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Abstract

Numerical methods are necessary to calculate propagating modes in optical
waveguides. The finite difference method is widely used because it is applicable to
waveguides with arbitrary refractive index profiles and it is easy to implement. To
improve the efficiency and to reduce the size of the resulting large sparse matrix,
the finite difference method is often used with a variable grid size strategy. This
is related to the technique of coordinate stretching. In this paper, we develop
a technique for optimizing the coordinate stretching function based on discrete
reflection coefficients. We demonstrate our method using a scalar model which is
valid for weakly guided optical waveguides.

1 Introduction

In fiber and integrated optics, a fundamental problem is to compute the eigenmodes of

optical waveguides. Unlike microwave waveguides, optical waveguides [1, 2, 3] are typi-

cally open structures for which the transverse domain is the entire plane perpendicular

to the waveguide axis. A propagating mode of a waveguide is a special solution that

depends on the variable z along the waveguide axis as exp(iβz) for a real β and decays

to zero as the distance to the waveguide axis tends to infinity. Mathematically, it gives

rise to an eigenvalue problem where β2 is the eigenvalue and the mode profile is the

eigenfunction defined on the transverse plane. Over the years, numerous numerical and

semi-analytic methods have been developed for solving optical waveguide modes [4, 5, 6].

Some of the most effective methods rely on special geometric features of the waveguides

and they may even turn the original linear eigenvalue problem to a nonlinear problem for
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the propagation constant β. Nevertheless, standard numerical methods such as the finite

difference [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and finite element [19, 20, 21, 22]

methods are still widely used, because they are very general, relatively easy to implement

and compatible with other computation tasks.

For all numerical methods that approximate the differential operator by a matrix,

so that the original linear eigenvalue problem is turned to a standard matrix eigenvalue

problem, it is necessary to truncate the infinite transverse domain to a finite computation

domain. Although the eigenfunctions decay to zero exponentially as the distance to the

waveguide axis is increased, the decay rate is small if the eigenmode is near cut-off. In that

case, a large truncation domain is necessary. For both finite difference and finite element

methods, it is common to use large mesh size for grid points near the boundary of the

truncated domain, since the eigenfunction does not change so much as it approaches zero.

For the finite difference method, an alternative technique is to stretch the coordinate.

Although variable grid size and coordinate stretching are closely related, they usually

have different numerical properties when discretized. In all cases, these techniques are

used with very little theoretical guidance. It is not clear how the grid size should be

varied and how the coordinate should be stretched.

In this paper, we develop a technique for optimizing coordinate stretching parameters.

We introduce a discrete reflection coefficient for any coordinate stretching profile in con-

nection with a finite difference method. The concept of discrete reflectivity [23, 24] was

originally developed to analyze and optimize perfectly matched layers (PMLs)[25, 26].

The parameters in the profile are determined by minimizing the reflection coefficient.

The method is applied to the eigenvalue problem for a weakly-guided optical waveguide

where the governing equation is the Helmholtz equation. Compared with the main task

of solving the matrix eigenvalue problem, the work needed to find the best coordinate

stretching parameters is negligible.

2 The eigenvalue problem

A straight optical waveguide can be described by its refractive index function n = n(x, y),

where x and y are the transverse variables and z is the variable along the waveguide axis.

A propagating mode of the waveguide can be solved from eigenvalue problems involving

two transverse components of the electric field, or two transverse components of the

magnetic field, or the longitudinal components (i.e. z components) of both fields. If the

two transverse components of the electric field are used, we have[
Ex

Ey

]
=

[
Φx

Φy

]
eiβz

where Ex and Ey are the x and y components of the electric field, Φx and Φy are two

functions of x and y only, and β is the unknown wavenumber in the z direction (i.e., the
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propagation constant). The mode is then solved from the following eigenvalue problem:[
A11 A12

