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Perfectly matched layer for acoustic waveguide modeling — benchmark
calculations and perturbation analysis

Ya Yan Lu1 and Jianxin Zhu2

Abstract: The perfectly matched layer (PML) is a
widely used technique for truncating unbounded domains
in numerical simulations of wave propagation problems.
In this paper, the PML technique is used with a standard
one-way model to solve a benchmark problem for un-
derwater acoustics modeling. Accurate solutions are ob-
tained with a PML layer with a thickness of only a quarter
of the wavelength. The effect of a PML is analyzed in a
perturbation analysis for the Pekeris waveguide.

keyword: Perfectly matched layer, acoustic waveg-
uides, one-way wave equations.

1 Introduction

As a simple model used in ocean acoustics [Jensen et al
(2004); deSanto (1992); Frisk (1994)], the sea-bottom is
approximated by an infinite fluid layer. In numerical sim-
ulations for sound waves in the ocean, for example using
the Parabolic Equation (PE) method [Tappert (1977)] and
the step-wise coupled mode method [Evans (1983)], the
depth is usually truncated. To reduce spurious reflections
from the lower bottom boundary (as a result of truncating
the depth), an artificial absorbing layer [Tappert (1977);
Evans (1983)] can be used. For some problems, a large
truncation depth is needed to obtain a satisfactory solu-
tion when this technique is used. For PE models, the non-
local transparent boundary conditions [Papadakis et al
(1992); Arnold and Ehrhardt (1998); Yevick and Thom-
son (1999); Schmidt et al (2001)] can also be used. How-
ever, they require all the previous acoustic field along the
bottom boundary in each marching step. The transpar-
ent boundary conditions cannot be used in the step-wise
coupled mode method.

Yevick and Thomson (2000a) applied the perfectly
matched layer (PML) technique [Berenger (1994); Chew
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and Weedon (1994)] to PE models and demonstrated that
PML is efficient at truncating the unbounded sea-bottom
with minimal spurious reflections. The PML was orig-
inally introduced by Berenger (1994) for time domain
electro-magnetic problems [Ha et al (2006); Hassan et al
(2004). In the frequency domain, the PML corresponds
to a complex coordinate stretching [Chew and Weedon
(1994)]. The PML technique has been analyzed by the
reflection of plane waves incident on the layer [Berenger
(1994)]. The influence of a discretization on the reflec-
tion coefficient has been studied by Yevick et al (1997).

In section 3, we provide new numerical evidence that
the PML technique is truely effective at truncating the
unbounded sea-bottom. Previous numerical results in
Yevick and Thomson (2000a) are based on the classi-
cal PML and for range-independent problems. We ap-
ply the modified PML [Chen et al (1995); Fang and
Wu (1995)] in a wide-angle PE model to solve a range-
dependent benchmark problem (wedge with penetrable
bottoms) [Jensen and Ferla (1990)]. Accurate solutions
are obtained by truncating the depth to 215 m, where the
maximum depth of the water column is 200 m and the
thickness of PML is 15 m (a quarter of the wavelength).
These numerical results indicate that the PML is much
more effective than artificial absorbing layers.

The objective of section 4 is to develop a theoretical un-
derstanding of the PML technique concerning its appli-
cation for waveguides. Previous theoretical results on
reflection coefficients of the PML are not sufficient for
waveguide problems where a large distance in the prop-
agation direction is involved. A small reflection coef-
ficient cannot guarantee that the solution is still reli-
able after propagating a large distance. Our approach
is to find out how the modes of a simple waveguide are
modified by a PML. We develop a perturbation theory
for normal modes in waveguides terminated below by a
PML. Our theory reveals that the originally real horizon-
tal wavenumber of a trapped mode (in a lossless waveg-
uide) may become complex leading to possible instabil-
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ity or non-physical attenuation of the mode. Therefore,
the PML parameters must be chosen carefully if the total
propagation distance is large.

2 The PML and its reflection coefficient

We consider the two dimensional Helmholtz equation:
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where x is the horizontal distance (called range in ocean
acoustics), z is the depth, ρ is the density and k is the
wavenumber. Both ρ and k are functions of x and z. For
ocean acoustics, the pressure-release condition u = 0 is
typically used at z = 0. If the ocean bottom is modeled
by an infinite fluid layer, equation (1) is valid for the half
plane z > 0. To use the PML, we need to assume that the
medium is homogeneous for a sufficiently large depth.
That is, we have some G, such that ρ = ρ2 and k = k2 for
z > G, where ρ2 and k2 are constants.

