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Due to the existing nanofabrication techniques, many metallic or dielectric nanoparticles are cylindrical objects
with top and bottom surfaces parallel to a substrate and side boundaries perpendicular to the substrate. In this
paper, we develop a relatively simple and efficient semi-analytic method for analyzing the scattering of light by
a set of circular cylindrical objects (of finite height) in a layered background. The method relies on expanding
the field in one-dimensional modes in layered regions where the material properties change with one spatial
variable only, to establish a linear system on the boundaries separating the layered regions. Although the
“expansion coefficients” are two-dimensional (2D) functions, they satisfy scalar 2D Helmholtz equations which
have analytic solutions due to the special geometry. The method is used to analyze dielectric and metallic
circular cylindrical nanoparticles on a substrate or in free space.

1. Introduction

In recent years, metallic nanoparticles of various size and
shape have been intensively studied, mainly due to the
many applications related to the strongly enhanced near-
field and the localized surface plasmon resonances [1–
6]. Numerical methods are indispensible in the studies
of nanoparticles, since analytic solutions are only avail-
able for a few special cases such as spherical particles.
Standard numerical methods for solving Maxwell’s equa-
tions, such as the finite-difference time-domain (FDTD)
method [7] and the frequency-domain finite element
method (FEM) [8], are widely used, but they often take
too much computation time, when nanoparticles of var-
ious geometric parameters are analyzed. FDTD must
use a small grid size to catch rapid field variations and
resolve curved interfaces, must use a small time step to
maintain stability, and must also properly model dis-
persive media. FEM usually gives rise to large, com-
plex and indefinite linear systems that are expensive
to solve. The boundary element method [9–11] is an-
other important method, but it is somewhat complicated
to implement if the background is a layered medium.
Clearly, to realize new and practical applications based
on metallic nanoparticles, a more efficient numerical or
semi-analytic method is highly desired.
By taking advantage of some geometric features for

a family of structures, it is often possible to develop
special computational methods that are much more ef-
ficient than the general numerical methods. As a result
of the existing nanofabrication techniques, such as the
electron beam lithography, many nanoparticles are cylin-
drical objects, that is, their top and bottom surfaces are
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parallel to the substrate and their side surfaces are per-
pendicular to the substrate. In that case, the overall
structure involving the nanoparticles, the substrate and
the surrounding media, can be divided into a number
of z-invariant layers, where z is the spatial variable per-
pendicular to the substrate. Therefore, the problem can
be analyzed by some kind of numerical modal method,
such as the Fourier modal method [12–15] and the fi-
nite element modal method [16]. A numerical modal
method is a semi-analytic method, since the field in each
z-invariant layer is expanded as a sum of the related
eigenmodes without a discretization of the z variable.
Unfortunately, the numerical modal methods are not
particularly efficient, since a large number of eigenmodes
are needed, and they are full vectorial modes depending
on the two transverse variables and are expensive to cal-
culate.

In a recent work [17], we developed a vertical mode ex-
pansion method (VMEM) to analyze circular apertures
in a metallic film. In contrast to the modal method,
VMEM divides the whole structure into regions where
the material properties depend only on z and expands
the field in each of these regions. The method has been
extended to handle cylindrical objects (such as metallic
nanoparticles) with arbitrary cross sections [18]. So far,
VMEM has only been implemented for structures with
a single cylindrical object. In this paper, we implement
a VMEM to analyze a finite number of circular cylin-
drical nanoparticles on a substrate. The single cylinder
case studied in [17] has a rotational symmetry, and can
be efficiently solved by separating the angle variable in
a cylindrical coordinate system. Such a separation of
variables is not possible for the more general problem
involving multiple cylinders, but fortunately, some ana-
lytic soutions are still available. Our method is related
to the early work of Boscolo and Midrio [19] on photonic



2

crystal slabs, but also has a number of important differ-
ences. In the following sections, we present our method
and validate the method by numerical examples.

