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Abstract—Photonic crystal fibers (PCFs) with many air holes (PML). To accurately calculate the small imaginary part of
and compllcated geometries can be difficult to anglyze using the complex propagation constagt of a leaky mode, the
conventional waveguide mode solvers such as the finite elente parameters of the PML must be carefully tuned.

method. Boundary integral equation (BIE) methods are suitéle . .
for PCFs, since they formulate eigenvalue problems only onhe 1 he BIE method and the multipole method [22]-[28] give

interfaces and are capable of computing leaky modes accuraly. 'iSe to a nonlinear eigenvalue problem

To improve the efficiency, it is desirable to have high order

BIE methods that calculate the minimum number of functions F(B)¢p =0, (1)

on the interfaces. Existing BIE methods calculate two or fou . . .
functions on the interfaces, but high order implementatiors are Where the matrix/” depends on3 nonlinearly, but the size
only available for those with four functions. In this paper, a of F'is much smaller. The multipole method is most suitable

new high order BIE method is developed and it calculates two for PCFs with well-separated and circular air holes, it &sle
functions on the interfaces. Numerical results indicate tht the  offactive if the holes are close to each other. or the holes ar
new BIE method achieves exponential convergence and extrefy . . ’
high accuracy. non-circular, and if there are too many holes. The BIE method
has been applied to study some complicated PCFs [16], [19],
[20]. It can easily find leaky modes, since the outgoing
. INTRODUCTION radiation condition is automatically satisfied. Comparathw

HOTONIC crystal fibers (PCFs) [1] have been extensiveN]'e matrices in_ numerical me_tho_ds that discretize _the cross
Pinvestigated because of their unique optical propertie¥ctions, the size of the matrik is much smaller, since
The propagation of light in a PCF is strongly controllefi€Presents a few functions .def.med on the material mtesfage
by the geometry of its cross section. To design PCFs fBRly, butitstill can be very significant if the PCF has many ai
various applications, fast and accurate numerical siriauiat holes gnd complicated geometries. To reduce the size obxmatr
are needed. Although many numerical methods are availabfe, high order BIE method that uses the smallest number of
accurate analysis of light propagation in PCFs with |ardé|nct|0ns on the material interfaces is desired. E_X|st|rgj1h
number of holes or complicated geometries remains qufgder BIE methods [15], [19], [20] solve four functions oreth
difficult. interfaces. BIE formulations that solve two functions oe th
As a special class of optical waveguides, PCFs can terfaces exist [14], [16], but they do not have a high order
analyzed by existing numerical methods for optical wave@f accuracy. o
uides, such as the finite difference method [2]-[4], thedinit N this paper, we develop an efficient high order BIE method
element method (FEM) [5]—[10], the multidomain pseudospeg‘at sol_ves_ two functions (th_e transverse components o_f the
tral method [11]-[13], the boundary integral equation (BIEMagnetic field) on.the materlgl mterfacgs. The_ key step is to
method [14]-[21], etc. Numerical methods that discretize t US€ the kemel-splitting technique for discretizing thepéry
cross sections of PCFs, such as the FEM, give rise to linédfpgular boundary integral operators [29]. Numerical Hssu

matrix eigenvalue problems. However, if the PCF has maffjdicate that our method achieves exponential convergemde
holes and complicated geometries, the size of the matraes £xtremely high accuracy.

be very large and the matrix eigenvalue problem is expensive
to solve. Furthermore, PCFs often have leaky modes. The Il. PROBLEM FORMULATION

electromagnetic field of a leaky mode exhibits outgoing Wave\na consider a PCE shown schematically in Fig. 1. It
behavior away from the waveguide core. Standard numeri;% o

. i s az-independent and piecewise constant refractive index
methods must truncate the cross sections with proper absq ction n(z, y), where {z,y,2} is a Cartesian coordinate

ing boundary conditions, such as the perfectly matchedlays%/stem’ thez-axis is the axis of the fiber, and they-plane
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o Y differentiation matrix. The normal derivatives &f, and H,
are not continuous acros¥?;. For the inside limit of the
X

v 20, normal derivative, we need to consider the Helmholtz equati

@ (2) in &, whereu is eitherH, or H,, and find an operator (the
N Dirichlet-to-Neumann (DtN) map}\;, such thatA;u = d,u~

