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Conventional integral equation methods for diffraction gratings require lattice

sum techniques to evaluate quasi-periodic Green’s functions. The boundary

integral equation Neumann-to-Dirichlet map (BIE-NtD) method (Wu et al.,

J. Opt. Soc. Am. A 26, 2444-2451, 2009; 28, 1191-1196, 2011) is a recently

developed integral equation method that avoids the quasi-periodic Green’s

functions and is relatively easy to implement. In this paper, we present a

number of improvements for this method, including a revised formulation

that is more stable numerically, and more accurate methods for computing

tangential derivatives along material interfaces and for matching boundary

conditions with the homogeneous top and bottom regions. Numerical exam-

ples indicate that the improved BIE-DtN map method achieves high order of

accuracy for in-plane and conical diffractions of dielectric gratings. c© 2012

Optical Society of America

OCIS codes: 050.1755,050.1960,000.4430.

1. Introduction

Diffraction gratings and other periodic structures are important optical components that can

be used to control and manipulate light [1,2]. Efficient numerical methods are needed to an-

alyze the diffraction and scattering of light by these periodic structures. Existing numerical

methods for diffraction gratings include general-purpose methods such as the finite-difference

time-domain (FDTD) method and the finite element method (FEM) [3], and more special

methods such as the analytic modal method [4–7], numerical modal methods [8–18], the
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boundary integral equation (BIE) methods [19–28], etc. Although FDTD and FEM are ex-

tremely versatile, they are typically less efficient than the special methods. Numerical modal

methods, especially the Fourier modal method (FMM) [8–12], are simple to implement and

very popular, but they also have a number of limitations [11,29]. Conventional BIE methods

are applicable to gratings with piecewise constant but otherwise arbitrary refractive index

profiles, but they are relatively complicated to implement since the quasi-periodic Green’s

function appeared in the integral operators require sophisticated lattice sum techniques to

evaluate. For gratings with high index-contrast and sharp corners in their profiles, all an-

alytic and numerical modal methods converge slowly and may even fail to converge, due

to the possible field singularity at the corners. The BIE methods may be able to treat the

corner singularity more accurately. A version developed by Goray and Schmidt [27] based

on a boundary element discretization appears to have a third order of accuracy even when

the grating profiles have corners.

The boundary integral equation Neumann-to-Dirichlet map (BIE-NtD) method [30, 31]

is a recently developed variant of the BIE methods that avoids the quasi-periodic Green’s

function, and it is relatively easy to implement. The method divides one period of a grating

into a few subdomains of constant refractive index, constructs a relation (the so-called NtD

map) on the boundary of each subdomain between ∂νu and u where u is any component of

the electromagnetic field and ∂νu is its normal derivative, and solves the diffraction prob-

lem based on the NtD maps. A BIE is used to find the NtD map for each homogeneous

subdomain, and the involved integral operators are related to the standard Green’s func-

tion of the Helmholtz equation. Numerical examples given in Refs. [30,31] indicate that the

BIE-NtD method gives accurate solutions even when the grating profiles have sharp corners.

However, the order of accuracy is not clear and the method appears to be less accurate for

conical diffraction problems. In this paper, we present an improved version of the BIE-NtD

method for both in-plane and conical diffraction problems. We calculate a modified NtD

map, develop accurate approximations for the boundary conditions terminating the top and

bottom homogeneous media, and use a new technique to approximate tangential derivatives

on material interfaces. Several numerical examples are presented to demonstrate the high

order of accuracy of our improved BIE-NtD method for dielectric gratings.

2. Basic equations

For conical diffraction problems, we consider structures which are invariant in z and assume

that the electromagnetic field depends on z as eiγ0z where γ0 is a given nonzero constant. The

dielectric function ε(x, y) describing the structure is z independent and piecewise constant.

In each homogeneous domain, every component of the electromagnetic field satisfies the

2



Helmholtz equation

∂2xu+ ∂2yu+ (k20ε− γ20)u = 0, (1)

where k0 is the free space wavenumber. The problem can be solved using two components of

the electromagnetic field. The formulation given in [31] uses the two z components Hz and

Ez. For non-magnetic media and gratings with corners, we use the x and y components of

the magnetic field, since they are the smoothest functions among the six components [32].

Let Γ be an interface (discontinuity of ε), then Hx, Hy, Hz and Ez are continuous across Γ.