The PML corresponds to changing the depth z to the
complex variable ẑ [Chew and Weedon (1994)]:

ẑ = z+ i
Z z

0
σ(τ) dτ (2)

where σ(z) = 0 for 0 < z ≤ H, σ(z) > 0 for z > H and
H ≥ G. If we replace ∂z in (1) by ∂ẑ = [1 + iσ(z)]∂z, we
obtain the following modified Helmholtz equation:
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(3)
Notice that (1) and (3) are different only if z > H. For nu-
merical computations, it is necessary to truncate the vari-
able z to a finite interval, say 0 < z < D, where D > H.
The interval (H,D) is then the actual PML layer. Equa-
tion (3) is solved with a suitable boundary condition at
z = D. In the simplest case, we let

u = 0 at z = D. (4)

Alternatively, we can assume

uz = au at z = D (5)

for some constant a.

Standard analysis [Berenger (1994)] of the PML is con-
cerned with the reflection of a down-going plane wave
incident upon the interface at z = H. In the vicinity of

z = H, the density and wavenumber are constants and the
Helmholtz equation is simplified to uxx + uzz + k2

2u = 0.
For G < z < H, we consider a down-going (towards
z = +∞) plane wave solution

u(d) = ei(αx+βz),

where β > 0 and α2 +β2 = k2
2. For the original Helmholtz

equation (1), the above solution is extended to z > H
without any reflections. For the modified equation (3),
the incident wave u(d) above is connected to

u(d) = ei(αx+βẑ) = ei(αx+βz)e−β
R z

0 σ(τ)dτ for z > H.

With σ(z) > 0 for z > H, if
R z

0 σ(τ)dτ → ∞ as z → ∞,
then u(d)(x,z) → 0 as z → ∞. Therefore, the radiation
condition for the Helmholtz equation is equivalent to the
condition

lim
z→∞

u = 0 (6)

for the modified equation (3). In practice, the PML has
a finite thickness and a boundary condition is imposed at
z = D. If the zero Dirichlet condition (4) is used, we have
the following solution of (3):

u = u(d) +u(u) = ei(αx+βẑ) +Rei(αx−βẑ) for z > H,

where
R =−e2iβDe−2β

R D
H σ(τ)dτ.

Notice that |R|= exp(−2β
R D

H σ(τ)dτ), thus the reflection
coefficient is exponentially small with

R D
H σ(τ)dτ, but it

also depends the angle of incidence. Let θ be the an-
gle between the z axis and the wave vector (α,β), we
have β = k2 cos(θ). Therefore, the reflection coefficient
is smallest for pure down-going waves (θ = 0). When θ

is close to ±π/2, β is small and the reflection coefficient
is relatively large. One observation is that |R| depends
on the integral

R D
H σ(τ)dτ, rather than on |H−D|. There-

fore, if a larger σ is used, the thickness of the PML can be
reduced while keeping the magnitude of the reflection co-
efficient unchanged. In reality, when the z variable is dis-
cretized in a numerical scheme, the truncation error may
be dominant. Therefore, |H−D| cannot be too small. A
study of the reflection coefficient including the effect of
discretizing z can be found in Yevick et al (1997). Fur-
thermore, when the Helmholtz equation is solved with
some numerical method, it is natural to require that the
reflection coefficient is as small as the errors introduced
in the discretization of the domain. For example, when a
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second order finite difference method is used, we could
require that

e−k2 cos(θ∗)
R D

H σ(τ)dτ ∼
(

∆z
λ

)2

,

where λ = 2π/k2 is the wavelength in the homogeneous
sea-bottom, ∆z is the grid size in z and θ∗ is the maxi-
mum angle of incidence for which an accurate solution is
needed.

The above reflection coefficient analysis is actually in-
complete, since waves that decay in the positive z direc-
tion are not considered. For a range-independent waveg-
uide (i.e, ρ and k are independent of x), we have the
trapped modes given in the form

u(d) = eiαx−γ(z−H)

for z > G, where γ > 0 and α2− γ2 = k2
2. The solution

decays exponentially in the positive z direction. With the
transform z→ ẑ, the solution still decays exponentially in
z and it is consistent with condition (6). When the PML
is truncated at z = D with the boundary condition (4), the
solution of (3) for z > H is now given by

u = u(d) +u(u) = eiαx−γ(ẑ−H) +Reiαx+γ(ẑ−H)

for
R =−e−2γ(D−H+i

R D
H σ(τ)dτ).