0Q, 9 on 09);. For the outside limit of the normal derivative, we
ag@ @ need to find the DtN map\y such thatApu = 9,u™ on
s 20, 909 = Ul 00, whereu satisfies Eq. (2) if2. With the

differentiation matrices forw, and the DtN maps, we can

establish the nonlinear eigenvalue problem (1). In the next

two sections, we present a high order method for computing
Fig. 1. Schematic of a PCF cross section. the DtN maps by a BIE with a hypersingular integral operator.

all inclusions have the same refractive index, but our metso lIl. INTERIORDTN MAP

applicable to the more general case where different inmhssi  |n a bounded domaif);, 1 < [ < I,, with a smooth

may have different indices. boundaryd<);, a functionu satisfying the Helmholtz equation
Assuming the time dependencerigy(—iwt) wherew is the  (2) has the following Green'’s representation formula:

angular frequency, a propagating mode of a PCF is a special .

solution of the Maxwell's equations with the dependence u(r) = [G(r’rf)ayu(f) _ MU@‘) ds(7) (5)

exp(ifz), where is the propagation constant. If the mode oy ov(r)

is leaky, thens is complex, its electromagnetic field exhibitsor 1 ¢ ), wherer is an outward normal vector @19, G

outgoing wave behavior g = \/2*> +y*> — oo, and the s the Green’s function of Eq. (2), i.e.,
imaginary part of 3 measures the attenuation of the mode

along the fiber. Glr,#) = ~HP (y|r — 7)), = #7, (6)
In each homogeneous domafy, 0 < [ < [,, every 4
component of the electromagnetic field of the mode satisfi@pél) is the zeroth order Hankel function of the first kind,

the following Helmholtz equation r = (z,y) and# = (Z, 7). Taking a limit forr to the boundary
02u + 02u + ~2u = 0 ) 09, we obtain a BIE
T Yy Y
wherey? = k2n? — 32 andk, is the free space wavenumber. (1+K)yu=S80,u on 0y, (7)

we fprmulate a nonlinear eigenvalue problem (1) where whereS and K are boundary integral operators defined as
consists off,, andH,, (transverse components of the magnetic

field) on the interfaces, i.e. the boundarie$)ffor 1 <[ <,, S . -
. ; =2 G(r, d , € 0%y,

or Uﬁ;lan. To establish Eqg. (1), we need to impose the (S)(r) o, (r, F)p(F)ds(F), v !
conditions that®, andH, are continuous across the interfaces. oG(r,7) _ ~
Using the zero divergence property of the magnetic field, the (Ky)(r) = 2/ (7 P(r)ds(r), e oy

> L o, Ov(F)
condition on H, leads to the continuity ob, H, (normal ) o o
derivative of the normal component of the magnetic fieldjaking a normal derivative of Eq. (5) and then a limit to the
wherev = (v,,1,) is a unit normal vector of<; directed into Poundary, we get another BIE
the extgrlorQhomogeneous domain. The_ Maxvx_/ell’g equations (1-KNou=—Tu on O, ®)
give usikon’E, = 0,H, — 0, H,. The partial derivatives with
respect tor andy can be written as linear combinations ofvhereX’ and7 satisfy
the normal and tangential derivatives. Therefore

/ OG(r,7) . N
. /C1Z)r:2/ ————(7)ds(¥), r e oy,
o | =M 5 ] @ T e Ty O l
o ' (T)(r) =2 mw(f)ds(f) r € 0N
where =2 Joo, 0000 () ; I
1 1
M= [ p(yyiy(;_ v0r) ?(Vyifa_ ve0y) } . (4  The boundary integral operatofs K and K’ are compact
Oy yOv

operators with eigenvalues accumulating at zero [30]. When
In the abover = (—v,, v,) is the unit tangential vector alongdiscretized, these operators are approximated by neaulaing
09, and 9, is the tangential derivative operator. matrices. Therefore, it is numerically unstable to caltula
Clearly, in order to satisfy the continuity conditions orthe DtN map byA; = S~!(1 + K). Except whenk’ has
09, we need to match the inside and outside limits of then eigenvalue exactly equal to 1, the operator K’ has
right hand side of (3) ord();. This implies that we need a bounded inverse and we can calculate the DtN map by
to express@,,Hf, 8,,Hj, 0-H, and 0;H, in terms of H, A;=—(1 — K" ~1T. However,T is a hypersingular operator
and H, on the interfaces. The tangential derivative is a loc#80] and it is more difficult to approximate. Fortunately, evh
operator defined o®(); and it can be approximated by adf?; is smooth, an accurate discretizationjofwas developed



by Kress [29] based on a Nystrom method and a kerndlhe first formula is simply the trapezoidal rule. The otheo tw
splitting technique. In the following, we apply the methdd oformulas can be derived from a trigonometric interpolatidén