The conditions for Hz and Ez imply that

∂xHx + ∂yHy,
1

ε
(∂yHx − ∂xHy) (2)

must be continuous.

We further assume that the structure is periodic in x with a period L, and the media in

the top and bottom regions are homogeneous. If the top and bottom regions are given by

y > D for some positive D and y < 0, respectively, then the dielectric function satisfies

ε = ε(1) for y > D and ε = ε(2) for y < 0, where ε(1) and ε(2) are constants. In the top region,

we specify a plane incident wave with a wave vector (α0,−β(1)
0 , γ0), then the reflected wave

in the top region and the transmitted wave in the bottom region can be expanded in plane

waves with wave vectors (αj, β
(1)
j , γ0) and (αj,−β(2)

j , γ0), respectively, where j is an arbitrary

integer and

αj = α0 + 2πj/L, β
(l)
j =

√

k20ε
(l) − α2

j − γ20 , l = 1, 2. (3)

Since the incident wave depends on x as eiα0x and the structure is periodic in x, the electro-

magnetic field is quasi-periodic in x. That is

u(x+ L, y) = eiα0Lu(x, y), (4)

where u is any field component. To simplify the notations, the dependence on z is removed.

The problem can be formulated on a rectangular domain S = {(x, y) | 0 < x < L, 0 <

y < D} based on the above quasi-periodic condition and two extra conditions at y = 0 and

y = D. For the jth plane wave component of the transmitted wave, the partial derivative

with respect to y is simply a multiplication by −iβ(2)
j . Therefore, if we define an operator

B(2) such that B(2)eiαjx = iβ
(2)
j eiαjx for all j, then the bottom boundary condition is

∂yu(x, 0
−) = −B(2)u(x, 0). (5)

We can also write down B(2) explicitly as

(B(2)f)(x) =
i

L

∞
∑

j=−∞

β
(2)
j

∫ L

0
f(x̃)eiαj(x−x̃)dx̃, (6)
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where f is an any quasi-periodic function of x with period L and multiplier eiα0L. Similarly,

the top boundary condition is

∂yu(x,D
+) = B(1)u(x,D)− 2B(1)u(i)(x,D+), (7)

where u(i) is the given incident wave, B(1) is defined as B(2) with β
(2)
j replaced by β

(1)
j . Notice

that both Hx and Hy satisfy the same boundary conditions (5) and (7).

3. The BIE-NtD method

In this section, we present an improved BIE-NtD method for conical diffraction of gratings

based on a modified NtD map and using the x and y components of the magnetic field. As

in [30, 31], we first divide the rectangular domain S into a few subdomains Ωj , for j = 1,

..., m. The dielectric function in Ωj is a constant εj . The curves Γj (1 ≤ j < m) separating

these subdomains are located on the material interfaces. The top and bottom boundaries of

S are the line segments Γm and Γ0 at y = D and y = 0, respectively. A typical example is

shown in Fig. 1.

Fig. 1. A typical diffraction grating.

For any u satisfying Eq. (1) in a subdomain Ωj , a BIE can be used to calculate the

NtD operator that maps ∂νu (the normal derivative of u) to u on ∂Ωj (the boundary of

Ωj) [30]. The integral equation can be discretized by a Nyström method with a graded mesh

corresponding to a change of variable s = w(t) (where s is the original parameter of ∂Ωj)

and a uniform discretization in t [33]. The definition of w depends on a positive integer p.

On a smooth piece of ∂Ωj given by sb < s < se, the new variable is given by tb < t < te, and

the function w is

w(t) =
sew

p
1 + sbw

p
2

wp
1 + wp

2

for tb ≤ t ≤ te, (8)
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where

w1 =

(

1

2
− 1

p

)

ξ3 +
ξ

p
+

1

2
, w2 = 1− w1, ξ =

2t− (tb + te)

te − tb
.