2. Problem formulation

We consider a finite number of circular cylindrical ob-
jects in a layered background. A special case involv-
ing three cylinders on a substrate is shown in Fig. 1.
Let {x, y, z} be a Cartesian coordinate system where z
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Fig. 1. Top panel: three circular cylinders on a substrate.
Bottom panel: horizontal cross section of the structure.

is identified as the vertical variable, the cylindrical ob-
jects are assumed to have horizontal cross sections Ωl for
1 ≤ l ≤ l∗, where l∗ ≥ 1 is the total number of objects,
and

Ωl = {r = (x, y) : |r − cl| < al}

is a circular disk with center cl and radius al. The infi-
nite domain outside all Ωl (1 ≤ l ≤ l∗) is denoted as

Ω0 = {r : |r − cl| > al for 1 ≤ l ≤ l∗}.

The horizontal cross section of the structure with three
cylinders is shown in the bottom panel of Fig. 1. For
each Ωl (0 ≤ l ≤ l∗), we define a three-dimensional (3D)
region

Sl = {(x, y, z) : (x, y) ∈ Ωl, −∞ < z < ∞},

and assume that the relative permittivity ε and relative
permeability µ depend only on z in each Sl, that is,

ε = ε(l)(z), µ = µ(l)(z), (x, y, z) ∈ Sl.

It is further assumed that the horizontal variation of the
entire structure is limited to the finite z-interval given
by 0 < z < D, and the media in the top (z > D) and
bottom (z < 0) are homogeneous. We have

ε = εt, µ = µt, z > D,

ε = εb, µ = µb, z < 0,

where εt, µt, εb and µb are positive constants.
If we consider some circular cylindrical nanoparticles

on an infinitely-thick substrate, then the lower half space
(z < 0) corresponds to the substrate, cl and al are the
horizontal center and radius of the lth nanoparticle re-
spectively, and D is the height of the tallest nanopar-
ticle. The nanoparticles could have different material
properties, different radii and different heights. Further-
more, the structures could have more complicated verti-
cal profiles, for example, an adhesion layer between the
nanoparticle and the substrate can be included. Notice
that the structure described above could also represent
a metallic film or a dielectric slab with a finite number
of circular holes.

Our objective is to analyze the scattering of an in-
cident plane wave by such a multiply-layered structure
with circular cylindrical inclusions. We specify an inci-
dent wave in the top homogeneous medium, and assume
the wave vector is (α, β,−γ), where α and β are real,

γ =
√

k20εtµt − α2 − β2

is positive, and k0 is the free space wavenumber. The
problem is considered in the frequency-domain. The
time dependence is assumed to be e−iωt, where ω is the
angular frequency. The electromagnetic field satisfies
the following linear Maxwell’s equations

∇×E = ik0µH, ∇×H = −ik0εE, (1)

where E is the electric field and H is a scaled magnetic
field (the magnetic field multiplied by the free space
impedance).

3. Vertical mode expansions

The foundation of VMEM is a set of expressions for
a general electromagnetic field in an arbitrary one-
dimensional (1D) medium, i.e. a layered medium where
ε and µ depend only on one spatial variable z. The
expressions can be obtained by expanding the field in
transverse electric (TE) and transverse magnetic (TM)
modes with 1D profiles that are functions of z only. For
that purpose, it is necessary to truncate z with perfectly
matched layers (PMLs), so that the outgoing radiation
condition (for z → ±∞) are approximately satisfied and
the expansions are discrete sums. For region Sl, we de-

note the 1D modes, i.e., the vertical modes, as φ
(l,p)
j (z),

where l is the location index, p ∈ {e, h} is the polariza-
tion index, and j ∈ {1, 2, ...} is the mode index. The cor-

responding propagation constant is denoted as η
(l,p)
j . As

in standard theory on planar waveguides, φ
(l,p)
j (z) and
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η
(l,p)
j satisfy an eigenvalue equation for z in the trun-

cated interval. More details are given in [17].
For our problem stated in the previous section, the

total field is not outgoing as z → +∞, since there is
an incident wave coming down from the top. This leads
to a contradiction with the use of PMLs for truncating
the z variable. It is impossible to simply expand the
difference between the total field {E,H} and the incident
wave, since that difference does not satisfy homogeneous
Maxwell’s equations (1). The approach developed in [17]
is to expand {E−E

(l),H−H
(l)} in Sl, where {E(l),H(l)}

is the solution of a hypothetical 1D problem where ε =
ε(l)(z) and µ = µ(l)(z) for all (x, y).
The vertical mode expansions for the two z compo-

nents in Sl are given as

Hz = H(l)
z +

1

µ(l)