Kress to discretize Eq. (8) and find the DtN map.
Assumingodf?; has a parametric representation

r(t) = [=(t),y(1)], )

wheret increases in the counterclockwise directiondash;,
z(t) andy(t) are analytic an@=-periodic functions of, and

0<t<2r,

|»'(t)] > 0 for all ¢, then the operator&’ and 7 can be

written as
27 'T'/ n
(K’ayu)(r(t)):/o :TlgtilP(t,t)(?,,u(r(t))dt, (10)
1 T to,
Tur®) = o [ 5ot @)
_Q(t,au(r(a)}di (11)

where P and @ are given in the appendix/(r(t)) is the
t-derivative ofu(r(t)). Thus, Eq. (8) can be written as

|7 (£)|0uu(r(t)) —/0 7TP(t,t~)|r’(if)|8l,u(r(if))dt =

/0 ’ [Q(t,f)u(r(f))—%cott;tu’(r(f))} i (12)

To discretize the above equation, we first split out the loga-

rithmic singularities in the kernels as

where
(13)

Py, P», Q1 and@- are smooth functions given in the appendix,
then use quadrature formulas based on a uniform discrietizatw

in t. Let be an analytic anér-periodic function oft, and for
a positive even integeN; andt; = 2mj/N; for 0 < j < Ny,
we have the following three quadrature formulas [29]:

27 L o7 N;—1
Y(D)dE~ T D W(ty),
0 [
7=0
21 Ny —1
Y(E)L(t, t)dl ~ R;()¥(t;),
0 s
2 i_¢ Ni—1
/ n ~N .
- ; cot 5 Y (t)dt ~ j:ZO T; () (t;),
where
Ny /2-1
Ar 2 Nyt —t,)
Rj(t)*—N—? [ 7nZ:1 ECOSm(t—tj)‘FCOS#J] )

m=1

AL
T;(t) = —— Z 2mcosm(t — t;) + cos

Ni(t —t5)
— 5 |-

P(t):
N1 [ N2
COEDY {N > e“““—f“} uit).  (14)
=0 L ="nN,/2

Approximating the integrals in Eq. (12) by the quadrature
formulas and collocating at ¢; for 0 < j < N;, we obtain a

linear system that can be solved to give a mafrjxsuch that
o,u = Nu, (15)

where d,u and u denote the column vectors éf,u(r(t;))
andu(r(t;)) for 0 < j < N.

IV. EXTERIOR DTN MAP

For the exterior homogeneous dom&ig, « andd, u satisfy
(1+K"Noyu=Tu on 9, (16)

where the integral operatof§’ and 7 are now defined o,
closed curves as

3Grr

(K'o)(r) = 22 -, Tty @, an
l* 2G(r, T
T = 2 [ TETT s, (9

oY dv(r)ov(r)

for r € 0Qy. We take the integration alongf2; for any point
ro € 9 to illustrate the basic ideas for discretizikg and
T. AssumingdQ; = {r(t) | 0 <t < 2x} is discretized by
N points corresponding t¢t; = 27rj/N1}7 11, we need to
evaluate the integral

27
o(ro) = / B (o, 1) (8) | (1), (19)

here(t) denotesy(r(t)), and
P(ro,t) = 786;5;?;2)@ ) or
_ 0%G(ro,r(1))
(ro.1) = 5)1/(1“0;)61/(7')'

We distinguish three cases. The first case is whea 01,
the integration kernels are singulart) = ro. We can use
the discretization process described in the previous secti
If 7o ¢ 09, then the distance betwean and 09, de-
noted by distrg, 9€2;), is positive. The second case is when
dist(ry,092,) is larger than some constant > 0. As an
empirical rule, we take: = X in our numerical examples,
where ) is the free space wavelength. In that case, a simple
trapezoidal rule can be applied to discretize (19), that is,

Ni—1
(7o, t5)(t5)
=0

2

1

7' (t5)]. (20)

g(ro) ~

The last case is when dist, 92;) < c¢. The trapezoidal rule
(20) is no longer accurate. We follow the method described in



[20]. Substituting the trigonometric interpolation ¢ft), i.e., VI. NUMERICAL EXAMPLES