Here, we have defined the reflection coefficient relative
to the solution at z = H, therefore, H is involved in the
formula of R. Since |R|= e−2γ(D−H), we can see that the
magnitude of the reflection coefficient is independent of
σ. In order to reduce the reflection, we could increase D.
Alternatively [Chen et al (1995); Fang and Wu (1995)],
we can include a new term in the real part of ẑ:

ẑ = z+
Z z

0
[γ(τ)+ iσ(τ)]dτ, (7)

where γ(z) = 0 for z≤ H and γ(z) > 0 for z > H. In this
case, the formula of R can be easily obtained by replacing
σ with σ− iγ.

3 Application of PML to a benchmark problem

Yevick and Thomson (2000a) applied the PML technique
to the PE method. They compared the PML method with
the artificial absorbing layer technique for a number of

f=25Hz
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z

z=0

r=0 4kmr

water

sea−bottom

Figure 1 : Benchmark wedge problem with a penetrable
sea-bottom.

range-independent problems. In this section, we con-
sider a range-dependent benchmark problem — wedge
with a penetrable bottom [Jensen and Ferla (1990)]. As
shown in Fig. 1, the problem is concerned with a ho-
mogeneous water column (sound speed c = 1500m/s,
density ρ = 1g/cm3) above a homogeneous sea-bottom
(c = 1700m/s, ρ = 1.5g/cm3), the water-bottom inter-
face is a linear function of the radial variable r which
has a maximum of 200 m at r = 0 and it reaches zero at
r = 4000 m. A point source of frequency f = 25 Hz is
located at r = 0 and z = 100 m.

For this problem, the maximum depth of the water col-
umn is 200m. Previous PE solutions [Jensen and Ferla
(1990); Thomson (1990); Collins (1990)] of this bench-
mark problem based on artificial absorbing layers typi-
cally use a total depth of 2000m to 4000m. When a trans-
parent boundary condition is used with a wide-angle PE
model [Yevick and Thomson (1999)], a very small to-
tal depth is possible. With a PML, we obtain accurate
results by truncating the depth at 215m. The thickness
of the PML is only 15m. Since the frequency is 25 Hz,
this corresponds to a quarter of the wavelength. Com-
pared with the transparent boundary condition method,
the PML technique is much easier to implement.

For PE modeling of a point source in a radially symmet-
ric medium, the Helmholtz equation (1) is regarded as
the far field equation, where x is now replaced by the ra-
dial variable r, i.e., the horizontal distance to the source.
For a given reference wavenumber k0 and the function φ

defined in u = φeik0r, the far field equation is further ap-
proximated by the following one-way Helmholtz equa-
tion:

∂φ

∂r
= ik0

[√
1+X(r)−1

]
φ, (8)



4 Copyright c© 200x Tech Science Press CMES, vol.x, no.x, pp.1-12, 200x

where X(r) is the operator defined by

X(r) =
ρ

k2
0

∂

∂z

(
1
ρ

∂

∂z

)
+

k2

k2
0
−1, (9)

where k and ρ are functions of r and z. This equation
must be supplemented with a suitable starting field at r =
0. For a step from r j to r j+1 = r j +∆r, Eq. (8) is formally
discretized as

φ j+1 = Pφ j, P = P(X j+1/2) = eis(
√

1+X j+1/2−1), (10)

where s = k0∆r, X j+1/2 is X evaluated at r j + ∆r/2, φ j

approximates φ at r j, etc. If P(X) is approximated by a
rational function of X [Collins (1993b)],

P(X)≈ a0 +
p

∑
l=1

al

X +bl
, (11)

where p is a positive integer, a0, a1, b1, ... are coefficients
that depend on both s and p, then φ j+1 can be evaluated
as

φ j+1 = a0φ j +
p

∑
l=1

alwl, (12)

where wl must be solved from(
X j+1/2 +bl

)
wl = φ j. (13)

PE solutions of the benchmark wedge problem were ob-
tained by Jensen and Ferla (1990), Thomson (1990) and
Collins (1990). These PE results are consistent with
each other, they are roughly consistent with the one-
way coupled mode solution [Jensen and Ferla (1990)]
which approximates (8) better. The PE results are not
satisfactory when compared with the full two-way cou-
pled mode solution [Jensen and Ferla (1990)]. This
has lead to the development of improved one-way mod-
els [Porter et al (1991)] using energy-conserving correc-
tions [Collins and Westwood (1991); Collins (1993a)] or
the single scatter approximation [Lu and Ho (2002a);
Ho and Lu (2003)]. Since the purpose of the present
work is to demonstrate the capability of the PML, we
will not consider these improved one-way models. All
three PE solutions [Jensen and Ferla (1990); Thomson
(1990); Collins (1990)] are calculated with the grid sizes
∆r = 5 m and ∆z = 1 m and the reference wavenumber
k0 = 2π f /c0, where c0 = 1500 m/s. The Greene’s start-
ing field [Greene (1984)] is used in Jensen and Ferla