A21 A22

] [
Φx

Φy

]
= β2

[
Φx

Φy

]
, (1)

where β2 is the eigenvalue, Φx and Φy are the eigenfunctions, A11, A12, A21 and A22 are

differential operators given as

A11 =
∂

∂x

[
1

n2

∂(n2 ·)
∂x

]
+
∂2

∂y2
+ k2

0n
2,

A12 =
∂

∂x

[
1

n2

∂(n2 ·)
∂y

]
− ∂2

∂x∂y
,

A21 =
∂

∂y

[
1

n2

∂(n2 ·)
∂x

]
− ∂2

∂y∂x
,

A22 =
∂

∂y

[
1

n2

∂(n2 ·)
∂y

]
+
∂2

∂x2
+ k2

0n
2.

In the above, k0 is the free space wavenumber related to the angular frequency and the

speed of light in vacuum.

For conventional optical fibers, the refractive index of the fiber core is only slightly

larger than that of the surrounding cladding, we can then replace the above full-vector

eigenvalue problem by a much simpler scalar eigenvalue problem(
∂2
x + ∂2

y + k2
0n

2
)
u = β2u, (2)

where ueiβz represents a component of the electric or magnetic fields. The above eigen-

value problem is only valid for weakly-guided optical waveguides where the difference

between the maximum and minimum of n(x, y) is small. However, it also describes

acoustic waveguides involving a medium with variable sound speed. For high index-

contrast optical waveguides used in integrated optics, the full-vector eigenvalue problem

(1) is more appropriate. In the following, we develop a coordinate stretching technique

for the scalar eigenvalue problem (2). However, our method should be applicable to the

full-vector problem (1) as well.

For simplicity, we also assume that the refractive index is a constant n0 if the distance

to the waveguide axis is sufficiently large. This is the case for conventional optical fibers,

since the cladding is often assumed to extend to infinity in theoretical studies. For

waveguides constructed in a layered background medium, this assumption is not valid,

but our study concerning optimal coordinate stretching can still be applied to each region

with a constant refractive index. Because of this assumption, we have a bounded domain

Ω, such that n = n0 if (x, y) is outside Ω. Let a be a characteristic length scale of Ω, we

can non-dimensionalize the equation by introducing scaled variables x̂ and ŷ satisfying
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x = ax̂ and y = aŷ. In terms of these new variables, the eigenvalue problem (2) can be

written as [
∂2
x̂ + ∂2

ŷ + ρ(x̂, ŷ)
]
u = λu, (3)

where ρ(x̂, ŷ) = (k0a)2[n2(x, y)−n2
0] and λ = a2β2−k2

0a
2n2

0. To simplify the notations, we

also use x and y to denote x̂ and ŷ when the distinction is not important. In particular,

we can see that for the eigenfunction to decay to zero exponentially as
√
x2 + y2 tends

to infinity, we must have λ > 0.

3 Coordinate stretching

The eigenvalue problem (3) is defined on the entire xy plane. For finite difference and

finite element methods, it is necessary to truncate the xy plane to a finite computation

domain. When the problem is discretized, the differential operator ∂2
x + ∂2

y + ρ(x, y),

where x and y now refer to x̂ and ŷ as in (3), is approximated by a matrix. In order

to reduce the size of that matrix, we can use a larger grid size for grid points near the

boundary of the truncated domain. Alternatively, we can use a uniform grid size in

stretched coordinates. Let us consider a finite difference approximation to the second

order derivative with respect to x. If we use the grid points {xj}, then the second order

derivative of a function f(x) at xj should be approximated as

f ′′(xj) ≈
2

xj+1 − xj−1

(
fj+1 − fj
xj+1 − xj

− fj − fj−1

xj − xj−1

)
, (4)

where fj denotes f(xj), etc. If we use a coordinator stretching, the variable x is first

changed to ξ by

x =
∫ ξ

0
s(τ)dτ.

The function s is chosen such that s = 1 in most part of the computation domain and

s > 1 near the edges of this domain. The second order derivative f ′′ can be written as

d2f

dx2
=

1

s

d

dξ

(
1

s

df

dξ

)
.

