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Efficient Boundary Integral Equation Method for
Photonic Crystal Fibers

Wangtao Lu and Ya Yan Lu

Abstract—Photonic crystal fibers (PCFs) with many air holes
and complicated geometries can be difficult to analyze using
conventional waveguide mode solvers such as the finite element
method. Boundary integral equation (BIE) methods are suitable
for PCFs, since they formulate eigenvalue problems only on the
interfaces and are capable of computing leaky modes accurately.
To improve the efficiency, it is desirable to have high order
BIE methods that calculate the minimum number of functions
on the interfaces. Existing BIE methods calculate two or four
functions on the interfaces, but high order implementations are
only available for those with four functions. In this paper, a
new high order BIE method is developed and it calculates two
functions on the interfaces. Numerical results indicate that the
new BIE method achieves exponential convergence and extremely
high accuracy.

I. I NTRODUCTION

PHOTONIC crystal fibers (PCFs) [1] have been extensively
investigated because of their unique optical properties.

The propagation of light in a PCF is strongly controlled
by the geometry of its cross section. To design PCFs for
various applications, fast and accurate numerical simulations
are needed. Although many numerical methods are available,
accurate analysis of light propagation in PCFs with large
number of holes or complicated geometries remains quite
difficult.

As a special class of optical waveguides, PCFs can be
analyzed by existing numerical methods for optical waveg-
uides, such as the finite difference method [2]–[4], the finite
element method (FEM) [5]–[10], the multidomain pseudospec-
tral method [11]–[13], the boundary integral equation (BIE)
method [14]–[21], etc. Numerical methods that discretize the
cross sections of PCFs, such as the FEM, give rise to linear
matrix eigenvalue problems. However, if the PCF has many
holes and complicated geometries, the size of the matrices can
be very large and the matrix eigenvalue problem is expensive
to solve. Furthermore, PCFs often have leaky modes. The
electromagnetic field of a leaky mode exhibits outgoing wave
behavior away from the waveguide core. Standard numerical
methods must truncate the cross sections with proper absorb-
ing boundary conditions, such as the perfectly matched layer
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(PML). To accurately calculate the small imaginary part of
the complex propagation constantβ of a leaky mode, the
parameters of the PML must be carefully tuned.

The BIE method and the multipole method [22]–[28] give
rise to a nonlinear eigenvalue problem

F (β)φ = 0, (1)

where the matrixF depends onβ nonlinearly, but the size
of F is much smaller. The multipole method is most suitable
for PCFs with well-separated and circular air holes, it is less
effective if the holes are close to each other, or the holes are
non-circular, and if there are too many holes. The BIE method
has been applied to study some complicated PCFs [16], [19],
[20]. It can easily find leaky modes, since the outgoing
radiation condition is automatically satisfied. Compared with
the matrices in numerical methods that discretize the cross
sections, the size of the matrixF is much smaller, sinceφ
represents a few functions defined on the material interfaces
only, but it still can be very significant if the PCF has many air
holes and complicated geometries. To reduce the size of matrix
F , a high order BIE method that uses the smallest number of
functions on the material interfaces is desired. Existing high
order BIE methods [15], [19], [20] solve four functions on the
interfaces. BIE formulations that solve two functions on the
interfaces exist [14], [16], but they do not have a high order
of accuracy.

In this paper, we develop an efficient high order BIE method
that solves two functions (the transverse components of the
magnetic field) on the material interfaces. The key step is to
use the kernel-splitting technique for discretizing the hyper-
singular boundary integral operators [29]. Numerical results
indicate that our method achieves exponential convergenceand
extremely high accuracy.

II. PROBLEM FORMULATION

We consider a PCF shown schematically in Fig. 1. It
has az-independent and piecewise constant refractive index
function n(x, y), where {x, y, z} is a Cartesian coordinate
system, thez-axis is the axis of the fiber, and thexy-plane
is its cross section. The PCF consists of a finite number
l∗ of homogeneous inclusions embedded in a homogeneous
background material. The cross sections of these homogeneous
inclusions are the domainsΩl, 1 ≤ l ≤ l∗, in the xy-plane,
and their exterior is the infinite domainΩ0. The boundaries
of these domains, denoted as∂Ωl, are assumed to be smooth.
The refractive indices of the inclusions and the background
material arenc andng, respectively. For simplicity, we assume
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Fig. 1. Schematic of a PCF cross section.

all inclusions have the same refractive index, but our method is
applicable to the more general case where different inclusions
may have different indices.