(1990) and Collins (1990). Thomson and Bohun’s start-
ing field [Thomson and Bohun (1988)] is used in Thom-
son (1990). In the following, we use the same ∆r, ∆z, k0
and Greene’s starting field. The implicit finite difference
PE solutions in Jensen and Ferla (1990) and Thomson
(1990) are based on the wide-angle PE model of Claer-
bout and the Crank-Nicolson scheme for discretizing r.
This is identical to the [1/1] Padé approximant of P:

P(X)≈ 1+ e1X
1+ e1X

, e1 =
1
4
− is

4
, (14)

and it can be written as (11) for p = 1 and

a0 =
1+ si
1− si

, a1 =
−8si

(1− si)2 , b1 =
4

1− si
.

PE solutions based on higher order Padé approximants
are also calculated in Collins (1990), but they are close
to the solution based on (14). In the following, we will
only consider the [1/1] Padé approximant (14).

In the case of a lossless bottom, artificial attenuation is
used in the PE calculations [Jensen and Ferla (1990);
Thomson (1990); Collins (1990)]. In Thomson (1990),
the artificial attenuation is linearly increased from zero
at z = 512 m to 2 dB/λ at z = 2048 m and the depth is
terminated at D = 2048 m with a pressure release bound-
ary condition. We repeated this calculation and obtained
a solution which is denoted as AA1. In Jensen and
Ferla (1990) and Collins (1990), the depth is truncated at
D = 4000 m. We did a similar calculation with an artifi-
cial attenuation increased linearly from zero at 1500 m to
2 dB/λ at z = 4000 m. The latter solution will be denoted
by AA2 and it serves as our reference solution. In Fig. 2,
the solution AA2 is shown as the solid curves. The trans-
mission loss curve at z = 150m exhibits some oscillations
as in the original works [Jensen and Ferla (1990); Thom-
son (1990); Collins (1990)]. The one-way coupled mode
solution [Jensen and Ferla (1990)] which solves the one-
way Helmholtz equation (8) more accurately does not
have these oscillations. Presumably, these oscillations
are caused by evanescent modes excited by the staircase
approximation of the sloping interface. The [1/1] Padé
approximant (14) is an unitary operator which incorrectly
propagates the evanescent modes. These oscillations can
be removed if the one-way propagator P is properly ap-
proximated by a rational approximant that can suppress
the evanescent modes [Milinazzo et al (1997); Lu (1998);
Yevick and Thomson (2000b); Lu and Ho (2002b); Chui
anbd Lu (2004)].
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Figure 2 : Propagation losses versus range for the loss-
less penetrable wedge. Wide-angle PE predictions based
on an artificial absorbing layer (solution AA2 obtained
with D = 4000 m shown as the solid curves) and a PML
(solution PML1 obtained with D = 215 m shown as the
dots) are compared. The solid curve and the dotted curve
are nearly identical.

When the PML is used, the operator X is modified as

X(r) =
ρ

k2
0η

∂

∂z

(
1

ρη

∂

∂z

)
+

k2

k2
0
−1, (15)

where η = 1+γ(z)+ iσ(z) for γ and σ defined in (7). The
actual PML layer is H < z < D. We have η = 1 for z≤H.
In the following, we set H = 200 m, D = 215 m and

σ(z) =
200τ3

1+ τ2 , γ(z) =
100τ3

1+ τ2 , τ =
z−H
D−H

.

The depth z is terminated at z = D with the boundary con-
dition u = 0 at z = D = 215 m. The numerical solution
with this choice of the PML will be denoted as PML1 and
it is shown as the dotted curves in Fig. 2. The two curves
in Fig. 2 can hardly be distinguished, therefore, PML1
has a good agreement with the reference solution AA2.
In fact, the solution PML1 is even more accurate than
AA1 (obtained with D = 2048 m). This can be observed
in Fig. 3 where the errors in transmission loss are plot-
ted for both PML1 and AA1, assuming that the reference
solution AA2 is exact.
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(a): transmission loss error at z=30m
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(b): transmission loss error at z=150m

Figure 3 : Errors in wide-angle PE transmission loss pre-
dictions for lossless penetrable wedge, assuming that the
solution AA2 (obtained with an artificial absorbing layer
and a maximum depth of D = 4000 m) is exact. The dif-
ferences between AA2 and PML1 (obtained with a PML
and D = 215 m) are shown as the solid curves. The differ-
ences between AA2 and AA1 (obtained with an artificial
absorbing layer and D = 2048 m) are shown as the dots.