Corresponding to a uniform discretization of ξ, satisfying ξj = ξj−1 + ∆ξ for all j, we

have

xj =
∫ ξj

0
s(τ)dτ

and

f ′′(xj) ≈
1

(∆ξ)2

(
fj+1 − fj
sjsj+1/2

− fj − fj−1

sjsj−1/2

)
, (5)

where sj = s(ξj), sj±1/2 = s(ξj±∆ξ/2). Clearly, the two approximations (4) and (5) can

be related to each other by

xj+1 − xj
∆ξ

≈ sj+1/2,
xj − xj−1

∆ξ
≈ sj−1/2,

xj+1 − xj−1

2∆ξ
≈ sj.
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However, they are not identical. If we insist that the first two conditions above are

satisfied exactly, then we have xj+1−xj−1 = (sj+1/2 + sj−1/2)∆ξ, but it is usually not the

same as 2sj∆ξ. Since we can choose a smooth function s in the coordinate stretching

approach, the approximation (5) usually gives better results.

For our waveguide eigenvalue problem (3), we need to use coordinate stretching for

both x and y. Therefore, we also change y to η by

y =
∫ η

0
r(τ)dτ

for some real function r. The eigenvalue problem (3) now becomes

1

s

∂

∂ξ

(
1

s

∂u

∂ξ

)
+

1

r

∂

∂η

(
1

r

∂u

∂η

)
+ ρu = λu. (6)

We can discretize the above as in Eq. (5) with a constant grid size for both ξ and η.

More precisely, if we discretize η by {ηk} satisfying ηk − ηk−1 = ∆η for all k, and let

yk =
∫ ηk

0
r(τ)dτ, rk = r(ηk), rk±1/2 = r(ηk ±

∆η

2
),

then (6) is discretized as

ajuj−1,k + bjuj+1,k + ckuj,k−1 + dkuj,k+1 + (ρjk − aj − bj − ck − dk)ujk = λujk (7)

where

aj =
1

(∆ξ)2sjsj−1/2

, bj =
1

(∆ξ)2sjsj+1/2

, (8)

ck =
1

(∆η)2rkrk−1/2

, dk =
1

(∆η)2rkrk+1/2

, (9)

ρjk = ρ(xj, yk), ujk ≈ u(xj, yk). (10)

In the following sections, we develop a strategy for choosing the functions s and r in

connection with the discretized eigenvalue problem (7).

4 Discrete reflection coefficient

The optimal stretching functions s and r depend on many factors, including how the

eigenfunction decays as |x| or |y| tend to infinity, how large the grid sizes ∆ξ and ∆η are

and where the variables ξ and η are truncated, etc. To be more practical, we need to make

a few assumptions. Concerning the discretization of ξ and η, we assume that ξ and η are

truncated to a rectangular computation domain and discretized with grid sizes ∆ξ and

∆η. We also assume that the region where s or r are greater than 1 is specified. Consider

the positive ξ direction, we assume that s = 1 for ξ ≤ H and s > 1 for ξ > H, and ξ is
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truncated at ξ = D for D = H + m∆ξ where m is a positive integer. Furthermore, we

can specify the function s in a simple profile including one or two parameters, so that the

difficult task of finding the function s is reduced to the simpler problem of finding the

parameters in a given profile of s. Notice that the functions s and r are only numerical

tools used to derive the discretization scheme (7). In the following, we consider a simple

polynomial stretching function given by

s(ξ) = 1 + (p+ 1)S0

(
ξ −H
D −H

)p
, ξ > H, (11)

where p is a positive integer and S0 is a positive parameter of the profile. Since∫ D

H
s(τ)dτ = (D −H)(1 + S0),

the length of the interval (H,D) for ξ is increased by a factor of 1 + S0, resulting the

stretched interval (H,D+S0(D−H)) for x. In other words, terminating the computation

domain at ξ = D corresponds to truncating x at x = D + S0(D −H).

A more difficult issue is that the optimal stretching functions also depend on the

eigenfunction, at least the decay rate of the eigenfunction as
√
x2 + y2 tends to infinity.

