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Abstract—The problem of maximum rate achievable with
analog network coding for a unicast communication over a
layered wireless relay network with directed links is considered.
A relay node performing analog network coding scales and
forwards the signals received at its input. Recently this problem
has been considered under two assumptions: (A) each relay node
scales its received signal to the upper bound of its transmit power
constraint, (B) the relay nodes in specific subsets of the network
operate in the high-SNR regime. We establish that assumption
(A), in general, leads to suboptimal end-to-end rate. We also
characterize the performance of analog network coding in a class
of symmetric layered networks without assumption (B).

The key contribution of this work is a lemma that states that in
a layered relay network a globally optimal set of scaling factors
for the nodes that maximizes the end-to-end rate can be computed
layer-by-layer. Specifically, a rate-optimal set of scaling factors
for the nodes in a layer is the one that maximizes the sum-rate
of the nodes in the next layer. This critical insight allows us
to characterize analog network coding performance in network
scenarios beyond those that can be analyzed using the existing
approaches. We illustrate this by computing the maximum rate
achievable with analog network coding in one particular layered
network, in various communication scenarios.

I. INTRODUCTION

Analog network coding (ANC) extends to multihop wireless
networks the idea of linear network coding [1] where an inter-
mediate node sends out a linear combination of its incoming
packets. In a wireless network, signals transmitted simultane-
ously by multiple sources add in the air. Each node receives
a noisy sum of these signals, i.e. a linear combination of the
received signals and noise. A multihop relay scheme where
an intermediate relay node merely amplifies and forwards this
noisy sum is referred to as analog network coding [2], [3].

The performance of the analog network coding in layered
relay networks is previously analyzed in [3], [4]. In [3],
the achievable rate is computed under two assumptions: (A)
each relay node scales the received signal to the maximum
extent possible subject to its transmit power constraint, (B)
the nodes in all layers operate in the high-SNR regime,
where the received signal power PR,k at the kth node satisfies
mink∈l PR,k ≥ 1/δ, l = 1, . . . , L for some small δ ≥ 0, where
L is the number of layers of relay nodes. It is shown that the
rate achieved under these two assumptions approaches network
capacity as the source power increases. The authors in [4]
extend this work to the scenarios where the nodes in at most
one layer do not satisfy these two assumptions and show that
achievable rates in such scenarios also approach the network
capacity as the source power increases.

However, requiring each relay node to amplify its received
signal to the upper bound of its transmit power constraint

results in suboptimal end-to-end performance of analog net-
work coding, as we establish in this paper and was also previ-
ously indicated in [5], [6]. Further, even in low-SNR regimes
amplify-and-forward relaying can be capacity achieving relay
strategy in some scenarios, [7]. Therefore, in this paper we are
concerned with analyzing the performance of analog network
coding in layered networks, without above two assumptions on
input signal scaling factors and received SNRs. Computing the
maximum rate achievable with analog network coding without
these two assumptions, however, results in a computationally
intractable problem, in general [4], [6].

Our main contribution is a result that a globally optimal set
of scaling factors for the nodes that maximizes the end-to-end
rate in a general layered relay network can be computed layer-
by-layer. In particular, a rate-optimal set of scaling factors for
the nodes in a layer is the one that maximizes the sum-rate
of the nodes in the next layer. This result allows us to exactly
compute the optimal end-to-end rate achievable with analog
network coding, over all possible choices of scaling factors
for the nodes, in a class of layered networks that cannot be
so addressed using existing approaches. We illustrate this by
computing the maximum ANC rate in different scenarios for
one particular layered network. Further, for general layered
relay networks, our result significantly reduces the computa-
tional complexity of solving this problem.

In this paper, we provide the summary of our work. We have
omitted most proofs or give only brief outlines. The details can
be found in our arXiv submission [8].