Eqg. (14), into (19), t . . .
d- (14), into (19), we ge In this section, we illustrate our method by a few examples.

p Nzt Mi/2-d " For the two simple examples shown in Fig. 2, we perform
g(ro) ~ N Z Z e gi(ro)i(ty),
L =0 k=—N;/2 (a) (b)

autro) = [ Bro e @l (20 NG r
0
for —N;/2 < k < N;/2. We still approximate (21) by the @ @ @ @

trapezoidal rule, but use a larger number of pointstfand
the Fast Fourier Transform (FFT) to speed up the evaluation. O Q
Therefore, using the above procedure, we can discrétize

and 7, and obtain a matrix\o such that

dyu = A, (22) Fig. 2. Two simple PCFs: (a) six circular holes, parametdiameterd =
5um, pitth' = 6.75 um; (b) six elliptic holes, parameter: major axis=
where v and d,u denote column vectors of IengtNa” —  5pm, minor axisb = 3 um, pitchI" = 6.75 um. The medium surrounding

the holes is infinite.
Sy N; for w andd,u on 99
numerical convergence tests and accuracy comparisons. The
V. EQUATION FOR} first example is a PCF with six circular air holes as shown in

Using the DtN maps\; (1 < I < 1,) and Ao, we are able Fig. 2(a), and it has been a_malyzed bya number of a_luth_ors [13]
to expressd, H,, 9, H, andd, H;, d,H; in terms of H, [19], [ZQ]. T_he PCF consists of a sm_gle ring of six circular
and H, on the interfaces. The interface conditions given iR0les with diameterg = 5 um symmetrically arranged around
(3) also require the evaluation of tangential derivativiemg the core with a pitci” = 6.75 um. The refractive indices of
9. For a smooth functions(r) given on the boundarg®,, the glass matrix and the air hole aig = 1.45 andn, =1,
we use the trigonometric interpolation gf(¢) = v (r(t)) as respectively. The free space wavelength for this example is

given in (14) to approximate the derivative with respect.to A = 145 um. Using80 points on the boundary of each hole,
That is we obtain an accurate solutighyky, = 1.4453952321493 +

3.194529E—8; for the fundamental mode of this PCF. Our
N i (bt result agrees well with the result of Chiaagal. [13] (53/ko =
WO | 2 kM G) (23 1 44530525694857 + 3.194695E—8i), the result of Whiteet
=0 k=—Ni/2 al. [26] (3/ko = 1.445395345 + 3.15E—8i) and the result of
Evaluating the above dfttg, t1, ..., tn,_1} and using the rela- Chenget al. [19] (3/ko = 1.445395232+3.1945E—8i). Using
tion ¢/(t) = |r'(t)|0,6(r(t)), we can find the differentiation OUr solution above as a reference, we calculate the absolute
matrix D;, such that errors in the real and imaginary parts®fk, for the numerical
solutions computed with a smaller number of discretization
Orp = Dy, (24) points. The results are shown in Fig. 3. The errors decrease
exponentially from 30 to 50 points on each boundary, and

where 9,4 and ¢ are column vectors of lengthV; for .
d,(r (1)) andu(r(t)) at the N, points. Using the DIN maps itger%/c:?errlhcglr?r;stoo round off errors when the number of points

and the differentiation matrices, we can match the rightdhan The second example, as shown in Fig. 2(b), has six el-

side of (3) from inside and outsidfy, 1 < I < L., and liptic air holes with major axisa = 5pm and minor axis
establish the nonlinear eigenvalue problem (1), whe() b = 3um. The other parameters are identical to the first

Itjisigtij\;glti)o? Qgﬁ,éls) Oﬂag:ﬁnﬁggggs's the total number of example. We calculate its fundamental mode using 80 dis-
A mode ofpthe PCE correspond.s to a value @ffor cretization points on the boundary of each hole. Our result i
which the matrixF'(8) is singular. A common measure ofﬁ/k0 = 1.44642907238417 + 2.9898269E—6i, and it agrees
very well with the result of Ponest al. [20] (8/ko =

the singularity is the determinant &f(3), but itis notalways , 4109079+ 9 9g98E i) and the result of Campbe al,
reliable. Other measures include the smallest eigenvatue , . .