However, the decay rate depends on the eigenvalue and it is what we are trying to

calculate. To resolve this difficulty, we propose to replace the exact eigenvalue by an

approximation. If the eigenvalue problem (3) has a solution, then the eigenvalue λ must

satisfy

0 < λ < max
x,y

ρ(x, y) = ρ∗.

To start, we may use ρ∗/2 as an approximation of λ to estimate the parameters in the

stretching functions. Another approach is to perform a preliminary numerical calculation

to find a first approximation of λ. Such a preliminary calculation can be done on a coarser

grid without coordinate stretching. A rough estimate of λ should already allow us to find

a good coordinate stretching function.

If we assume that the domain Ω in which ρ may be non-zero is given in the half plane

x < H, then the differential equation (3) is reduced to

uxx + uyy = λu,

for x > H. To find the optimal parameter for the stretching function s, we rely on the

discrete reflection coefficient for y-independent solutions of the above equation. To avoid

confusion with the original eigenfunction, we switch to the simple ordinary differential

equation
d2f

dx2
= λf. (12)

For the ξ variable, we have
1

s

d

dξ

(
1

s

df

dξ

)
= λf, (13)
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and it is discretized as

ajfj−1 − (aj + bj)fj + bjfj+1 = λfj (14)

where aj and bj are given in (8). Let us shift the index j, such that

ξ0 = H, ξm = D = H +m∆ξ,

then for j ≤ −1, we have aj = bj = 1/(∆ξ)2 and

fj−1 − 2fj + fj+1

(∆x)2
= λuj. (15)

At the boundary of the truncated domain, we use a simple zero Dirichlet boundary

condition. Therefore,

fm = 0. (16)

For j ≤ 0, we can assume that the solution is a linear combination of two exponential

functions

fj = e−γ(ξj−H) +Reγ(ξj−H), (17)

where γ is a positive constant. The first term is an exponentially decaying solution that

has been scaled to have amplitude 1 at ξ = H and the second term is an exponentially

growing solution that has amplitude R at ξ = H. From (15), we can find a simple

equation for γ:
e−γ∆ξ − 2 + eγ∆ξ

(∆ξ)2
= λ. (18)

The coefficient R is the discrete reflection coefficient and it is non-zero because ξ has to

be truncated. To find R, we use Eq. (14) for j = 0, 1, ..., m− 1, together with the extra

condition (16) and the following two special cases of (17):

f0 = 1 +R, f−1 = eγ∆ξ +Re−γ∆ξ. (19)

These conditions give rise to the following tridiagonal linear system:

ĉ0 b0

a1 c1 b1

a2 c2
. . .

. . . . . . . . .
. . . cm−2 bm−2

am−1 cm−1





R

f1

f2
...

fm−2

fm−1


=



d0

−a1

0
...

0

0


, (20)

where

cj = −aj − bj − λ, ĉ0 = c0 + a0e
−γ∆ξ, d0 = −c0 − a0e

γ∆ξ.
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Notice that R is defined for a fixed λ, a given m, a given ∆ξ and a given function s.

Meanwhile, s is related to the integer p and the coefficient S0. In the following, we will

solve only S0 assuming that all other parameters are known. In particular, we assume

that an approximate value of the exact eigenvalue λ is known. If we consider R as a

function of S0, then we find the optimal value of S0 by minimizing the absolute value of

R.

5 Numerical examples

In this section, we illustrate our method by a number of examples. First, we consider a

rectangular waveguide with a (3a)× (2a) waveguide core, where a = 2.4628µm. In terms

of the dimensionless variables defined by a scaling of a, the waveguide core is given by

|x| < 1.5 and |y| < 1, where x and y correspond to x̂ and ŷ in Eq. (3). The refractive

indices of the waveguide core and the cladding are n1 = 1.51 and n0 = 1.50, respectively.

