rods is shown in Fig. 1 (right). In Table II, we show
the results obtained usingm∗ = 8. This example is more
difficult than the first one, since the radius of the rods is
larger, and more terms are needed in the cylindrical wave
expansions. Nevertheless, we are able to obtain results with
full double precision usingm∗ = 16. This example was
previously analyzed by Rodrı́guez-Esquerreet al. [2] using
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TABLE II
EIGENFREQUENCIES AND QUALITY FACTORS FOR LEAKY CAVITY MODES

IN A FINITE TRIANGULAR LATTICE OF DIELECTRIC RODS.

No. of rings Normalized frequencyωa/(2πc) Q factor
1 0.46657438 - 0.0045872082i 50.85603
2 0.46704334 - 0.0020896908i 111.7494
3 0.46759852 - 0.0001811422i 1290.695
4 0.46781022 - 0.0001328438i 1760.753
5 0.46788203 - 0.0000144513i 16188.19

a finite element method. For the microcavity with four rings,
the frequency-domain and time-domain finite element results
given in [2] areQ = 1745 andQ = 1754, respectively. Once
the eigenfrequency is calculated, we can find the eigenfunc-
tion. SinceA(ω) is singular, the vector~b is the eigenvector
corresponding to the zero eigenvalue of matrixA(ω).

For this example (cavity with three rings) andm∗ = 8,
we show the real and imaginary parts ofdet(A) and λ1(A)
in Fig. 2, where the horizontal axis is the real frequency.
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Fig. 2. The determinant and the smallest eigenvalue (in magnitude) of the
matrix A(ω) as functions of a real frequency, for cavity with three ringsand
m∗ = 8.

Although the true eigenfrequency is complex, its imaginary
part is very small. From the curves forλ1(A), we can easily
see that an eigenfrequency exists nearωa/(2πc) = 0.468.
The curves fordet(A) are oscillatory in the frequency interval
shown in Fig. 2, therefore, ifdet(A) = 0 is used, iterative root-
finding methods may not converge unless the initial guesses
are very close to the true solution.

Finally, we follow [5] and consider a leaky microcavity
consisting of three rings of circular air-holes (radiusR =
0.45a) surrounded by a dielectric medium with refractive index
n0 =

√
11.4. For the H polarization, the microcavity has

four leaky modes including a pair of doubly-degenerated ones.
This example is more difficult than the previous one, since the
radius is larger and the expansion (2) is given in the high index
medium. Our results are given in Table III. The quadrupoles
are doubly-degenerated, since two eigenvalues of the matrix
A are exactly zero whenω is the given eigenfrequency. The
quadrupoles, the monopole and the hexapole are obtained with

TABLE III
EIGENFREQUENCIES AND QUALITY FACTORS OF LEAKY CAVITY MODES

IN A 3-RING TRIANGULAR LATTICE OF AIR-HOLES.

Modes Normalized frequencyωa/(2πc) Q factor
Monopole 0.41940227 - 0.0002397509i 874.6626

Quadrupoles 0.39514759 - 0.0001009359i 1957.418
Hexapole 0.45555802 - 0.0000695536i 3274.868

m∗ = 15, 16 and17, respectively. These results are validated
by additional calculations with even larger values ofm∗. This
example has been previously analyzed by Pintoet al. [5] using
a finite volume time domain method. TheQ values given in
[5] are 779, 1660 and3223, respectively.

While the examples above involve either a missing rod
or a filled air-hole at the center, the multipole method is
applicable to more general structures where the cylinders can
be arbitrarily located and can have different radii and different
refractive indices. Since the eigenfrequency of a leaky mode
is solved from Eq. (5), we needO(M3N3) operations to
calculate the smallest eigenvalue in each iteration, whereN is
the number of cylinders andM = 2m∗ + 1 is the number of
cylindrical waves for each cylinder. For the cavity with five
rings of dielectric rods in a triangular lattice andm∗ = 8, i.e.,
the last row of Table II, we haveN = 90 andMN = 1530.
On a personal computer with a 2.33GHz CPU and using
MATLAB, it takes about 4 s to generate the matrixA and
12 s to find its eigenvalues. Since the number of iterations in
the secant method is typically less than 10, the total required
time is less than 3 minutes.

IV. CONCLUSION

In this Letter, we use the multipole method to analyze
microcavities in finite 2D PhCs composed of infinitely long
and parallel circular cylinders. The eigenfrequency of a leaky
cavity mode is determined from the condition that the smallest
eigenvalue (in magnitude) of the coefficient matrix is zero.
Accurate results are obtained with a relatively smallm∗, where
m∗ is the truncation order of the cylindrical wave expansions.
Full precision results can also be obtained using a largerm∗.
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