Assuming the time dependence isexp(−iωt) whereω is the
angular frequency, a propagating mode of a PCF is a special
solution of the Maxwell’s equations with thez dependence
exp(iβz), whereβ is the propagation constant. If the mode
is leaky, thenβ is complex, its electromagnetic field exhibits
outgoing wave behavior as|r| =

√

x2 + y2 → ∞, and the
imaginary part ofβ measures the attenuation of the mode
along the fiber.

In each homogeneous domainΩl, 0 ≤ l ≤ l∗, every
component of the electromagnetic field of the mode satisfies
the following Helmholtz equation

∂2xu+ ∂2yu+ γ2u = 0, (2)

whereγ2 = k20n
2 − β2 andk0 is the free space wavenumber.

We formulate a nonlinear eigenvalue problem (1) whereφ
consists ofHx andHy (transverse components of the magnetic
field) on the interfaces, i.e. the boundaries ofΩl for 1 ≤ l ≤ l∗,
or ∪l∗

l=1∂Ωl. To establish Eq. (1), we need to impose the
conditions thatEz andHz are continuous across the interfaces.
Using the zero divergence property of the magnetic field, the
condition onHz leads to the continuity of∂νHν (normal
derivative of the normal component of the magnetic field),
whereν = (νx, νy) is a unit normal vector of∂Ωl directed into
the exterior homogeneous domain. The Maxwell’s equations
give usik0n2Ez = ∂yHx−∂xHy. The partial derivatives with
respect tox and y can be written as linear combinations of
the normal and tangential derivatives. Therefore

[

ik0Ez

∂νHν

]

= M

[

Hx

Hy

]

(3)

where

M =

[

1
n2 (νy∂ν + νx∂τ )

1
n2 (νy∂τ − νx∂ν)

νx∂ν νy∂ν

]

. (4)

In the above,τ = (−νy, νx) is the unit tangential vector along
∂Ωl and∂τ is the tangential derivative operator.

Clearly, in order to satisfy the continuity conditions on
∂Ωl, we need to match the inside and outside limits of the
right hand side of (3) on∂Ωl. This implies that we need
to express∂νH±

x , ∂νH±
y , ∂τHx and ∂τHy in terms ofHx

andHy on the interfaces. The tangential derivative is a local
operator defined on∂Ωl and it can be approximated by a

differentiation matrix. The normal derivatives ofHx andHy

are not continuous across∂Ωl. For the inside limit of the
normal derivative, we need to consider the Helmholtz equation
(2) inΩl, whereu is eitherHx orHy, and find an operator (the
Dirichlet-to-Neumann (DtN) map)Λl, such thatΛlu = ∂νu

−

on ∂Ωl. For the outside limit of the normal derivative, we
need to find the DtN mapΛ0 such thatΛ0u = ∂νu

+ on
∂Ω0 = ∪l∗

l=1∂Ωl whereu satisfies Eq. (2) inΩ0. With the
differentiation matrices for∂τ and the DtN maps, we can
establish the nonlinear eigenvalue problem (1). In the next
two sections, we present a high order method for computing
the DtN maps by a BIE with a hypersingular integral operator.

III. I NTERIOR DTN MAP

In a bounded domainΩl, 1 ≤ l ≤ l∗, with a smooth
boundary∂Ωl, a functionu satisfying the Helmholtz equation
(2) has the following Green’s representation formula:

u(r) =

∫

∂Ωl

[

G(r, r̃)∂νu(r̃)−
∂G(r, r̃)

∂ν(r̃)
u(r̃)

]

ds(r̃) (5)

for r ∈ Ωl, whereν is an outward normal vector of∂Ωl, G
is the Green’s function of Eq. (2), i.e.,

G(r, r̃) =
i

4
H

(1)
0 (γ|r − r̃|), r 6= r̃, (6)

H
(1)
0 is the zeroth order Hankel function of the first kind,

r = (x, y) andr̃ = (x̃, ỹ). Taking a limit forr to the boundary
∂Ωl, we obtain a BIE

(1 +K)u = S∂νu on ∂Ωl, (7)

whereS andK are boundary integral operators defined as

(Sψ)(r) = 2

∫

∂Ωl

G(r, r̃)ψ(r̃)ds(r̃), r ∈ ∂Ωl,

(Kψ)(r) = 2

∫

∂Ωl

∂G(r, r̃)

∂ν(r̃)
ψ(r̃)ds(r̃), r ∈ ∂Ωl.