For the benchmark wedge problem with a lossy bot-
tom, we have a constant attenuation of 0.5 dB/λ for the
bottom. In the first calculation, we follow Thomson
(1990) and let artificial attenuation increase linearly from
0.5 dB/λ at z = 512 m to the maximum of 2 dB/λ at
z = 2048 m. The bottom is then terminated at z = D =
2048 m with a pressure-release boundary condition. The
obtained solution is denoted as AA3. The problem with
a lossy bottom is easier compared with the earlier case
of the lossless bottom. In Jensen and Ferla (1990) and
Collins (1990), the depth z is terminated at D = 2000 m.
To get a definite reference solution, we use D = 4000 m
as before and let attenuation to increase linearly from the
original value of 0.5 dB/λ at z = 1500 m to the maxi-
mum value of 2 dB/λ at z = D = 4000 m. The obtained
solution serves as our reference solution and it is denoted
as AA4. For the PML calculation, the same parameters
are used. The obtained solution, denoted by PML2, is
shown in Fig. 4 together with the reference solution AA4.
It is clear that these two solutions are nearly identical.
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Figure 4 : Propagation losses versus range for the lossy
penetrable wedge. Wide-angle PE predictions based on
an artificial absorbing layer (solution AA4 obtained with
D = 4000 m shown as the solid curves) and a PML (solu-
tion PML2 obtained with D = 215 m shown as the dots)
are compared.

The errors in the transmission loss are shown in Fig. 5,
assuming that AA4 is exact. We observe that PML2 is
more accurate than AA3.

It is natural to ask whether an acceptable solution can be
obtained with a much smaller total depth D when an arti-
ficial absorbing layer is used. In the following, we let the
artificial attenuation to increase linearly from 0.5 dB/λ at
z = 300 m to the maximum amax at z = D = 500 m, where
amax is a parameter. We have varied amax from 1 dB/λ to
20 dB/λ with an increment of 1 dB/λ for each step. Us-
ing the reference solution AA4, we calculate the errors in
transmission loss as before. In Fig. 6, the maxima (range
from r = 0 to r = 4000m) of these errors are shown for
each amax. It appears that the best choice of amax depends
on the receiver depth. At z = 30m, the most accurate
solution is obtained when amax = 10. In this case, the
largest error in transmission loss is about 0.4dB. If the
receiver is at z = 150m, the most accurate solution is ob-
tained when amax = 5 and the maximum error is about
4dB. In all cases, these solutions are clearly less accu-
rate than the PML solution obtained with D = 215m.
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(a): transmission loss error at z=30m
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(b): transmission loss error at z=150m

Figure 5 : Errors in wide-angle PE transmission loss pre-
dictions for lossy penetrable wedge, assuming that the
solution AA4 (obtained with an artificial absorbing layer
and a maximum depth of D = 4000 m) is exact. The dif-
ferences between AA4 and PML2 (obtained with a PML
and D = 215 m) are shown as the solid curves. The differ-
ences between AA4 and AA3 (obtained with an artificial
absorbing layer and D = 2048 m) are shown as the dots.

4 Perturbation analysis

The reflection coefficient formula of a PML given in sec-
tion 2 does not reveal how the solutions of the origi-
nal Helmholtz equation (1) and the modified Helmholtz
equation (3) differ. This is especially important for
waveguide problems, since we are interested in the so-
lution over a large range distance. The relatively small
side-effects introduced by the PML may accumulate over
a large range distance leading to a significant error in the
solution. This has motivated us to study the effect of the
PML on normal modes in a range-independent waveg-
uide.