Organization: In Section II we introduce a general wireless
layered relay network model and formulate the problem of
maximum rate achievable with ANC in such a network. Sec-
tion III discusses the computational hardness of this problem
and existing approaches to address it. In Section IV we first
motivate and then state and prove the key lemma of this
paper that allows us to compute a rate-optimal set of scaling
factors for the nodes in a layered network in a layer-by-
layer manner. Then Section V illustrates the computation of
the maximum ANC rate in one particular layered network in
various scenarios. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a (L + 2)-layer wireless relay network with di-
rected links1. Source s is at layer ‘0’, destination t is at
layer ‘L + 1’, and a set R of relay nodes are arranged in
L layers between them. The lth layer contains nl relay nodes,

1The layered networks with bidirected links can be addressed with the
signal subtraction notion we introduced in [6]. However, for the ease of
presentation we do not discuss such networks in this paper.



∑L
l=1 nl = |R|. Each node is assumed to have a single antenna

and operate in full-duplex mode.
At instant n, the channel output at node i, i ∈ R ∪ {t}, is

yi[n] =
∑

j∈N (i)

hjixj [n] + zi[n], −∞ < n <∞, (1)

where xj [n] is the channel input of the node j in the neighbor
set N (i) of node i. In (1), hji is a real number representing
the channel gain along the link from node j to node i. It is
assumed to be fixed (for example, as in a single realization of a
fading process) and known throughout the network. The source
symbols xs[n],−∞ < n < ∞, are i.i.d. Gaussian random
variables with zero mean and variance Ps that satisfy an
average source power constraint, xs[n] ∼ N (0, Ps). Further,
{zi[n]} is a sequence (in n) of i.i.d. Gaussian random variables
with zi[n] ∼ N (0, σ2). We also assume that zi are independent
of the input signal and of each other. We assume that the ith

relay’s transmit power is constrained as:

E[x2i [n]] ≤ Pi, −∞ < n <∞ (2)

In analog network coding each relay node amplifies and
forwards the noisy signal sum received at its input. More
precisely, a relay node i at instant n+ 1 transmits the scaled
version of yi[n], its input at time instant n, as follows

xi[n+ 1] = βiyi[n], 0 ≤ β2
i ≤ β2

i,max = Pi/PR,i, (3)

where PR,i is the received power at the node i.
In layered networks, all copies of a source signal and a noise

symbol introduced at a node and traveling along different paths
arrive at the destination with the same respective time delays.
Therefore, the outputs of the source-destination channel are
free of intersymbol interference. This simplifies the relation
between input and output of the channel and allows us to omit
the time-index while denoting the input and output signals.

Using (1) and (3), the input-output channel between the
source and destination can be written as

yt =

[ ∑
(i1,...,iL)∈Ks

hs,i1βi1hi1,i2 . . . βiLhiL,t

]
xs (4)

+

L∑
l=1

nl∑
j=1

[ ∑
(i1,...,iL−l+1)∈Klj

βi1hi1,i2 . . . βiL−l+1
hiL−l+1,t

]
zlj+zt,

where Ks is the set of L-tuples of node indices corresponding
to all paths from source s to destination t with path delay L.
Similarly, Klj is the set of L − l + 1-tuples of node indices
corresponding to all paths from the jth relay of lth layer to
destination t with path delay L− l + 1.

For all the paths between source s and destination t, and all
the paths between the jth relay of the lth layer to destination
t with path delay L − l + 1, we introduce modified channel
gains, respectively, as follows

hs =
∑

(i1,...,iL)∈Ks

hs,i1βi1hi1,i2 . . . βiLhiL,t (5)

hlj =
∑

(i1,...,iL−l+1)∈Klj

βi1hi1,i2 . . . βiL−l+1
hiL−l+1,t (6)

In terms of these modified channel gains2, the source-
destination channel in (4) can be written as:

yt = hsxs +

L∑
l=1

nl∑
j=1

hljzlj + zt (7)

In [8] we provide an example to illustrate the derivation
of the source-destination channel expression in (7) for a
specific layered network in terms of the modified channel gains
introduced above.