These two values are very close to each other, so that the weakly guidance approximation,

leading to the simplified eigenvalue problem (2), is valid. For a free space wavelength

of 1.55µm, we have k0 = 2π/1.55(µm)−1 and ρ = (k0a)2(n2
1 − n2

0) = 3 in the waveguide

core. Due to the symmetry, we only need to solve the problem in the first quadrant. For

the symmetric even mode, where the eigenfunction u is an even function of x and y, we

have the boundary conditions ∂xu = 0 at y = 0 and ∂yu = 0 at x = 0.

The exact eigenvalue of this problem is unknown. When a finite difference method

is used, the numerical approximation converges to the exact solution as the grid size

tends to zero, but the convergence rate is quite slow for a second order finite difference

scheme. This is not our main concern here, as we are considering techniques for effective

truncation of the computation domain. Therefore, we will fix the grid size and compare

various numerical solutions obtained with different ways of truncating the domain. For

h = ∆x = ∆y = 0.05, we first calculate the numerical solution without using coordinate

stretching. The domain is truncated to a square given by 0 < x < D and 0 < y < D

and a simple zero Dirichlet boundary condition is used at x = D and y = D. Due to

the Neumann boundary conditions at x = 0 and y = 0, we have discretized x and y by

xj = (j− 0.5)h and yk = (k− 0.5)h for j ≥ 1 and k ≥ 1. For D−h/2 = 2, 2.5, 3, 3.5, ...,

10, the approximate eigenvalues are shown in Fig. 1. As D is increased, the numerical

eigenvalue converges to a constant λ(0.05) ≈ 1.5226738587.

To use the coordinate stretching technique, we need an approximation of the eigen-

value to find the best parameter S0. Although an accurate solution is already found

earlier, we choose to use the rough estimate λ(appro) = 1.5 corresponding to 1/2 of the

maximum of ρ(x, y) (since ρ = 3 in the waveguide core). We also have to choose the

integer m which is the number of points in the stretching layer. For m = 7 and a
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2 3 4 5 6 7 8 9 10
1.3

1.35

1.4

1.45

1.5

1.55

truncation boundary D − h/2

λ

Figure 1: Numerical approximations of the eigenvalue calculated with the fixed grid size

0.05 in a truncated domain given by 0 < x, y < D.

quadratic stretching function (i.e. p = 2), we find the optimal parameter S0 ≈ 11.72.

In Fig. 2, we show the magnitude of the reflection coefficient R as a function of S0. In

8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1
x 10

−4

S
0

|R
|

Figure 2: Magnitude of the reflection coefficient R as a function of S0, for m = 7, p = 2,

λ ≈ 1.5 and ∆ξ = 0.05.

fact, there is an S0 such that R is exactly zero. However, this does not mean that we

can use the m point stretching layer to exactly simulate the infinite domain, because

the reflection coefficient is derived from a one-dimensional (1D) model. Since R can be

easily found by solving the m×m tridiagonal linear system (20), it is straightforward to

find the minimum of |R|. Besides, since the final numerical results are not sensitive to

the stretching function, we do not need high accuracy for the optimal S0, in fact, two or

three digits are sufficient. For computations using the coordinate stretching technique,

we switch to the transformed variables ξ and η. For these variables, the grid size is fixed
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at h = ∆ξ = ∆η = 0.05. In the ξ direction, the stretching layer where s > 1, is given by

H < ξ < D for H = 2 − h/2 = 1.975 and D = H + mh = 2.325. For S0 = 11.72, the

interval (D,H) is stretched by a factor of S0 + 1. Therefore, ξ = D = 2.325 corresponds

to x = 6.427. However, only seven points are used from x = 1.975 to x = 6.427. In the η

direction, we use the same parameters, so that the stretching layer is 1.975 < η < 6.427

and the stretching function r is identical to s (except ξ is replaced by η). For these

selections, we found the approximate eigenvalue λ(0.05)
cs = 1.5226796. Using the accurate

solution λ(0.05) given earlier as the reference solution, we found that the relative error