Notice that on each smooth piece of ∂Ωj , w(t) is a sigmoid function, and its derivatives up to

the (p−1)th order vanish at the two end points. The graded mesh is used to resolve possible

field singularities around corners, but it makes the NtD matrix nearly singular. In a recent

work on optical waveguides [34], we found that numerically it is more stable to take out w′

(the derivative of w) and calculate the modified NtD map Vj satisfying

Vj ϕ = u on ∂Ωj , (9)

where ϕ = w′∂νu. The details for computing the original or modified NtD maps using BIEs

are given in Refs. [30, 34]. Here, we assume that the unit normal vector ν on Γj points into

Ωj+1 (or y > D if j = m), and ν on Γj−1 points into Ωj . Since u satisfies the quasi-periodic

condition (4), we can eliminate both u and ϕ on the vertical segments of ∂Ωj [30]. This leads

to the reduced NtD map Nj satisfying

Nj





ϕ+
j−1

ϕ−

j



 =





Nj,11 Nj,12

Nj,21 Nj,22









ϕ+
j−1

ϕ−

j



 =





uj−1

uj



 , (10)

where uj denotes u on Γj , ϕ
+
j and ϕ−

j denote the one-sided limits of ϕ from above and below

Γj, respectively. In the above, Nj is also given in 2× 2 blocks.

To find the reflected and transmitted waves, we use an operator marching scheme that

manipulates a pair of operators from the bottom (y = 0−) to the top (y = D+). For u =

[Hx, Hy]
T and ϕ = w′∂νu, we define the operators Qj and Yj satisfying

Q+
j uj = ϕ

+
j , Q−

j uj = ϕ
−

j , Yjuj = u0, (11)

where uj denotes u on Γj , etc. Using these notations, the boundary conditions (5) and (7)

can be written as

ϕ−

0 = −B(2)u0 on Γ0 (12)

ϕ+
m = B(1)um + gm on Γm (13)

where B(l) = diag{w′B(l), w′B(l)} for l = 1, 2, and gm = −2B(1)u(i)|Γm
. Clearly, Y0 is

an identity operator. Eq. (12) gives Q−

0 = −B(2). Once Q+
m and Ym are obtained, we use

Eq. (13), i.e., (Q+
m − B1)um = gm to solve um, and evaluate u0 by u0 = Ymum.

To find Q+
m and Ym, we need two types of marching steps: (1) propagation steps that

calculate Q−

j and Yj from Q+
j−1 and Yj−1 for 1 ≤ j ≤ m; (2) transition steps that calculate
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Q+
j from Q−

j for 0 ≤ j ≤ m. The jth propagation step can be derived from the reduced NtD

map Nj satisfying Eq. (10). As in [31], we obtain

Zj =



I −




Nj,11

Nj,11



Q+
j−1





−1 



Nj,12

Nj,12



 , (14)

Q−

j =









Nj,22

Nj,22



+





Nj,21

Nj,21



Q+
j−1Zj





−1

, (15)

Yj = Yj−1ZjQ−

j . (16)

A formula for the jth transition step can be derived from the condition that the two

functions given in (2) must be continuous across Γj . Let ν = (νx, νy) be the unit normal

vector of Γj and τ = (−νy, νx) be the unit tangential vector. Rewriting the partial derivatives
of Hx and Hy as linear combinations of their normal and tangential derivatives and imposing

the continuity conditions, we can find an equation connecting ∂νu
+
j , ∂νu

−

j and ∂τuj . With

a further multiplication of w′ to both sides, we obtain

ϕ+
j = Mj ϕ

−

j + Tj ψj, (17)

where σj = 1− εj+1/εj, ψj = w′∂τuj and

Mj =





1− σjν
2
y σjνxνy

σjνxνy 1− σjν
2
x



 , Tj = σj





−νxνy −ν2y
ν2x νxνy



 . (18)

This gives rise to the following transition formula

Q+
j = MjQ−

j + Tj





w′∂τ

w′∂τ



 . (19)

4. Tangential derivative

In the previous version [31], a least squares method is used to approximate the tangential

derivative operator ∂τ along the interfaces. This may have caused a reduced order of accuracy

for the BIE-NtD method. In the current version, the transition formula (19) requires a matrix

approximation for the scaled tangential derivative operator w′∂τ . We present an accurate

method for approximating w′∂τ based on the discrete Fourier transform.