∞
∑

j=1

[η
(l,e)
j ]2φ

(l,e)
j V

(l,e)
j , (2)

Ez = E(l)
z +

1

ε(l)

∞
∑

j=1

[η
(l,h)
j ]2φ

(l,h)
j V

(l,h)
j , (3)

where H
(l)
z and E

(l)
z are the z components of the 1D

solution {E(l),H(l)}, and V
(l,p)
j (for p ∈ {e, h} and j = 1,

2, ...) are unknown expansion “coefficients”. In fact,

V
(l,p)
j are functions of x and y satisfying the following

two-dimensional (2D) Helmholtz equations

∂2V
(l,p)
j

∂x2
+

∂2V
(l,p)
j

∂y2
+ [η

(l,p)
j ]2V

(l,p)
j = 0 in Ωl. (4)

Notice that Hz and Ez are expanded in TE and TM
modes, respectively. Although the expansions (2) and
(3) involve 2D unknown functions, we emphasize that

the Helmholtz equations for V
(l,p)
j are independent of

each other. In the sections below, we show that it is

only necessary to solve V
(l,p)
j on the boundary of Ωl.

It is helpful to compare the expansions (2) and (3)
with those used in a numerical modal method. In the
latter case, the field in a z-invariant layer is expanded
in 2D modes whose mode profiles are functions of x and
y, and the dependence on z can be written down an-
alytically with only two unknown coefficients for each
mode. These 2D modes are full vectorial and difficult
to solve. More importantly, in order to accurately ap-
proximate the field, a large number of 2D modes must
be retained. In contrast, the field can be well approx-
imated using only a relatively small number of vertical
modes in expansions (2) and (3).
The other field components can also be expanded in

the 1D vertical modes. For that purpose, we write down
the expansions for the field components along an arbi-
trary direction τ , where τ and ν are a pair of orthogonal
unit vectors in the horizontal plane, satisfying

τ = (−νy, νx), ν = (νx, νy).

The τ components in Sl can be expanded as

Hτ = H(l)
τ +

1

µ(l)

∞
∑

j=1

dφ
(l,e)
j

dz

∂V
(l,e)
j

∂τ

+ik0

∞
∑

j=1

φ
(l,h)
j

∂V
(l,h)
j

∂ν
, (5)

Eτ = E(l)
τ +

1

ε(l)

∞
∑

j=1

dφ
(l,h)
j

dz

∂V
(l,h)
j

∂τ

−ik0

∞
∑

j=1

φ
(l,e)
j

∂V
(l,e)
j

∂ν
, (6)

where H
(l)
τ and E

(l)
τ are the τ components of the 1D

solution mentioned above, ∂τ and ∂ν are the directional
derivative operators. A detailed derivation for equations
(2)-(6) can be found in [17].

The expansions (2), (3), (5) and (6) are valid for any
r ∈ Ωl. They are still valid if we let r tend to Γl, i.e.,
the boundary of Ωl. In that case, we let ν = ν(r) be a
unit normal vector of Γl at r. Notice that for 1 ≤ l ≤ l∗,
Γl is the circle with center cl and radius al, and we let
ν be the outward unit normal vector. For the exterior
domain Ω0, its boundary Γ0 =

⋃l∗
l=1 Γl is the union of

these l∗ circles. The unit normal vector of Γ0 is taken
to be the same unit normal vector of Γl for 1 ≤ l ≤ l∗.

4. Dirichlet-to-Neumann maps

In order to determine the unknown functions V
(l,p)
j de-

fined on Ωl, we will set up a linear system of equations

for V
(l,p)
j on Γl in Section 5. The system is obtained

from the continuity conditions of Hz, Ez, Hτ and Eτ ,
where τ and ν are unit tangential and normal vectors on
Γl. From (5) and (6), it is clear that we need to express

∂νV
(l,p)
j and ∂τV

(l,p)
j in terms of V

(l,p)
j on Γl.