. : 8] (8/ko = 1.446427235+2.9601E—67). Using our solution
magnitude) and the smallest singular value, but they

: . . above as a reference, we calculate absolute errors for other
relatively expensive to calculate. As in [19], we solgdrom . : L
. numerical solutions and plot the convergence curves in&ig.
the equation . . :
1 Once again, an exponential convergence is observed.
f(B) = T3 0 (25)  The third example is a PCF with six cookie-shaped air holes

as shown in Fig. 5. Fot < j < 6, the boundary of thegth
using Muller's method, where andb are two fixed random hole is given by

column vectors. In each iteration, we need to find =
F~1(B)b by solving the linear system(8)w = b. r(t) = [x; — p(t) cos(t),y; —p(t)sin(t)], 0 <t < 2w, (26)

N;—1 . Nl/271
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Fig. 4. Convergence curves for the fundamental mode of tHeiRE€ig. 2(b).

wherer$ = (z;,y;) is the center of thgth hole, and
p(t) = 2.5+ 0.15sin(7t). (27)

The other parameters, i.d}, n,4, n. and A, are identical to

the first two examples. This PCF was previously analyzed by
Chenget al. [19]. We calculate the two fundamental modes

for this PCF. The numerical results are listed in Tabel

and Table Il, whereN denotes the number of discretization
points on the boundary of each hole. The results reported in

[19] are B/ko = 1.445343940 + 2.5019E—8; and 8/ky =

1.445343873 + 2.5056E—8: for the first and second modes,

respectively. The agreement is excellent.

o,

/
| @ ’ =1 l45
w g
/
\
A @

Fig. 5. A PCF with six cookie-shaped air holes whéte= 6.75 um.

N B/ko

70 1.4453434192003 + 2.59021E—8:
80 1.4453439283812 + 2.48475E—8:
90 1.4453439401195 + 2.49990E—8&:
100 1.4453439397734 + 2.50177TE—8:
110 1.4453439395692 + 2.50183E—81
120 1.4453439395666 + 2.50182E—83

TABLE |
EXAMPLE 3: NUMERICAL SOLUTIONS OF3/ko FOR THE FIRST
FUNDAMENTAL MODE.

shown in Fig. 6 and they have been previously analyzed by

Fig. 6. Two complex PCFs: (a) hollow core PCF with five ringscimEular
holes, parameters: pitch = 2.74 um, hole diameterd = 0.95I", core
diameterd. = 2.5d. (b) elliptic hollow core PCF with three layers of circular
holes, parameters: pitch = 2 um, hole diameter = 0.9T", core principle
axesa = 2.3um andb = 4.6 um. The medium surrounding the holes is
infinite.

Poneet al. [20]. The fourth example shown in Fig.6(a) is a
PCF consisting of five rings of circular holes arranged on a
hexagonal lattice and surrounding a hollow core formed by th
two missing rings in the fiber center. The pitcHis= 2.74 um,

the diameter of the small holesds= 0.95T", and the diameter

N B/ko

70 1.4453433575038 + 2.59745E—8&q

80 1.4453438625539 + 2.48831E—8&:
| 90 1.4453438734906 + 2.50366E—81

100 1.4453438731792 + 2.50554E—8:

110 1.4453438729300 + 2.50558E—81

120 1.4453438729292 + 2.50558E—81

TABLE Il
EXAMPLE 3: NUMERICAL SOLUTIONS OF3/ko FOR THE SECOND
FUNDAMENTAL MODE.

The fourth and fifth examples are more complex PCFs



of the core isd. = 2.5d. Overall, there are 120 small holesand 5/ky = 0.93816250 + 2.2133E—3i for the = and y
and one big hole (the hollow core). The refractive indicgsolarizations, respectively), it is clear that our solotocare
of the glass matrix and the air hole arg = 1.45 and more accurate.

n. = 1, respectively. We calculate the fundamental mode

of this PCF for free space wavelength = 1.51um. The

results are listed in Table Ill. The integers in the first and VIl. CONCLUSION
N1 | No B/ko . .
100 | 34 || 0.984516001007 + 3.41000E—%; A new high order BIE mode solver is developed for PCFs
120 | 40 || 0.984516001952 + 3.41151E—8¢ with smooth interfaces. The method achieves exponential
128 32 8-32321288(1)228igjﬁi?g:gz convergence, solves two functions on the interfaces and is
120 T 50 || 0.984516000835 T 3. 41133E—8F more efficient than existing BIE methods [14]-[16], [19],
120 | 60 || 0.984516000835 + 3.41147E—8; [20]. Existing high order BIE methods [15], [19], [20] solve
TABLE Ill four functions on the interfaces. On the other hand, exjstin
EXAMPLE 4: SEVERAL VALUES OF 3/ko FOR DIFFERENT NUMBER OF  BIE methods that solve two functions on the interfaces have
DISCRETIZATION POINTS only low-order implementations. Our high order BIE method

relies on the Nystrom method and kernel-splitting techaiq

. . developed by Kress [29] for discretizing hypersingulaegral
second columns represent the numbers of the discretizatiflators. Very accurate solutions are obtained for sothera

points for the big hole and the smaller holes, respectivelyynjicated PCFs. Numerical results also indicate that the