Taking a normal derivative of Eq. (5) and then a limit to the
boundary, we get another BIE

(1−K′)∂νu = −T u on ∂Ωl, (8)

whereK′ andT satisfy

(K′ψ)(r) = 2

∫

∂Ωl

∂G(r, r̃)

∂ν(r)
ψ(r̃)ds(r̃), r ∈ ∂Ωl,

(T ψ)(r) = 2

∫

∂Ωl

∂2G(r, r̃)

∂ν(r)∂ν(r̃)
ψ(r̃)ds(r̃), r ∈ ∂Ωl.

The boundary integral operatorsS, K andK′ are compact
operators with eigenvalues accumulating at zero [30]. When
discretized, these operators are approximated by near singular
matrices. Therefore, it is numerically unstable to calculate
the DtN map byΛl = S−1(1 + K). Except whenK′ has
an eigenvalue exactly equal to 1, the operator1 − K′ has
a bounded inverse and we can calculate the DtN map by
Λl = −(1−K′)−1T . However,T is a hypersingular operator
[30] and it is more difficult to approximate. Fortunately, when
∂Ωl is smooth, an accurate discretization ofT was developed
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by Kress [29] based on a Nyström method and a kernel-
splitting technique. In the following, we apply the method of
Kress to discretize Eq. (8) and find the DtN map.

Assuming∂Ωl has a parametric representation

r(t) = [x(t), y(t)], 0 ≤ t ≤ 2π, (9)

where t increases in the counterclockwise direction of∂Ωl,
x(t) andy(t) are analytic and2π-periodic functions oft, and
|r′(t)| > 0 for all t, then the operatorsK′ and T can be
written as

(K′∂νu)(r(t)) =

∫ 2π

0

|r′(t̃)|

|r′(t)|
P (t, t̃)∂νu(r(t̃))dt̃, (10)

(T u)(r(t)) =
1

|r′(t)|

∫ 2π

0

{

1

2π
cot

t̃− t

2
u′(r(t̃))

−Q(t, t̃)u(r(t̃))

}

dt̃ (11)

whereP and Q are given in the appendix,u′(r(t)) is the
t-derivative ofu(r(t)). Thus, Eq. (8) can be written as

|r′(t)|∂νu(r(t))−

∫ 2π

0

P (t, t̃)|r′(t̃)|∂νu(r(t̃))dt̃ =

∫ 2π

0

[

Q(t, t̃)u(r(t̃))−
1

2π
cot

t̃− t

2
u′(r(t̃))

]

dt̃. (12)

To discretize the above equation, we first split out the loga-
rithmic singularities in the kernels as

P (t, t̃) = P1(t, t̃)L(t, t̃) + P2(t, t̃),

Q(t, t̃) = Q1(t, t̃)L(t, t̃) +Q2(t, t̃),

where

L(t, t̃) = log

(

4 sin2
t− t̃

2

)

, (13)

P1, P2,Q1 andQ2 are smooth functions given in the appendix,
then use quadrature formulas based on a uniform discretization
in t. Letψ be an analytic and2π-periodic function oft, and for
a positive even integerNl and tj = 2πj/Nl for 0 ≤ j < Nl,
we have the following three quadrature formulas [29]:

∫ 2π

0

ψ(t̃)dt̃ ≈
2π

Nl

Nl−1
∑

j=0

ψ(tj),

∫ 2π

0

ψ(t̃)L(t, t̃)dt̃ ≈

Nl−1
∑

j=0

Rj(t)ψ(tj),

1

2π

∫ 2π

0

cot
t̃− t

2
ψ′(t̃)dt̃ ≈

Nl−1
∑

j=0

Tj(t)ψ(tj),

where

Rj(t) = −
4π

N2
l





Nl/2−1
∑

m=1

2

m
cosm(t− tj) + cos

Nl(t− tj)

2



 ,

Tj(t) = −
1

Nl





Nl/2−1
∑

m=1

2m cosm(t− tj) + cos
Nl(t− tj)

2



 .