In the exterior domain Ω0, V
(0,p)
j satisfies the

Helmholtz equation (4) for l = 0 and a radiation condi-

tion at infinity. On the boundary Γ0, the function V
(0,p)
j

and its normal derivative ∂νV
(0,p)
j are related by an op-

erator Λ
(0,p)
j , the so-called Dirichlet-to-Neumann (DtN)

map [20], in a simple linear form:

Λ
(0,p)
j V

(0,p)
j = ∂νV

(0,p)
j on Γ0. (7)

If the boundary Γ0 is discretized, we can approximate

Λ
(0,p)
j by a matrix.

For 1 ≤ l ≤ l∗, we discretize the circle Γl byMl points.
The boundary Γ0 is the union of these l∗ circles and is
discretized by the same set of points on all l∗ circles. The
total number of discretization points for ∂Ω0 is M =
∑l∗

l=1 Ml. We denote the function V
(0,p)
j at these M
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points by a column vector

v
(0,p)
j =













u
(1,p)
j

u
(2,p)
j

...

u
(l∗,p)
j













, (8)

where the block u
(l,p)
j is a column vector of length Ml

for V
(0,p)
j at the Ml points on Γl. Similarly, we have

∂νv
(0,p)
j and ∂νu

(l,p)
j for ∂νV

(0,p)
j at the discretization

points on Γ0 and Γl, respectively. We approximate the

DtN map Λ
(0,p)
j by an M ×M matrix Λ

(0,p)
j , such that

Λ
(0,p)
j v

(0,p)
j = ∂νv

(0,p)
j . (9)

To find the matrix DtN map Λ
(0,p)
j , we notice that

V
(0,p)
j has the following cylindrical wave expansion

V
(0,p)
j (r) =

l∗
∑

l=1

∞
∑

m=−∞

blmH(1)
m (η

(0,p)
j rl) e

imθl (10)

in Ω0, where rl = rl(r) and θl = θl(r) are the magnitude
and polar angle of r− cl, cl is the center of the disk Ωl,

H
(1)
m is the Hankel function of first kind and order m,

blm are unknown coefficients. Since the boundary Γl is
discretized by Ml points, we truncate the sum over m
in Eq. (10) to −Ml/2 ≤ m ≤ Ml/2− 1 if Ml is even, or
−(Ml−1)/2 ≤ m ≤ (Ml−1)/2 if Ml is odd. Evaluating
the truncated version of Eq. (10) at the M points on Γ0,
we get a matrix D such that

v
(0,p)
j = Db,

where b is a column vector for coefficients blm, l ranges
from 1 to l∗, and m takes Ml values for each l. We can

also evaluate the normal derivative of V
(0,p)
j at the M

points on Γ0 from the trancated version of Eq. (10), and
obtain a matrix N satisfying

∂νv
(0,p)
j = Nb

Therefore, a matrix approximation of the DtN map is
given by

Λ
(0,p)
j = ND

−1. (11)

For 1 ≤ l ≤ l∗ and the function V
(l,p)
j satisfying

Eq. (4) in Ωl, the DtN map Λ
(l,p)
j can be constructed

from the expansion

V
(l,p)
j (r) =

∞
∑

m=−∞

cmJm(η
(l,p)
j rl)e

imθl , r ∈ Ωl, (12)

where Jm is the Bessel function of first kind and order

m. Retaining Ml terms in Eq. (12), evaluating V
(l,p)
j

and ∂νV
(l,p)
j at the Ml points on Γl, we obtain a matrix

DtN map Λ
(l,p)
j such that

Λ
(l,p)
j v

(l,p)
j = ∂νv

(l,p)
j . (13)

There is also a need to relate the tangential derivative

of V
(l,p)
j to itself on Γl. For 1 ≤ l ≤ l∗, Γl is a circle, the

tangential derivative can be evaluated by the Fourier
pseudospectral method [21]. This gives rise to the so-
called differentiation matrix Tl (an Ml × Ml matrix),
such that

Tlv
(l,p)
j = ∂τv

(l,p)
j , (14)

where ∂τv
(l,p)
j denotes the column vector for ∂τV

(l,p)
j at

the Ml points on ∂Ωl. Notice that Tl is independent of
indices j and p. For the exterior doamin Ω0, since Γ0 is
just the union of l∗ circles, we have an M × M matrix
T0 satisfying Eq. (14) for l = 0 and it is given by

T0 =











T1

T2

. . .