Let the curve Γj be given by a parametric representation

r(s) = (x(s), y(s)), 0 ≤ s ≤ Lj . (20)

A graded mesh on Γj is obtained by a change of variable s = w(t) for 0 ≤ t ≤ Tj and a uniform

discretization in t: {tk = kTj/Nj : 0 ≤ k < Nj}, where Nj is the total number of points
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on Γj . For a scalar quasi-periodic function u given at the Nj mesh points: uk = u(r(w(tk)),

0 ≤ k < Nj , we need to approximate ψ = w′∂τu at these points. Since

∂τu(r) =
1

|r′(s)|
du(r(s))

ds
=

1

w′(t)|r′(w(t))|
du(r(w(t)))

dt
,

where |r′(s)| =
√

[x′(s)]2 + [y′(s)]2 and the prime denotes the derivative, we have

ψ(t) =
1

|r′(ω(t))|
du(r(ω(t)))

dt
. (21)

Since u is quasi-periodic in x, the function h(t) = exp[−iα0x(w(t))]u(r(w(t))) is a periodic

function of t with period Tj, and

dh(t)

dt
= e−iα0x(w(t))

[

−iα0
dx(w(t))

dt
u(r(w(t))) + |r′(w(t))|ψ(t)

]

. (22)

Using h at theNj points, i.e., hk = uk exp[−iα0x(w(tk))] for 0 ≤ k < Nj , we first approximate

h(t) by

h(t) ≈
Nj/2−1
∑

l=−Nj/2

ĥlexp(i2πlt/Tj) (23)

if Nj is even, where the coefficients are given by the discrete Fourier transform

ĥl =
1

Nj

Nj−1
∑

k=0

hke
−i2πlk/Nj , −Nj

2
≤ l <

Nj

2
, (24)

then evaluate the derivative of h at tk by

dh

dt
(tk) ≈

Nj/2−1
∑

l=−Nj/2

i2πl

Tj
ĥle

i2πltk/Tj , k = 0, ..., Nj − 1. (25)

Finally, we can evaluate ψ at tk, 0 ≤ k < Nj, by Eq. (22). The above steps give rise to a

differentiation matrix Dj, such that

















ψ(t0)

ψ(t1)
...

ψ(tNj−1)

















≈ Dj

















u0

u1
...

uNj−1

















. (26)

The matrix Dj approximates w′∂τ on Γj . The case for an odd Nj is similar.

7



5. Top and bottom boundary conditions

Since a graded mesh is used on the boundaries of all subdomains Ωj , 1 ≤ j ≤ m, the dis-

cretization points on the top and bottom line segments Γm and Γ0 are not uniform. In the

original BIE-NtD method [30], the boundary operators B(1) and B(2) are first approximated

by matrices using a uniform discretization of x, then transformed to new matrices corre-

sponding to the graded mesh points by a least squares method. This technique may also

reduce the order of accuracy. Using the integral definition of the operators given in Eq. (6),

we can approximate the boundary operators on the graded mesh points directly.

On the bottom boundary, the original parametric representation is x = s and y = 0

for 0 ≤ s ≤ L, and the graded mesh corresponds to the change of variable x = w(t) for

0 ≤ t ≤ T0 and a uniform discretization tk = kT0/N0 for 0 ≤ k < N0. We can approximate

B(2)f in (6) by a truncation in j and a numerical integration by the trapezoidal rule in t̃,

where x̃ = w(t̃). That is

(B(2)f)(x) ≈ i

L

J0
∑

j=−J0

β
(2)
j eiαjx

∫ T0

0
f(w(t̃))e−iαjw(t̃)w′(t̃)dt̃

≈ iT0
LN0

J0
∑

j=−J0

β
(2)
j eiαjx

N0−1
∑

k=0

f(xk)e
−iαjxkw′(tk),

where xk = w(tk). Applying the above approximation at xl = w(tl) for 0 ≤ l < N0 and multi-

plying w′(tl), we obtain a linear relation between f(xk) for 0 ≤ k < N0, and w
′(tl)(B

(2)f)(xl)

for 0 ≤ l < N0. The corresponding coefficient matrix is the approximation of w′B(2) on the

graded mesh. The same approach applies to the operator w′B(1) at the top boundary.

After u at y = D and y = 0 (i.e. um and u0) are obtained, we need to calculate the plane

wave expansion coefficients of the transmitted and reflected waves. We use a numerical

integration by the trapezoidal rule in the variable t. Consider a scalar u (which can be either

Hx orHy) in the bottom region where the transmitted wave is the total wave. If u is expanded

as

u(x, y) =
∞
∑

j=−∞

cj exp[i(αjx− β
(2)
j y)], y ≤ 0, (27)

then the coefficient cj can be evaluated by

cj =
1

L

∫ L

0
u(x, 0)e−iαjxdx ≈ T0

LN0

N0−1
∑

k=0

u(xk, 0)w
′(tk)e

−iαjxk , (28)

where u(xk, 0) for 0 ≤ k < N0, are given in u0. Similarly, the expansion coefficients of the

reflected wave can be constructed from um after a subtraction by the incident wave.
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6. In-plane diffraction problem