Consider a trapped mode, φ(z)eiβx, of the acoustic waveg-
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Figure 6 : Maximum errors in transmission loss versus
amax based on a wide-angle PE model and a linear arti-
ficial attenuation profile from 0.5 dB/λ at z = 300 m to
amax at z = D = 500 m. The bottom is terminated with a
pressure-release condition at z = D. The errors are cal-
culated assuming that the solution AA4 (obtained with
an artificial absorbing layer and a maximum depth of
D = 4000 m) is exact.

uide satisfying the following eigenvalue problem

ρ
d
dz

(
1
ρ

dφ

dz

)
+ k2

φ = β
2
φ for z > 0, (16)

φ(0) = 0, (17)

lim
z→∞

φ(z) = 0. (18)

For z > G, we assume that the wavenumber and the den-
sity are constants:

k(z) = k2, ρ(z) = ρ2.

To satisfy condition (18), we must have λ = β2 > k2
2 and

φ should decay to zero (as z → ∞) like e−
√

λ−k2
2 z. This

gives rise to

φz = i
√

k2
2−λ φ for z > G,

where the square root follows the standard definition,
such that the square root of a negative number is a pure
imaginary number with a positive imaginary part. This

allows us to reduce the original eigenvalue problem to
a nonlinear eigenvalue problem on the finite interval
0 < z < H, where H > G. It is

ρ
d
dz

(
1
ρ

dφ

dz

)
+ k2

φ = λφ for 0 < z < H, (19)

φ = 0 at z = 0, (20)

φz− i
√

k2
2−λφ = 0 at z = H. (21)

If we multiply equation (19) by ρ−1φ and integrate over
(0,H), we obtain

λ

Z H

0

1
ρ
|φ|2 dz−

Z H

0

1
ρ

k2|φ|2 dz

=
1

ρ(H)
i
√

k2
2−λ |φ(H)|2−

Z H

0

1
ρ
|φz|2 dz. (22)

Let λ be a real eigenvalue of the system (19-21), from

(22), we conclude that i
√

k2
2−λ must be real, thus λ ≥

k2
2. Furthermore, the two terms in the right hand side of

(22) are negative, therefore

λ

Z H

0

1
ρ
|φ|2 dz <

Z H

0

1
ρ

k2|φ|2 dz.

This gives rise to λ < k2
1, where k1 = maxk(z).

The system (19-21) also has complex eigenvalues corre-
sponding to the leaky modes of the waveguide. Since the
branch-cut of the standard square root is the negative real
axis, we have Re(k2

2 − λ)1/2 > 0 if λ is complex with a
non-zero imaginary part. Comparing the imaginary parts
of the two sides of (22), we have Imλ > 0. Therefore, a
leaky mode (which depends on x as ei

√
λx) decays expo-

nentially in the propagation direction x.

When the PML is used, we have the following eigenvalue
problem

ρ

1+ iσ
d
dz

(
1

ρ(1+ iσ)
dφ̃

dz

)
+ k2

φ̃ = λ̃φ̃ (23)

for 0 < z < D and

φ̃ = 0 at z = 0, (24)

φ̃ = 0 at z = D, or (25)
dφ̃

dz
−a φ̃ = 0 at z = D, (26)
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corresponding to the boundary conditions (4) or (5), re-
spectively. For z > G, Eq. (23) is simplified to

d2φ̃

dẑ2 + k2
2φ̃ = λ̃φ̃.

We can write down the solution as

φ̃(z) = C1ei
√

k2
2−λ̃(ẑ−H) +C2e−i

√
k2

2−λ̃(ẑ−H) for z > G

where C1 and C2 are constants. This gives rise to

dφ̃

dz
= q(λ̃)φ̃ at z = H, (27)

where

q(λ̃) = i
√

k2
2− λ̃

1+ r(λ̃)ε(λ̃)
1− r(λ̃)ε(λ̃)

,

for
ε(λ̃) = e2i

√
k2

2−λ̃[D−H+i
R D

0 σ(τ)dτ]. (28)

For boundary conditions (25) or (26), we have r(λ̃) = 1
or

r(λ̃) =
a− i

√
k2

2− λ̃ [1+ iσ(D)]

a+ i
√

k2
2− λ̃ [1+ iσ(D)]

, (29)

respectively. Notice that as |a| → ∞, the boundary con-
dition (26) is reduced to (25) and r(λ̃) converges to 1.
Since σ(z) = 0 for z≤ H, Eq. (23) is simplified to

ρ
d
dz

(
1
ρ

dφ̃

dz

)
+ k2

φ̃ = λ̃φ̃ for 0 < z < H. (30)

Therefore, the original PML eigenvalue problem (23),
(24) with (25) or (26) is reduced to a nonlinear eigen-
value problem on a smaller interval: (30), (24) and (27).
Notice that the only difference between the original and
the PML eigenvalue problems is the boundary condition
at z = H.