Tl∗











. (15)

5. Linear system

In an actual implementation of VMEM, the variable z is
first truncated by PMLs, then discretized by a Cheby-
shev pesudospectral method [21] that solves the vertical

modes φ
(l,p)
j . This leads to N numerical TE modes and

N numerical TM modes, where N is the number of dis-
cretization points for z. The index j in Eqs. (2), (3),
(5) and (6) now ranges from 1 to N . We assume z is
discretized as zi for 1 ≤ i ≤ N .

A linear system for V
(l,p)
j on Γl can be established

from the continuity of Hz, Ez, Hτ and Eτ on the vertical
boundary of Sl, i.e.,

Πl = {(x, y, z) : (x, y) ∈ Γl, −∞ < z < ∞}.

In the discrete version, this is a system for v
(l,p)
j , 0 ≤

l ≤ l∗, p ∈ {e, h} and 1 ≤ j ≤ N . For a fixed l ≥ 1, we

arrange the vectors v
(l,p)
j in one large column vector as

v
(l) =

[

v
(l,e)

v
(l,h)

]

, v
(l,p) =













v
(l,p)
1

v
(l,p)
2
...

v
(l,p)
N













, p ∈ {e, h}. (16)

The vector v
(0,p)
j is first decomposed as u

(l,p)
j for 1 ≤

l ≤ l∗ following Eq. (8), then the vectors u
(l,p)
j for each l

are organized as one vector u(l) using the same ordering
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of Eq. (16). The final linear system can be written as

A





























v
(1)

v
(2)

...
v
(l∗)

u
(1)

u
(2)

...
u
(l∗)





























=















b
(1)

b
(2)

b
(3)

...
b
(l∗)















. (17)

In Eq. (17) and for 1 ≤ l ≤ l∗, the rows corresponding
to the right hand side b

(l) are related to the continuity
conditions enforced on Πl. For a function φ given on Πl,
we define a vector

~φ|Πl
=











~φ1|Πl

~φ2|Πl

...
~φN |Πl











,

where ~φi|Πl
is a column vector of φ for z = zi and r being

the Ml points of Γl. Using this notation, the vector b(l)

in the right hand side of Eq. (17) can be written as

b
(l) =











b
(l)
1

b
(l)
2

b
(l)
3

b
(l)
4











=











~H
(0)
z |Πl

− ~H
(l)
z |Πl

~E
(0)
z |Πl

− ~E
(l)
z |Πl

~H
(0)
τ |Πl

− ~H
(l)
τ |Πl

~E
(0)
τ |Πl

− ~E
(l)
τ |Πl











, (18)

where H
(0)
z and H

(l)
z are the z component of the mag-

netic field of the 1D solutions in regions S0 and Sl, re-
spectively.
On Πl, there are NMl discretization points corre-

sponding to Ml points on Γl and N points for z. Since
Hz is continuous on Πl, its interior limit from Sl, eval-
uated by Eq. (2), must be identical to its exterior limit
from S0, evaluated by Eq. (2) with l replaced by 0. Writ-
ing down this condition for all NMl points, we have

F
(l,e) ⊗ IMl

v
(l,e) − F

(0,e) ⊗ IMl
u
(l,e) = b

(l)
1 , (19)

where b
(l)
1 is given in (18), IMl

is the Ml ×Ml identity

matrix, F(l,e) is an N × N matrix with its (i, j) entry
given by

F
(l,e)(i, j) =

1

µ(l)(zi)
[η

(l,e)
j ]2φ

(l,e)
j (zi),

F
(0,e) is defined as F(l,e) with l replaced by 0, ⊗ denotes

the matrix Kronecker product, i.e., if B is a matrix with
(i, j) entry bij , then B⊗C is a block matrix with (i, j)
block bijC. Similarly, the continuity of Ez gives us

F
(l,h) ⊗ IMl

v
(l,h) − F

(0,h) ⊗ IMl
u
(l,h) = b

(l)
2 , (20)

where F
(l,h) is an N ×N matrix with (i, j) entry

F
(l,h)(i, j) =

1

ε(l)(zi)
[η

(l,h)
j ]2φ

(l,h)
j (zi),

F
(0,h) is similarly defined, and b

(l)
2 is given in (18).