of λ(0.05)
cs is 3.76 × 10−6. Compared with earlier numerical results without coordinate

stretching (as shown in Fig. 1), this result is more accurate than 1.5226682 obtained

with D = 6.025 and less accurate than 1.5226723 obtained with D = 6.525. In the

above calculation using coordinate stretching, the number of discrete points for both ξ

and η is 46. Therefore, the discretized eigenvalue problem involves a 2116× 2116 sparse

matrix. In contrast, for D = 6.025 and if the coordinate stretching is not used, we have

a 14400× 14400 sparse matrix. Notice that the obtained numerical solution is also phys-

ically meaningful in the stretching region if we use the original variables x and y. For

ξ > H and the polynomial stretching function s given in (11), we have

x =
∫ ξ

0
s(τ)dτ = ξ + S0

(ξ −H)p+1

(D −H)p
.

In Fig. 3, we show the computed eigenfunction near the x and y axes. The seven points

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

x or y

u(x,h/2)

u(h/2,y)

Figure 3: Eigenfunction near the x and y axes, computed using a coordinate stretching

technique where the seven points in the stretched interval are shown as the small circles

in the solution curves.

in the stretching intervals are marked by the little circles on the eigenfunction curves.

We have compared this solution with the more accurate solutions obtained without co-

ordinate stretching using D ≥ 6.525, the difference can hardly be observed.
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To analyze the sensitivity of the coordinate stretching technique with respect to the

estimated eigenvalue, we carry out more calculations by varying λ(appro) from 1.0 to 2.0

with an increment of 0.1. The corresponding coefficient S0 decreases monotonically from

14.92 to 9.84. The relative error of the computed eigenvalue decreases from 8.08×10−6 at

λ(appro) = 1.0 to 1.31×10−7 at λ(appro) = 1.7, then increases to 6.49×10−6 at λ(appro) = 2.0.

We notice that the most accurate numerical solution is not obtained when λ(appro) is

closest to the exact eigenvalue, this is possibly caused by the 1D model (12) which

ignores the variation in y when a stretching in the x direction is concerned.

For the second example, we consider a square waveguide embedded in a slab. The

waveguide core is a (2a) × (2a) square and it is embedded in a slab with a thickness of

2a, where a = 2.5µm. The refractive indices of the core, the slab and the medium above

and below the slab are n1 = 1.51, n2 = 1.5 and n0 = 1.4, respectively. In terms of the

variables scaled by a, the refractive index function satisfies

n(x, y) =


n1, |x| < 1 and |y| < 1,

n2, |x| > 1 and |y| < 1,

n0, |y| > 1.

We assume that the scalar model (2) is still applicable, although the index difference is

small only in the x direction. The equation is again written in the dimensionless form

(3), where x̂ and ŷ are denoted by x and y here. Notice that the function ρ(x, y) in

(3) satisfies ρ = 0 only for |y| > 1. For a free space wavelength of 1.55µm, we have

ρ = ρ1 ≈ 32.8747 and ρ = ρ2 ≈ 29.7834 in the core and the slab, respectively. As before,

we consider the symmetric even mode and restrict the computation to the first quadrant

using zero Neumann boundary conditions along the x and y axes.

To validate the coordinate stretching technique, we need an accurate numerical solu-

tion for a fixed grid size, on a very large computation domain, without using coordinate

stretching. For ∆x = ∆y = h = 0.05, we have λ(0.05) ≈ 30.140540418174. This result is

obtained in a sequence of calculations using (2N)×N discrete points, where N = 25, 30,