For in-plane diffraction problems of gratings, i.e. γ0 = 0, the electromagnetic field can be

decomposed to two separate polarizations. As usual, we use Ez for the transverse electric

(TE) polarization and Hz for the transverse magnetic (TM) polarization, since these two

components satisfy separate scalar Helmholtz equations. Notice that we cannot use Hx and

Hy as in section 3, since Hx and Hy are both zero for the TM polarization. Furthermore,

there is no need to evaluate tangential derivatives along material interfaces, since the interface

conditions are very simple. Nevertheless, some ideas presented in the previous sections are

still useful for the in-plane diffraction cases.

Unlike the original BIE-NtD method presented in [30], we use the modified NtD map Vj

satisfying Eq. (9), where u is now either Ez or Hz. This leads to modified definitions of Q±

j

based on uj and ϕ
±

j . For the TE and TM polarizations, ∂νu and ε−1∂νu are continuous across

material interfaces, respectively. This leads the transition formula

Q+
j = ηjQ−

j , (29)

where ηj = 1 for the TE polarization and ηj = εj+1/εj for the TM polarization. The other

steps are nearly identical to those given in sections 3 and 5. In particular, we use the new

techniques to satisfy the top and bottom boundary conditions, and to calculate the expansion

coefficients of the reflected and transmitted waves.

7. Numerical examples

In this section, we present a few numerical examples including both in-plane and conical

diffraction cases. The first example was previously analyzed by the FMM and other numerical

modal methods [14, 17]. It is the dielectric lamellar grating shown in Fig. 2(a). The period

and the groove depth of the grating are L = 2µm and d = 1µm respectively. The dielectric

constants of the top and bottom media are ε(1) = 1 and ε(2) = 2.25 respectively. The dielectric

function of the grating layer satisfies ε(x) = 5.29 for 0 < x < 0.234L and ε(x) = 1 otherwise.

We consider a plane incident wave with a free space wavelength λ = 1µm and a 30◦ incident

angle with the y axis. We calculate the diffraction efficiency of the first transmitted order

T1 for the TM polarization. For this problem, we choose one period of the grating S and

its three subdomain Ω1, Ω21 and Ω22 as in Fig. 2(a), and let Ω2 be the union of Ω21 and

Ω22. A simple modification is needed for the domain partition scheme given in section 3,

since the high index subdomain Ω22 is surrounded by the low index subdomain Ω21 in the

horizontal directions. After the modified NtD maps of Ω21 and Ω22 are calculated, we can

eliminate the vertical and top boundaries of Ω22 and obtain the modified NtD map of Ω2.

More precisely, let the boundaries of Ω21 and Ω22 be Σ0∪Σ1 and Σ0∪Σ2, respectively, where

Σ0 is the common boundary of these two subdomains, i.e., the top and vertical sides of Ω22.
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Fig. 2. Three dielectric diffraction gratings.
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For in-plane diffraction problems, the modifed NtD maps of Ω21 and Ω22 provide relations

between u|Σ0
, u|Σ1

, u|Σ2
, ϕ|±Σ0

, ϕ|Σ1
and ϕ|Σ2

, where ϕ|Σ1
and ϕ|+Σ0

are one-sided limits of ϕ

from Ω21, and ϕ|Σ2
and ϕ|−Σ0

are one-sided limits of ϕ from Ω22. Using these relations and the

interface condition on Σ0, we can eliminate u|Σ0
and ϕ|±Σ0

, and obtain a relation between u|Σ1
,

u|Σ2
, ϕ|Σ1

and ϕ|Σ2
. This leads to the modified NtD map of Ω2, since the boundary of Ω2 is

Σ1∪Σ2. For the conical diffraction case, the procedure is similar, but the interface condition

(17) is vectorial, thus the modified NtD map of Ω2 relate ϕ|Σ1
and ϕ|Σ2

with u|Σ1
and u|Σ2

.

The boundaries of Ω21, Ω22 and Ω1 consist of 8, 4 and 6 smooth segments, respectively. Using

p = 7 and N = 160, where p is a parameter used in the graded mesh transform w and N

is the number of points on each smooth segment of the boundaries, we obtain an accurate

solution T1 = 0.5105923632003. This result is consistent with previous calculations in [14,17].