The continuity conditions for Hτ and Eτ are more te-
dious to write down. The tangential and normal deriva-

tives of V
(l,p)
j and V

(0,p)
j must be expressed using the dif-

ferentiation matrices and the DtN maps. For l > 0, we
have the tangential differentiation matrix Tl and the in-

terior DtN map Λ
(l,p)
j . For the exterior DtN map Λ

(0,p)
j ,

we follow the decomposition of v
(0,p)
j given in Eq. (8),

and rewrite it in block form as

Λ
(0,p)
j =













M
(1,p)
j,1 M

(1,p)
j,2 . . . M

(1,p)
j,l∗

M
(2,p)
j,1 M

(2,p)
j,2 . . . M

(2,p)
j,l∗

...
...

...

M
(l∗,p)
j,1 M

(l∗,p)
j,2 . . . M

(l∗,p)
j,l∗













. (21)

That is, the (l,m) block of Λ
(0,p)
j is denoted as M

(l,p)
j,m

and it is an Ml ×Mm matrix.
At the NMl points on Πl, the continuity condition of

Hτ can be written as

G
(l,e) ⊗Tl v

(l,e) +Φ
(l,h)

v
(l,h) −G

(0,e) ⊗Tl u
(l,e)

−
l∗
∑

m=1

Ψ
(l,h)
m u

(m,h) = b
(l)
3 , (22)

where G
(l,e) is an N ×N matrix with (i, j) entry given

by

G
(l,e)(i, j) =

1

µ(l)(zi)

dφ
(l,e)
j

dz
(zi),

G
(0,e) is similarly defined, Φ(l,h) is an (NMl) × (NMl)

matrix, or N×N block matrix, with its (i, j) block given
by

Φ
(l,h)(i, j) = ik0φ

(l,h)
j (zi)Λ

(l,h)
j , (23)

Ψ
(l,h)
m is an NMl×NMm matrix, or N×N block matrix

with its (i, j) block given by

Ψ
(l,h)
m (i, j) = ik0φ

(0,h)
j (zi)M

(l,h)
j,m . (24)

Finally, the continuity condition of Eτ at the NMl

points on Πl gives

G
(l,h) ⊗Tl v

(l,h) −Φ
(l,e)

v
(l,e) −G

(0,h) ⊗Tl u
(l,h)

+

l∗
∑

m=1

Ψ
(l,e)
m u

(m,e) = b
(l)
4 , (25)

where G
(l,h) is an N ×N matrix with (i, j) entry given

by

G
(l,h)(i, j) =

1

ε(l)(zi)

dφ
(l,h)
j

dz
(zi),
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Φ
(l,e) and Ψ

(l,e)
m can be defined by switching the polar-

ization index from h to e in Eqs. (23) and (24).
Putting Eqs. (19), (20), (22) and (25) together, we ob-

tain 4NMl rows of Eq. (17) corresponding to the right
hand side b

(l). The final system is obtained by repeat-
ing l from l = 1 to l = l∗. After Eq. (17) is solved,

we use expansions (12) and (10) to construct V
(l,p)
j and

V
(0,p)
j in the interior domain Ωl (l > 0) and exterior do-

main Ω0, respectively. The total field is then available
through the vertical mode expansions (2), (3), (5) and
(6). The scattering field can be calculated by subtract-
ing {E(0),H(0)}, the 1D solution in the exterior region
S0, from the total field.
In an early work [19], Boscolo and Midrio studied a

dielectric slab with a finite number of holes for applica-
tions related to photonic crystal slabs. They analyzed
the scattering of a guided mode of the slab by the holes
using similar vertical mode and horizontal cylindrical
wave expansions. Their expansions do not contain the