Problem Formulation: For a given network-wide scaling
vector β = (βli)1≤l≤L,1≤i≤nl

, the achievable rate for the
channel in (7) with i.i.d. Gaussian input is ([3], [4], [6]):

I(Ps,β) = (1/2) log
(
1 + SNRt

)
, (8)

where SNRt, the signal-to-noise ratio at destination t is:

SNRt =
Ps
σ2

h2s

1 +
∑L
l=1

∑nl

j=1 h
2
lj

(9)

The maximum information-rate IANC(Ps) achievable in a
given layered network with i.i.d. Gaussian input is defined as
the maximum of I(Ps,β) over all feasible β, subject to per
relay transmit power constraint (3). In other words:

IANC(Ps)
def
= max

β:0≤β2
li≤β

2
li,max

I(Ps,β) (10)

Given the monotonicity of the log(·) function, we have

βopt = argmax
β:0≤β2

li≤β
2
li,max

I(Ps,β) = argmax
β:0≤β2

li≤β
2
li,max

SNRt (11)

Therefore in the rest of the paper, we concern ourselves mostly
with maximizing the received SNRs.

III. ANALYZING THE OPTIMAL PERFORMANCE OF ANALOG
NETWORK CODING IN GENERAL LAYERED NETWORKS

The problem (11) is a hard optimization problem. In terms
of Geometric Programming [10], [11], SNRt is a ratio of
posynomials that is a nonlinear (neither convex nor concave)
function of

∑
l nl variables in β, in general. It is well-known

that maximizing such ratios of posynomials is an intractable
problem with no efficient and global solution methods [10,
Page 85]. However, globally optimal solutions of such prob-
lems can be approximated using heuristic methods based on
signomial programming condensation that solves a sequence
of geometric programs, as in [10, Section 3.3]. Such heuristics
though useful in providing good numerical approximations to
the optimal SNRt, do not provide non-trivial characterization
of the optimal SNRt (or a βopt that achieves it) in terms of
various system parameters. We argue that such characterization
however, is highly desired not only for the accurate analysis
of ANC performance in general layered networks, but also for
various reasons of significant practical consequences, [8].

2Modified channel gains for even a possibly exponential number of paths
as in (5) and (6) can be efficiently computed using the line-graphs [9], and
there are only a polynomial number of them in polynomial sized graph.



Towards this goal, in [3], [4] the performance of analog
network coding is analyzed under assumptions A and B
discussed earlier about per node scaling factor and received
SNR at each node, respectively. In the following, we provide
an example to establish that assumption A, in general, leads
to suboptimal ANC rates.

Example 1: Let us consider the 2-relay Gaussian diamond
network, [3], [5]. It is defined as a directed graph G = (V,E)
with V = {s, t, 1, 2} and E = {(s, 1), (s, 2), (1, t), (2, t)}. Let
he be the channel gain along the link e, e ∈ E. The problem
of maximum rate achievable with analog network coding for
this network can be formulated as (using (11)), [8]:

argmax
0≤β2≤β2

max

Ps
σ2

(hs1β1h1t + hs2β2h2t)
2

1 + β2
1h

2
1t + β2

2h
2
2t

, (12)

where β = (β1, β2) and βmax = (β1,max, β2,max) with
β2
1,max = P1/(h

2
s1P + σ2), β2

2,max = P2/(h
2
s2P + σ2).

Equating the partial derivatives of the objective function
with respect to β1 and β2 to zero, we get the following two
conditions for global maximum:

β1 = hs1(hs2h1th2tβ2)
−1 + hs1h2t(hs2h1t)

−1β2 (13)

β2 = hs2(hs1h1th2tβ1)
−1 + hs2h1t(hs1h2t)

−1β1 (14)

In [8] we prove that all choices of the parameters ({he, e ∈
E}, Ps, P1, P2) that result in one of the constraints β2

1 <
β2
1,max and β2

2 < β2
2,max being satisfied lead to a whole class

of scenarios where the global optimum solutions are achieved
when a relay node transmits strictly below its maximum
transmit power constraint, thus contradicting assumption A.
In [6], we provide an instance of such parameter choices.

Next, we introduce our result that allows us to characterize
the optimal performance of analog network coding in general
layered networks without assumption B or its limited relax-
ation in [4]. This result also provides some key insights into
the nature of βopt in terms of system parameters.