Let λ 6= k2
2 be an eigenvalue of the original problem (19-

21), we establish a perturbation result for λ̃ assuming
that |ε(λ)|<< 1, where the function ε is defined in (28).
Although for a given waveguide and a given PML, the
nonlinear eigenvalue problem (30), (24) and (27) can be
solved by a numerical method, the perturbation result
gives a useful explicit relationship between the PML pa-
rameters and λ̃.

Multiply equations (30) and (19) by ρ−1φ and ρ−1φ̃, re-
spectively, and integrate from z = 0 to z = H, we obtain

q(λ̃)− i
√

k2
2−λ = (λ̃−λ)

Z H

0

ρ(H)φ(z)φ̃(z)
ρ(z)φ(H)φ̃(H)

dz.

To the leading order, φ̃ ≈ φ (up to a constant). A Taylor
series of q around λ gives rise to

λ̃−λ =
q(λ)− i

√
k2

2−λ

F−q′(λ)
+O(ε2),

where

F =
Z H

0

ρ(H)φ2(z)
ρ(z)φ2(H)

dz.

Since q(λ) and q′(λ) are still related to ε(λ), we can sim-
plify the above and obtain

λ̃−λ =
−4(k2

2−λ)r(λ)

2iF
√

k2
2−λ−1

ε(λ)+O(ε2) (31)

where r(λ) follows the definition of r(λ̃) given earlier.
For the more general PML with a real part in the coordi-
nate stretching given in (7), the perturbation result can be
easily obtained by replacing σ by σ− iγ.

To verify the above perturbation result, we consider a
Pekeris waveguide given by

ρ = ρ1 = 1000 kg/m3, for 0 < z < G

c = c1 = 1500 m/s, for 0 < z < G

ρ = ρ2 = 1700 kg/m3, for z > G,

c = c2 = 1666.67 m/s, for z > G,

ω = 480, G = 50m.

Thus, the frequency is approximately 76.394 Hz. A PML
is placed in H < z < D where

H = 70 m, D = 80 m. (32)

The function σ is defined such that σ(z) = 0 for z ≤ H
and

σ(z) =
10t3

1+ t2 , t =
z−H
D−H

for z > H. (33)

The Pekeris waveguide has two trapped modes given by

λ
(trap)
1 = 9.9794×10−2, λ

(trap)
2 = 9.1597×10−2

and an infinite sequence of leaky modes. The first two
leaky modes are

λ
(leak)
1 = 7.8000×10−2 +1.7270×10−3i,

λ
(leak)
2 = 5.4287×10−2 +4.3156×10−3i.
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Table 1 : Exact (left column) and approximate (right col-
umn) of two trapped modes and the first two leaky modes
of a Pekeris waveguide terminated by a PML.

λ̃ (31)
9.9795E-2 − 4.8227E-7i 9.9795E-2 − 4.8235E-7i
9.1607E-2 + 3.0579E-6i 9.1607E-2 + 3.1054E-6i
7.8435E-2 + 1.2133E-3i 7.8802E-2 + 1.3989E-3i
5.4385E-2 + 4.2507E-3i 5.4389E-2 + 4.2539E-3i

Next, we calculate a few modes for the Pekeris waveg-
uide truncated with a PML together with the simple zero
Dirichlet boundary condition (25). These results and the
perturbation results from (31) are compared in Table 1.
We observe that λ̃ is complex, even when the original λ

is real (which corresponds to a trapped mode). This is
undesirable, since it implies that the corresponding PML
mode will decay or grow exponentially along the waveg-
uide. For this example, these side-effects are negligible.
When the two trapped modes are propagated over a range
of 10 km, the first mode will gain a 0.77% in its magni-
tude and the second mode will lose about 5% in its mag-
nitude. The second column in Table 1 is the perturbation
result (31). Notice that our perturbation result gives a
good prediction to the small imaginary part of λ̃ (when
λ is real). The exact and perturbation results for the first
two leaky modes are also listed in Table 1. A pertur-
bation result for the eigenfunction φ̃ is presented in the
Appendix.

From (31), we observe that the difference between λ and
λ̃ is on the order of ε. This means that the imaginary part
of the horizontal wavenumber of the perturbed mode (for
the waveguide terminated by a PML) is also on the order
of ε. For the standard PML given in (2), the magnitude
of ε is determined by the decay rate of the original mode
in the homogeneous bottom and where the PML is termi-
nated, i.e. D. If the original trapped mode is near cut-off,
we can expect that the side-effect of the PML is large.
Fortunately, we can use the real part γ in the complex co-
ordinate stretching (7) to reduce the magnitude of the ε

further. For the benchmark wedge problem, the number
of trapped modes decreases as r is increased. If we only
use the standard PML, large error will be introduced for
r near those critical values where the number of trapped
modes changes.