1D solutions, i.e., the terms H
(l)
z , E

(l)
z , H

(l)
τ and E

(l)
τ in

(2), (3), (5) and (6). Therefore, their method cannot
be used to analyze the scattering of an incident wave
specified in the top or bottom homogeneous media. In
addition, these authors choose to solve the coefficients of
the cylindrical wave expansions (10) and (12). Although
this seems very natural, it requires extensive manipula-
tion of Bessel and Hankel functions using Graf’s addi-
tion formulas. We choose to separate the vertical mode
expansions given in Section 3 from the horizontal cylin-
drical wave expansions given in Section 4, and introduce
the notion of DtN maps. This makes our method more
general, since the DtN maps may be constructed by dif-
ferent methods. In [18], VMEM has been extended to
single cylindrical structures with arbitrary cross sections
where analytic solutions such as the cylindrical waves
are not available. Boundary integral equations (BIEs)
for 2D Helmholtz equations are used to implement the
VMEM of [18]. There is no difficulty to extend that
variant of VMEM with BIEs to structures with multi-
ple cylinders of arbitrary cross sections, but for circular
cylinders considered in this paper, our method based on
the cylindrical wave expansions is certainly more effi-
cient.

6. Numerical examples

In this section, we present some numerical examples to
validate and illustrate our method. First, we follow
Wang et al. [22], consider dimers and trimers consisting
of silicon cylinders in free space. The radius and height
of the cylinders a = 120 nm and D = 240 nm, respec-
tively. The refractive index of silicon is taken from the
optical handbook of Palik [23]. The medium is nonmag-
netic, thus µ = 1 everywhere. Since the silicon cylinders
are surrounded by free space, we have εt = εb = ε(0) = 1.
The incident wave is a normal incident plane wave prop-
agating in the −z direction.
For a dimer, we assume the centers of the cylinders are

located on the x axis at x = ±(a+ g/2), where g is the

gap between the two cylinders. In Fig. 2, we show the
scattering spectra of a dimer with g = 200 nm for a num-
ber of incident waves. The scattering properties depend
on the relative orientation of incident electric field with
respect to the dimer axis i.e., the x axis shown in the
inset of Fig. 2. The four curves in Fig. 2 correspond to
different values of θ, where θ is the horizontal angle be-
tween the incident electric field and the dimer axis. The
existence of two resonant modes are evident from Fig. 2.
These are the magnetic and electric resonant modes at
longer and shorter wavelengths, respectively. When the
angle θ is varied from 0 to π/2, the amplitude of the
magnetic resonant mode decreases, and that of the elec-
tric resonant mode increases. As the gap between the
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Fig. 2. Scattering spectra of a silicon dimer with a 200 nm
gap for normal incident plane waves, where θ is the angle
between the incident electric field and the x axis.

two cylinders is reduced, the resonant wavelengths of
these two modes move closer to each other. In Fig. 3,
we show the scattering spectra of a silicon dimer with
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Fig. 3. Scattering spectra of a silicon dimer with a 20 nm gap
for a normal incident wave with an electric field parallel to
the x axis.

g = 20nm for a normal incident wave with an electric
field parallel to the dimer axis.
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We also consider a trimer of three silicon cylinders
with their centers forming an equilateral triangle in the
xy plane. More specifically, we assume the centers of two
cylinders are located on the x axis as the dimer before,
and the center of the other cylinder is located on the y
axis at y =

√
3(a + g/2), where g is the gap between

any two cylinders. In Fig. 4, we shows the scattering
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Fig. 4. Scattering spectra of a silicon trimer with a 60 nm
gap for normal incident plane waves, where the electric field
is parallel to the x axis (case 1) or to the y axis (case 2).

spectra of a trimer with g = 60nm for two incident
waves. It appears that the interaction of three cylinders
brings in more complexity in the scattering behavior.
The two cases in Fig. 4 correspond to incident waves
with their electric field parallel or perpendicular to the
x axis. It can be seen that the spectra responses for the
two polarizations are almost identical for this structure.
It seems that the increased symmetry of the trimer gives
rise to a certain degree of robustness with respect to the
polarization of the incident wave.
Our results shown in Figs. 2-4 agree with the FDTD

results reported in [22]. In our calculations, we have used
N = 56 points to discretize the z variable and Ml = 9
points to discretize horizontal boundary of each cylinder.
For the trimer, we have M = 3Ml = 27, thus the final
linear system involves 4NM = 6048 unknowns, and it
can be easily solved by a standard method based on
Gaussian elimination. For problems with more particles,
it is necessary to use an iterative method to solve the
final linear system.
Next, we use the new VMEM to analyze metallic

nanoparticles on a substrate. Following the early work
of Rechberger et al. [2], we consider a dimer of two gold
cylinders with radius a = 75nm and height D = 17nm,
assuming the substrate is given in the entire half space
z < 0 and has a refractive index 1.5, and the medium
above the substrate is air. In this case, εb = 1.52, εt = 1
and µ = 1 everywhere. The optical constant of gold is
taken from [24].