The first formula is simply the trapezoidal rule. The other two
formulas can be derived from a trigonometric interpolationof
ψ(t):

ψ(t) ≈

Nl−1
∑

j=0





1

Nl

Nl/2−1
∑

k=−Nl/2

eik(t−tj)



ψ(tj). (14)

Approximating the integrals in Eq. (12) by the quadrature
formulas and collocatingt at tj for 0 ≤ j < Nl, we obtain a
linear system that can be solved to give a matrixΛl such that

∂νu = Λlu, (15)

where∂νu andu denote the column vectors of∂νu(r(tj))
andu(r(tj)) for 0 ≤ j < Nl.

IV. EXTERIOR DTN MAP

For the exterior homogeneous domainΩ0, u and∂νu satisfy

(1 +K′)∂νu = T u on ∂Ω0, (16)

where the integral operatorsK′ andT are now defined onl∗
closed curves as

(K′ψ)(r) = 2

l∗
∑

l=1

∫

∂Ωl

∂G(r, r̃)

∂ν(r)
ψ(r̃)ds(r̃), (17)

(T ψ)(r) = 2

l∗
∑

l=1

∫

∂Ωl

∂2G(r, r̃)

∂ν(r)∂ν(r̃)
ψ(r̃)ds(r̃), (18)

for r ∈ ∂Ω0. We take the integration along∂Ω1 for any point
r0 ∈ ∂Ω0 to illustrate the basic ideas for discretizingK′ and
T . Assuming∂Ω1 = {r(t) | 0 ≤ t ≤ 2π} is discretized by
N1 points corresponding to{tj = 2πj/N1}

N1−1
j=0 , we need to

evaluate the integral

g(r0) =

∫ 2π

0

Φ(r0, t)ψ(t)|r
′(t)|dt, (19)

whereψ(t) denotesψ(r(t)), and

Φ(r0, t) =
∂G(r0, r(t))

∂ν(r0)
or

Φ(r0, t) =
∂2G(r0, r(t))

∂ν(r0)∂ν(r)
.

We distinguish three cases. The first case is whenr0 ∈ ∂Ω1,
the integration kernels are singular atr(t) = r0. We can use
the discretization process described in the previous section.
If r0 /∈ ∂Ω1, then the distance betweenr0 and ∂Ω1, de-
noted by dist(r0, ∂Ω1), is positive. The second case is when
dist(r0, ∂Ω1) is larger than some constantc > 0. As an
empirical rule, we takec = λ in our numerical examples,
whereλ is the free space wavelength. In that case, a simple
trapezoidal rule can be applied to discretize (19), that is,

g(r0) ≈
2π

N1

N1−1
∑

j=0

Φ(r0, tj)ψ(tj)|r
′(tj)|. (20)

The last case is when dist(r0, ∂Ω1) ≤ c. The trapezoidal rule
(20) is no longer accurate. We follow the method described in
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[20]. Substituting the trigonometric interpolation ofψ(t), i.e.,
Eq. (14), into (19), we get

g(r0) ≈
1

N1

N1−1
∑

j=0

N1/2−1
∑

k=−N1/2

e−iktjgk(r0)ψ(tj),

where

gk(r0) =

∫ 2π

0

Φ(r0, t)e
ikt|r′(t)|dt, (21)

for −N1/2 ≤ k < N1/2. We still approximate (21) by the
trapezoidal rule, but use a larger number of points fort and
the Fast Fourier Transform (FFT) to speed up the evaluation.

Therefore, using the above procedure, we can discretizeK′

andT , and obtain a matrixΛ0 such that

∂νu = Λ0u, (22)

whereu and ∂νu denote column vectors of lengthNall =
∑l∗

l=1Nl for u and∂νu on ∂Ω0.