If 499 terms are retained in the Fourier series, the standard FMM gives T1 = 0.510596 [17].

Since the exact value of T1 is not known, we compare the numerical solutions for different

p and different N . Using the above value of T1 as the reference solution, we calculate the

absolute error for other approximate values of T1 obtained using smaller values of p and N .

The results are shown in Fig. 3 in a logarithmic scale, where the horizontal axis is 1/N and

Fig. 3. Example 1: absolute error vs. 1/N for the diffraction efficiency of the

first transmitted order.

the vertical axis is the absolute error. Apparently, as N is increased, the numerical solutions

converge and the exact value of T1 is very close to our reference solution above. For each

fixed p, the slopes of the curves connecting the solutions for different N give the order of
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accuracy of our method. It is clear that the order increases as p is increased. The exact value

of the order is unknown. It appears that the order depends on the solution, especially, its

behavior near the corners. A high order method is obtained, if we simply use a large p to

define the graded mesh transform s = w(t). However, if p is too large, the method becomes

numerically unstable. Furthermore, for a fixed and relatively small N , the method may give

less accurate solutions for larger p.

The second example is the dielectric lamellar grating shown in Fig. 2(b), where the pe-

riod, the ridge width and the groove depth are L = 1µm, W = 0.5µm and d = 0.5µm,

respectively, and the dielectric constants are ε(1) = 1 and ε(2) = 2.25 respectively. This prob-

lem was previously analyzed by an analytic modal method [10] and a BIE method [27].

We consider an incident wave with a free space wavelength λ = 0.5µm and a wave

vector (α0,−β(1)
0 , γ0) = k0(0.5,−

√
0.5, 0.5). The vector coefficient of the incident wave

u(i) = [H(i)
x , H(i)

y ]T is (−
√
0.5 + 0.5i,

√
0.5i)T . To use the BIE-NtD method, we consider

one period of the grating S and its two subdomains Ω1 and Ω2 as in Fig. 2(b). Both ∂Ω1

and ∂Ω2 have 8 smooth segments. Using p = 7 and N = 160, we obtain a reference solution

T1 = 0.37826780866, where T1 is the diffraction efficiency of the first transmitted order. This

agrees with the previous results T1 = 0.37827 given in [10] and T1 = 0.3783 given in [27].

In Fig. 4. we show the absolute error vs. 1/N for other numerical solutions obtained with

Fig. 4. Example 2: absolute error vs. 1/N for the diffraction efficiency of the

first transmitted order.

smaller values of p and N . As before, the results are shown in a logarithmic scale and the
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slopes of the curves indicate the order of the method.

The last example is a dielectric echelette grating as shown in Fig. 2(c). The dielec-

tric constants of the top and bottom media are ε(1) = 1 and ε(2) = 4, respectively.

The period and the blaze angle of the echelette grating are L = 1µm and 30◦, respec-

tively. The incident wave has a free space wavelength λ = 0.5µm and a wave vector

(α0,−β(1)
0 , γ0) = k0(sin 50

◦ cos 270◦, sin 50◦ sin 270◦, cos 50◦). The coefficient of the incident

wave u(i) is (− sin 270◦, cos 270◦)T . To use the BIE-NtD method, we choose the domain S

and its two subdomains Ω1 and Ω2 as shown in Fig. 2(c). The boundary of each subdomain

has 5 smooth segments. Using p = 8 and N = 184, we obtain T1 = 0.55731295476. The

absolute errors of numerical solutions obtained with smaller values of p and N are shown in

Fig. 5. The results again indicate high order of accuracy of our method for large p.

Fig. 5. Example 3: absolute error vs. 1/N for the diffraction efficiency of the

first transmitted order.

8. Conclusion

In this paper, a high order BIE method for analyzing in-plane and conical diffraction prob-

lems of gratings is presented. The method is an improved version of the BIE-NtD method

developed in earlier works [30,31]. The improvements include a modified NtD map for better

numerical stability, a more accurate discretization for the boundary conditions connecting

the top and bottom homogeneous regions, a new operator marching scheme using Hx and

Hy, and an accurate method for computing tangential derivatives along material interfaces.
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Note that the last two improvements are only applicable to conical diffractions. Numerical

examples indicate that our improved BIE-NtD method achieves a high order of accuracy.

The order depends on a parameter p used to specify the graded mesh and it may also depend

on the solution and in particular the behavior of the electromagnetic field at the corners.
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