In Fig. 5, we show the scattering properties of the
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Fig. 5. Scattering spectra of a gold dimer with a 200 nm gap
for a number of normal incident plane waves.

gold dimer for a fixed gap g = 200 nm. The different
curves in Fig. 5 correspond to different polarization of
the normal incident plane wave. As before, θ is the hor-
izontal angle between the incident electric field and the
dimer axis. Unlike the silicon dimer, the gold dimer has
only one electric resonant mode in the visible and in-
frared frequency range. We also consider the dimer for
different values of the gap g. In Fig. 6, we show the
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Fig. 6. Scattering spectra of a gold dimer with different val-
ues of the gap for normal incident plane waves, where the
electric field is parallel (panel (a)) or perpendicular (panel
(b)) to the dimer axis.
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scattering spectra for g = 200, 100, 50, 20, 10 and 5 nm,
respectively. Figure 6(a) and (b) correspond to incident
waves with the electric field parallel and perpendicular
to dimer axis, respectively. As the gap g is decreased,
a remarkable redshift of the surface plasmon resonance
wavelength can be seen in Fig. 6(a) for the parallel case.
For the perpendicular case, one can observe a smaller
blueshift in Fig. 6(b). The striking difference was ob-
served in experiments by Rechberger et al. [2], and also
appears in elliptic and other dimer structures [3, 4].
For the dimer with a 5 nm gap and the case corre-

sponding to Fig. 6(a), a resonance occurs at freespace
wavelength 0.99µm. In Fig. 7, we show the magnitudes
of Ex and Ey, normalized by the amplitude of the in-
cident wave, on a horizontal plane at the middle of the
nanoparticles for the resonant wavelength. Notice that
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m
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Fig. 7. Horizontal electric field components on the middle
horizontal plane of a gold dimer with a 5 nm gap, for an
incident plane wave with an electric field parallel to the dimer
axis: (a) normalized |Ex|, (b) normalized |Ey|.

the Ex component is strongly enhanced in the gap. The
Ey component is weaker, since the scales in the two plots
are different. In Fig. 8, we show the normalized |Ex|
along the x axis on the same horizontal plane. In the
gap, |Ex| is much larger than the magnitude of the in-
cident wave. The maximum of the normalized |Ex| is
about 88. This is consistent with the results on field
enhancement in the gaps of similar gold dimers [25].
For the results shown in Figs. 5, 6 and 7, we dis-

cretize z by N = 56 points and discretize the circles
Γl by Ml = 19 points. The final linear system involves
8512 unknowns, and it can be easily solved, since the
coefficient matrix has many zero entries.
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Fig. 8. Normalized |Ex| along the x axis on the middle hor-
izontal plane of a gold dimer.

7. Conclusions

The VMEM developed in the previous sections can be
used to analyze the scattering of an incident wave by
a finite number of circular cylindrical objects in a lay-
ered background. We have validated and illustrated
the method using examples involving circular cylindri-
cal nanoparticles in free space or on a substrate. The
method is relatively efficient, since it avoids the dis-
cretization of 3D computational domains, and solves a
linear system established on 2D boundaries of the 3D
cylindrical regions. Compared with the boundary ele-
ment method [10, 11] which is also formulated on a sur-
face, VMEM has the advantage of simplicity, can eas-
ily handle layered background media, but it is more re-
strictive. Due to the special circular geometry of the
cylinders, we make use of the analytic solutions for 2D
Helmholtz equations that appear in the vertical mode
expansion process. A more general VMEM can be de-
veloped by extending the method for a single cylinder of
arbitrary cross section [18] to multiple cylinders. Despite
of the restrictions, we believe the VMEM of this paper
is useful, since circular cylinderical nanoparticles appear
widely in experiments due to the relative simplicity of
their fabrications, and practical applications require in-
tensive numerical simulations for plasmonic structures
with multiple nanoparticles.
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