5 Conclusions

In this paper, using the benchmark wedge problem de-
scribed in Jensen and Ferla (1990), we demonstrated that
the PML is a very effective technique for terminating the
unbounded ocean-bottom in one-way modeling of sound
wave propagation in ocean. For waveguide problems, the
distance along the waveguide axis is large and the small
side effect introduced by a PML may lead to large errors.
Existing theory of PML based on the reflection coeffi-
cient is not adequate for waveguide problems. We carried
out a perturbation analysis for normal modes in waveg-
uides truncated by a PML. Notice that a PML can cause
a trapped mode to decay or grow along the waveguide
axis, therefore, it is incorrect to call PML an absorbing
layer. The accuracy of the perturbation results are illus-
trated in comparisons with the exact solutions. With the
real part γ of the complex coordinate stretching given in
(7), the side effect of a truncated PML can be reduced.
We believe that the PML technique can be used for simu-
lating wave propagations in extremely long waveguides,
including those more realistic models with natural atten-
uation. The perturbation results developed in this paper
can be used to estimate the side effects of the PML and
to help choosing the PML parameters.

Acknowledgement: This research was partially sup-
ported by a City University of Hong Kong research grant
(Project No. 7001289).

Appendix: a perturbation result on eigenfunctions

A perturbation result for the eigenfunction φ̃ can also be
established. Let φ̃ = φ + εv + O(ε2) and define the oper-
ator L = ρ∂z(ρ−1∂z·)+ k2(z)−λ, we have

Lv = sφ for 0 < z < H,

v = 0 at z = 0,
dv
dz
− i

√
k2

2−λv = sFφ(H) at z = H.

The function v can be written as v = v0 + w, where v0 is
any function satisfying the following three conditions:

v0 = 0 at z = 0, (34)
dv0

dz
− i

√
k2

2−λv0 = sFφ(H) at z = H, (35)Z H

0

1
ρ

φLv0dz = s
Z H

0

1
ρ

φ
2dz. (36)
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The last condition above is used to ensure that w has a
solution, where w satisfies

Lw = sφ−Lv0 for 0 < z < H, (37)

w = 0 at z = 0,
dw
dz
− i

√
k2

2−λw = 0 at z = H.

For the fixed λ, consider the following associated linear
eigenvalue problem:

ρ
d
dz

(
1
ρ

dϕ

dz

)
+ k2

ϕ = µϕ, 0 < z < H,

ϕ(0) = 0

ϕ
′(H)− i

√
k2

2−λϕ(H) = 0.

Let the eigenvalues and eigenfunctions be µ j and ϕ j for
j = 1,2, ..., these eigenfunctions are “orthogonal” to each
other: Z H

0

1
ρ

ϕ jϕkdz = 0, if j 6= k.

Furthermore, we can assume that µ1 = λ and ϕ1 = φ, thus
the right hand side of (37) can be expanded as

sφ−Lv0 =
∞

∑
j=2

c jϕ j,

where the coefficient of ϕ1 is zero because of (36) and

c j =−
R H

0
1
ρ

ϕ jLv0 dzR H
0

1
ρ

ϕ2
j dz

.

This gives rise to

w =
∞

∑
j=2

c j

µ j−λ
ϕ j.

One way to construct a function v0 is to let

1
ρ

dv0

dz
= A+Bz

for some constants A and B. From (34), we have

v0(z) =
Z z

0
(A+Bτ)ρ(τ)dτ.

The other two conditions (35) and (36) give rise to the
following linear system:[

c11 c12
c21 c22

][
A
B

]
=

[
sFφ(H)

−s
R H

0 ρ−1φ2(z)dz

]
,

where

c11 = ρ(H)− i
√

k2
2−λ

Z H

0
ρ(τ)dτ,

c12 = Hρ(H)− i
√

k2
2−λ

Z H

0
τρ(τ)dτ,

c21 =
Z H

0

φ(z)
ρ(z)

[
k2(z)−λ

][Z z

0
ρ(τ)dτ

]
dz,

c22 =
Z H

0

φ(z)
ρ(z)

[
k2(z)−λ

][Z z

0
τρ(τ)dτ

]
dz

−
Z H

0
φ(z)dz.
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