V. EQUATION FORβ

Using the DtN mapsΛl (1 ≤ l ≤ l∗) andΛ0, we are able
to express∂νH−

x , ∂νH−
y and ∂νH+

x , ∂νH+
y in terms ofHx

andHy on the interfaces. The interface conditions given in
(3) also require the evaluation of tangential derivatives along
∂Ωl. For a smooth functionψ(r) given on the boundary∂Ωl,
we use the trigonometric interpolation ofψ(t) = ψ(r(t)) as
given in (14) to approximate the derivative with respect tot.
That is

ψ′(t) ≈

Nl−1
∑

j=0





i

Nl

Nl/2−1
∑

k=−Nl/2

keik(t−tj)



ψ(tj). (23)

Evaluating the above at{t0, t1, ..., tNl−1} and using the rela-
tion ψ′(t) = |r′(t)|∂τφ(r(t)), we can find the differentiation
matrix Dl, such that

∂τψ = Dlψ, (24)

where ∂τψ and ψ are column vectors of lengthNl for
∂τψ(r(t)) andψ(r(t)) at theNl points. Using the DtN maps
and the differentiation matrices, we can match the right hand
side of (3) from inside and outsideΩl, 1 ≤ l ≤ l∗, and
establish the nonlinear eigenvalue problem (1), whereF (β)
is a (2Nall)× (2Nall) matrix andNall is the total number of
discretization points on all interfaces.

A mode of the PCF corresponds to a value ofβ for
which the matrixF (β) is singular. A common measure of
the singularity is the determinant ofF (β), but it is not always
reliable. Other measures include the smallest eigenvalue (in
magnitude) and the smallest singular value, but they are
relatively expensive to calculate. As in [19], we solveβ from
the equation

f(β) =
1

aTF−1(β)b
= 0 (25)

using Müller’s method, wherea andb are two fixed random
column vectors. In each iteration, we need to findw =
F−1(β)b by solving the linear systemF (β)w = b.

VI. N UMERICAL EXAMPLES

In this section, we illustrate our method by a few examples.
For the two simple examples shown in Fig. 2, we perform

Fig. 2. Two simple PCFs: (a) six circular holes, parameters:diameterd =

5µm, pitch Γ = 6.75 µm; (b) six elliptic holes, parameter: major axisa =

5µm, minor axisb = 3µm, pitch Γ = 6.75µm. The medium surrounding
the holes is infinite.

numerical convergence tests and accuracy comparisons. The
first example is a PCF with six circular air holes as shown in
Fig. 2(a), and it has been analyzed by a number of authors [13],
[19], [20]. The PCF consists of a single ring of six circular
holes with diametersd = 5µm symmetrically arranged around
the core with a pitchΓ = 6.75µm. The refractive indices of
the glass matrix and the air hole areng = 1.45 andnc = 1,
respectively. The free space wavelength for this example is
λ = 1.45µm. Using80 points on the boundary of each hole,
we obtain an accurate solutionβ/k0 = 1.4453952321493+
3.194529E−8i for the fundamental mode of this PCF. Our
result agrees well with the result of Chianget al. [13] (β/k0 =
1.44539525694857 + 3.194695E−8i), the result of Whiteet
al. [26] (β/k0 = 1.445395345 + 3.15E−8i) and the result of
Chenget al. [19] (β/k0 = 1.445395232+3.1945E−8i). Using
our solution above as a reference, we calculate the absolute
errors in the real and imaginary parts ofβ/k0 for the numerical
solutions computed with a smaller number of discretization
points. The results are shown in Fig. 3. The errors decrease
exponentially from 30 to 50 points on each boundary, and
they turn over to round off errors when the number of points
is more than 50.

The second example, as shown in Fig. 2(b), has six el-
liptic air holes with major axisa = 5µm and minor axis
b = 3µm. The other parameters are identical to the first
example. We calculate its fundamental mode using 80 dis-
cretization points on the boundary of each hole. Our result is
β/k0 = 1.44642907238417+ 2.9898269E−6i, and it agrees
very well with the result of Poneet al. [20] (β/k0 =
1.446429072+2.9898E−6i) and the result of Campbellet al.
[28] (β/k0 = 1.446427235+2.9601E−6i). Using our solution
above as a reference, we calculate absolute errors for other
numerical solutions and plot the convergence curves in Fig.4.
Once again, an exponential convergence is observed.

The third example is a PCF with six cookie-shaped air holes
as shown in Fig. 5. For1 ≤ j ≤ 6, the boundary of thejth
hole is given by

r(t) = [xj −p(t) cos(t), yj −p(t) sin(t)], 0 ≤ t ≤ 2π, (26)
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Fig. 3. Convergence curves for the fundamental mode of the PCF in Fig. 2(a).