Our results agree well with the result of Poeeal. [20]  grors decrease exponentially with the number of pointsi.use
(8/ko = 0.98451599741954 + 3.434721E—83). It appears that

our solution in the first row of Table Il is more accurate than

that of Poneet al. [20]. In that case, the size of matriX is

(34 x 120+ 100) x 2 = 8360 and it is smaller than the matrix APPENDIX

size 12544 used in [20]. ] )
Finally, we consider the PCF shown in Fig.6(b). It consists 1he kemnel functions” and @ are given by

of three layers of circular holes arranged on a hexagonal

i issi 1 - ivp(t,t -
lattice. The four missing hole_s at the center of thg flbgr P(ti) = p( N)Hl(l)(yd(t,t)), (28)
are replaced by a central elliptic core. The hole pitch is 2d(t,t)
I' = 2um, the hole diameter ig = 0.9T", the minor and Q(t, 1) = N(t, 1) —*M(t,t)n(t) n(t), (29)

major axes of the elliptic core are= 2.3 um andb = 4.6 um,
respectively. The refractive indices of the glass matrid e |\ here
air hole aren, = 1.45 andn. = 1. We calculate the two

fundamental modes (the and olarizations, respectivel
(the andy p pecthvel) ) = () w(r(t),
for free space wavelength = 1.42um. The results are ~ N
shown in Table IV and Table V. The first and second d(taf) = |r(t) _T(fﬂv
p(t,t) = mn(t)-[r(t) —r),
S - (00) = ) [r@) = r(e)
120 | 40 || 0.9390335473927 + 6.741806549E—4i M(t, 1) = = Hél)(yd(t, ),
120 | 44 || 0.9390335474024 + 6.741806722E—4i 2
120 | 50 || 0.9390335474106 + 6.741806729E—4i - 1 0% (. 1) ~
120 | 60 || 0.9390335474115 + 6.741806730E—4i N(t,t) = %at_af{ mH, (7d(t,t))+L(t,t)}
TABLE IV

EXAMPLE 5: SEVERAL VALUES OFﬁ/k‘o FOR THEx POLARIZATION AND

FOR DIFFERENT NUMBER OF DISCRETIZATION POINTS and L(t,t) is given in (13). The logarithmic singularity is

spitted as follows

P(tv E) = P (ta t)L(ta t) + P2(t7 t)a (30)
Ni | Na B/ko N T T 7
150 | 40 || 0.9381625149831 + 2.213306320E—3i M(tt) = Mt 0)L(t, 1) + Ma(t, 1), (31)
150 | 44 || 0.9381625147761 + 2.213306371E—3i N(t,t) = Ny(t,t)L(t,t) + Na(t, 1), (32)
150 | 50 || 0.9381625147583 + 2.213306378E—3i
150 | 60 || 0.9381625147578 + 2.213306378E—3i
TABLE V where
EXAMPLE 5: SEVERAL VALUES OFﬁ/ko FOR THEYy POLARIZATION AND (t E)
FOR DIFFERENT NUMBER OF DISCRETIZATION POINTS ~ ;
Pi(t,d) = - i(d(n 1),
2md(t,t)
M (t,t) = L Jo(vd
columns are the numbers of points used for the elliptic core (1) = Tox 0(vd(t,1)),

and the circular holes, respectively. Compared with the two - 1 H2 -
results given in [20] 6/ky = 0.93903355 + 6.7418E—4i Mt = -5 50 D).




The functionsP,, M, and N, can be evaluated using (30)-(32)17]

except whernt = £. In that case,

whereC' = 0.57721 - - - is the Euler’s constant. The splitting

Py(t,t) = %%

Myt = £ - € Ly AL

No(t,t) = (mi—1—20 —2In 7"’;”') 72";@'2 +
N O RO S Ol O R )
120 2xlr/()F dxlr'(t)]2 6rlr ()]

for @ follows the splittings ford/ and N.
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