35, ..., 120. Since the discrete points are given by (xj, yk) for 1 ≤ j ≤ 2N and 1 ≤ k ≤ N ,

the computation domain is given by 0 < x < Dx and 0 < y < Dy, where Dx = (2N+0.5)h

and Dy = (N + 0.5)h. For N = 120, we have Dx = 12.025 and Dy = 6.025. A conver-

gence to all 14 digits of λ(0.05) given above is observed in this sequence of calculations. To

use the coordinate stretching technique, we start with a 40× 25 uniform mesh covering

roughly a 2 × 1.25 rectangle, then add stretching layers of mx = 11 and my = 6 grid

points in the x and y directions, respectively. This leads to a total of 50 × 30 = 1500

discrete points. The decay rate of the eigenfunction is very different in the x and y

directions. For the x direction, the 1D model (12) used to estimate the parameters of

the stretching function should be replaced by d2f/dx2 = (λ − ρ2)f , since ρ = ρ2 6= 0

in the slab. For the y direction, (12) is still valid if x is replaced by y. For a quadratic
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stretching profile, i.e., p = 2 in (11), and using (ρ1 + ρ2)/2 ≈ 31.33 as a rough estimate

for λ, we obtain the optimal coefficients S0 = S0x = 7.64 and S0 = S0y = 1.72 for the

x and y directions, respectively. Based on these parameters, we obtain the approximate

eigenvalue λ(0.05)
cs = 30.14054011. Compared with λ(0.05) given earlier, the relative error

of λ(0.05)
cs is 1.03 × 10−8. If coordinate stretching is not used, the same level of accuracy

can only be achieved with N = 60 which corresponds to a total of 7200 discrete points.

In Fig. 4, we show the eigenfunction near the x and y axes. The small circles in Fig. 4
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Figure 4: Eigenfunction near the x and y axes for a square waveguide embedded in a

slab, computed with stretching coordinates.

denote the points in the stretched intervals. If λ(appro) = 31 is used to estimate the

optimal coefficients, we obtain S0x = 8.82. In that case, the numerical solution is more

accurate and the relative error of the computed eigenvalue is about 2.4× 10−9.

6 Discussions and conclusions

In this paper, we developed a simple technique for coordinate stretching in connection

with a finite difference optical waveguide mode solver. The stretching function is given

in the form of a simple polynomial with a scaling parameter S0. The optimal scaling

parameter is determined by minimizing the magnitude of the discrete reflection coefficient

derived from a 1D model. The discrete reflection coefficient can be easily solved from

a small tridiagonal linear system. Overall, the required computing effort to determine

12



the scaling parameter is negligible compared with the main work for solving the matrix

eigenvalue problem. Numerical examples indicate that the optimal coordinate stretching

allows us to significantly reduce the size of the resulting matrix.

Our method is presented for the scalar eigenvalue problem (2), since it is much easier

for us to find accurate numerical solutions to compare with the solution obtained using

coordinate stretching. The method should be applicable to the more challenging full-

vector eigenvalue problem (1). Consider a stretching layer for the x direction, we may

assume that refractive index function in this layer depends only on y and is piecewise

constant. In that case, ∂2
x appears in the two operators A11 and A22 defined in section 2

and it can be discretized as in (5). The other two operators A12 and A21 vanish where

n is a constant, but they need to be properly discretized for grid points at and near the

interfaces. The stretching profile can be selected based on the scalar model, since (2) is

valid in each domain where n is a constant. Assuming that n = n∞(y) as |x| → ∞, the

coefficients in the stretching profile can be estimated in the layer where n∞ reaches its

maximum. As in the scalar case, we need a rough estimate for the eigenvalue.

The technique developed in this paper is based on the assumption that the eigen-

function decays to zero exponentially as |x| or |y| tend to infinity. If the waveguide is

composed of lossy material, the propagation constant becomes complex and the eigen-

function exhibit oscillations, but it still decays exponentially and our method should

be useful. On the other hand, if the waveguide is leaky, the mode exhibit an outgoing

wave behavior as |x| or |y| tends to infinity. In that case, it is necessary to use perfectly

matched layers (PMLs) which correspond to complex coordinate stretchings [26]. For

frequency domain propagation problems, we proposed to optimize a PML profile based

on the average reflection coefficient for all plane waves incident upon the PML [24]. The

1D model used in this paper is simpler, as it corresponds to waves at normal incidence

only. We are currently investigating the problem of optimizing the PMLs for leaky mode

calculations.
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