Fig. 4. Convergence curves for the fundamental mode of the PCF in Fig. 2(b).

wherercj = (xj , yj) is the center of thejth hole, and

p(t) = 2.5 + 0.15 sin(7t). (27)

The other parameters, i.e.,Γ, ng, nc and λ, are identical to
the first two examples. This PCF was previously analyzed by
Chenget al. [19]. We calculate the two fundamental modes
for this PCF. The numerical results are listed in Tabel I
and Table II, whereN denotes the number of discretization
points on the boundary of each hole. The results reported in
[19] are β/k0 = 1.445343940 + 2.5019E−8i and β/k0 =
1.445343873 + 2.5056E−8i for the first and second modes,
respectively. The agreement is excellent.

The fourth and fifth examples are more complex PCFs

Fig. 5. A PCF with six cookie-shaped air holes whereΓ = 6.75µm.

N β/k0
70 1.4453434192003 + 2.59021E−8i
80 1.4453439283812 + 2.48475E−8i
90 1.4453439401195 + 2.49990E−8i
100 1.4453439397734 + 2.50177E−8i
110 1.4453439395692 + 2.50183E−8i
120 1.4453439395666 + 2.50182E−8i

TABLE I
EXAMPLE 3: NUMERICAL SOLUTIONS OFβ/k0 FOR THE FIRST

FUNDAMENTAL MODE .

shown in Fig. 6 and they have been previously analyzed by

Fig. 6. Two complex PCFs: (a) hollow core PCF with five rings ofcircular
holes, parameters: pitchΓ = 2.74µm, hole diameterd = 0.95Γ, core
diameterdc = 2.5d. (b) elliptic hollow core PCF with three layers of circular
holes, parameters: pitchΓ = 2µm, hole diameterd = 0.9Γ, core principle
axesa = 2.3µm and b = 4.6µm. The medium surrounding the holes is
infinite.

Poneet al. [20]. The fourth example shown in Fig.6(a) is a
PCF consisting of five rings of circular holes arranged on a
hexagonal lattice and surrounding a hollow core formed by the
two missing rings in the fiber center. The pitch isΓ = 2.74µm,
the diameter of the small holes isd = 0.95Γ, and the diameter

N β/k0
70 1.4453433575038 + 2.59745E−8i
80 1.4453438625539 + 2.48831E−8i
90 1.4453438734906 + 2.50366E−8i
100 1.4453438731792 + 2.50554E−8i
110 1.4453438729300 + 2.50558E−8i
120 1.4453438729292 + 2.50558E−8i

TABLE II
EXAMPLE 3: NUMERICAL SOLUTIONS OFβ/k0 FOR THE SECOND

FUNDAMENTAL MODE .
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of the core isdc = 2.5d. Overall, there are 120 small holes
and one big hole (the hollow core). The refractive indices
of the glass matrix and the air hole areng = 1.45 and
nc = 1, respectively. We calculate the fundamental mode
of this PCF for free space wavelengthλ = 1.51µm. The
results are listed in Table III. The integers in the first and

N1 N2 β/k0
100 34 0.984516001097 + 3.41090E−8i
120 40 0.984516001952 + 3.41151E−8i
120 42 0.984516001485 + 3.41155E−8i
120 46 0.984516000680 + 3.41147E−8i
120 50 0.984516000835 + 3.41133E−8i
120 60 0.984516000835 + 3.41147E−8i

TABLE III
EXAMPLE 4: SEVERAL VALUES OFβ/k0 FOR DIFFERENT NUMBER OF

DISCRETIZATION POINTS.

second columns represent the numbers of the discretization
points for the big hole and the smaller holes, respectively.
Our results agree well with the result of Poneet al. [20]
(β/k0 = 0.98451599741954+3.434721E−8i). It appears that
our solution in the first row of Table III is more accurate than
that of Poneet al. [20]. In that case, the size of matrixF is
(34× 120+100)× 2 = 8360 and it is smaller than the matrix
size12544 used in [20].

Finally, we consider the PCF shown in Fig.6(b). It consists
of three layers of circular holes arranged on a hexagonal
lattice. The four missing holes at the center of the fiber
are replaced by a central elliptic core. The hole pitch is
Γ = 2µm, the hole diameter isd = 0.9Γ, the minor and
major axes of the elliptic core area = 2.3µm andb = 4.6µm,
respectively. The refractive indices of the glass matrix and the
air hole areng = 1.45 and nc = 1. We calculate the two
fundamental modes (thex and y polarizations, respectively)
for free space wavelengthλ = 1.42µm. The results are
shown in Table IV and Table V. The first and second

N1 N2 β/k0
120 40 0.9390335473927 + 6.741806549E−4i
120 44 0.9390335474024 + 6.741806722E−4i
120 50 0.9390335474106 + 6.741806729E−4i
120 60 0.9390335474115 + 6.741806730E−4i

TABLE IV
EXAMPLE 5: SEVERAL VALUES OFβ/k0 FOR THEx POLARIZATION AND

FOR DIFFERENT NUMBER OF DISCRETIZATION POINTS.

N1 N2 β/k0
150 40 0.9381625149831 + 2.213306320E−3i
150 44 0.9381625147761 + 2.213306371E−3i
150 50 0.9381625147583 + 2.213306378E−3i
150 60 0.9381625147578 + 2.213306378E−3i

TABLE V
EXAMPLE 5: SEVERAL VALUES OFβ/k0 FOR THEy POLARIZATION AND

FOR DIFFERENT NUMBER OF DISCRETIZATION POINTS.

columns are the numbers of points used for the elliptic core
and the circular holes, respectively. Compared with the two
results given in [20] (β/k0 = 0.93903355 + 6.7418E−4i

and β/k0 = 0.93816250 + 2.2133E−3i for the x and y
polarizations, respectively), it is clear that our solutions are
more accurate.

VII. C ONCLUSION

A new high order BIE mode solver is developed for PCFs
with smooth interfaces. The method achieves exponential
convergence, solves two functions on the interfaces and is
more efficient than existing BIE methods [14]–[16], [19],
[20]. Existing high order BIE methods [15], [19], [20] solve
four functions on the interfaces. On the other hand, existing
BIE methods that solve two functions on the interfaces have
only low-order implementations. Our high order BIE method
relies on the Nyström method and kernel-splitting technique
developed by Kress [29] for discretizing hypersingular integral
operators. Very accurate solutions are obtained for some rather
complicated PCFs. Numerical results also indicate that the
errors decrease exponentially with the number of points used.

APPENDIX

The kernel functionsP andQ are given by

P (t, t̃) =
iγρ(t, t̃)

2d(t, t̃)
H

(1)
1 (γd(t, t̃)), (28)

Q(t, t̃) = N(t, t̃)− γ2M(t, t̃)n(t) · n(t̃), (29)

where

n(t) = |r′(t)| ν(r(t)),

d(t, t̃) = |r(t)− r(t̃)|,

ρ(t, t̃) = n(t) · [r(t̃)− r(t)],

M(t, t̃) =
i

2
H

(1)
0 (γd(t, t̃)),

N(t, t̃) =
1

2π

∂2

∂t∂t̃

{

iπH
(1)
0 (γd(t, t̃)) + L(t, t̃)

}

and L(t, t̃) is given in (13). The logarithmic singularity is
spitted as follows

P (t, t̃) = P1(t, t̃)L(t, t̃) + P2(t, t̃), (30)

M(t, t̃) = M1(t, t̃)L(t, t̃) +M2(t, t̃), (31)

N(t, t̃) = N1(t, t̃)L(t, t̃) +N2(t, t̃), (32)

where

P1(t, t̃) = −
γρ(t, t̃)

2πd(t, t̃)
J1(γd(t, t̃)),

M1(t, t̃) = −
1

2π
J0(γd(t, t̃)),

N1(t, t̃) = −
1

2π

∂2

∂t∂t̃
J0(γd(t, t̃)).
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The functionsP2,M2 andN2 can be evaluated using (30)-(32)
except whent = t̃. In that case,

P2(t, t) =
1

2π

n(t) · r′′(t)

|r′(t)|2
,

M2(t, t) =
i

2
−
C

π
−

1

π
ln
γ|r′(t)|

2
,

N2(t, t) =

(

πi − 1− 2C − 2 ln
γ|r′(t)|

2

)

γ2|r′(t)|2

4π
+

1

12π
+

[r′(t) · r′′(t)]2

2π|r′(t)|4
−

|r′′(t)|2

4π|r′(t)|2
−
r′(t) · r′′′(t)

6π|r′(t)|2
,

whereC = 0.57721 · · · is the Euler’s constant. The splitting
for Q follows the splittings forM andN .
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