IV. COMPUTING βopt LAYER-BY-LAYER

In this section we prove that in an end-to-end rate optimal
network-wide scaling vector βopt, the component scaling fac-
tors corresponding to the relay nodes in the layer l, 1 ≤ l ≤ L,
maximize the sum-rate of the nodes in the layer l + 1.
However before discussing this result formally, we motivate it
by computing the maximum rate of information transfer over
a linear amplify-and-forward relay network.

A. Linear AF Networks

We consider a linear amplify-and-forward network of L
relay nodes between source s and destination t, as shown in
the Figure 1.

Consider a feasible scaling vector β = (β1, . . . , βL) such
that the output of each relay node satisfies the corresponding
transmit power constraint (2). Then the maximum scaling
factor for the lth, 1 ≤ l ≤ L, relay is (from (3)):

β2
l,max =

Pl

Ps(h0
∏l−1
i=1 βihi)

2 + σ2(1 +
∑l−1
i=1(

∏l−1
j=i βjhj)

2)
(15)

h0 h1 . . . hL−1 hL

s t1 2 L− 1 L

Fig. 1. A linear amplify-and-forward network of L+ 2 layers. Source s in
layer ‘0’, destination t in layer ‘L+ 1’, and L relays between them.

In a linear AF network, both the source signal and the
noise introduced at each intermediate relay node can reach
the destination along only one path. Therefore using (5), (6),
(7), and (9), for a given scaling vector β, the received SNR
at destination t or any relay node l can be written as

SNRl =
Ps
σ2

(h0
∏l−1
i=1 βihi)

2

1 +
∑l−1
i=1(

∏l−1
j=i βjhj)

2
, 1 ≤ l ≤ L+ 1 (16)

Lemma 1: The value of βL−1 that maximizes SNRL also
maximizes SNRt.

Proof: The proof involves three steps.
Step 1: Compute the partial derivative of SNRt with respect

to βL: ∂SNRt

∂βL
= 2

Psh
2
0

σ2

(
∏L−1

i=1 βihi)
2βLh

2
L

(1+
∑L

i=1(
∏L

j=i βjhj)2)2
This implies

that for a given (β1, . . . , βL−1), SNRt increases with βL.
However, as the maximum value that βL can take is βL,max,
so SNRt attains it maximum value at βL,max.

Step 2: Using (15) we can express SNRt only in terms of
(β1, . . . , βL−1) as SNRt(β1, . . . , βL−1) given below as

Psh
2
0PLh

2
L

σ2

Psh20 +
σ2+PLh2

L

(
∏L−1

i=1 βihi)2
(1 +

∑L−1
i=1 (

∏L−1
j=i βjhj)

2)

Step 3: Compute ∂SNRt(β1,...,βL−1)
∂βL−1

, the partial derivative
of SNRt(β1, . . . , βL−1) with respect to βL−1 as

Psh
2
0PLh

2
L

βL−1
(1 +

PLh
2
L

σ2 )[
Psh20 +

σ2+PLh2
L

(
∏L−1

i=1 βihi)2
(1 +

∑L−1
i=1 (

∏L−1
j=i βjhj)

2)
]2 (17)

Further, from (16) the partial derivative of SNRL with
respect to βL−1 evaluates to

∂SNRL
∂βL−1

= 2
Psh

2
0

σ2

(
∏L−2
i=1 βihi)

2βL−1h
2
L−1

(1 +
∑L−1
i=1 (

∏L−1
j=i βjhj)

2)2
(18)

It follows from (17) and (18) that SNRt(β1, . . . , βL−1) and
SNRL are increasing functions of βL−1. Therefore both attain
their respective maximum at βL−1,max, the maximum value of
βL−1. In other words, a value of βL−1 that maximizes SNRL
also maximizes SNRt.

Following the same sequence of steps as in the proof of
above lemma with SNRt and SNRL replaced by SNRL
and SNRL−1, respectively, we can also prove that the
same value of βL−2 (specifically βL−2,max) maximizes both,
SNRL and SNRL−1. This along with Lemma 1 that al-
lows us to express both, SNRL and SNRt as functions
of (β1, . . . , βL−2), proves that the same value of βL−2,max
maximizes SNRL−1, SNRL and SNRt. Furthermore car-
rying out this reasoning recursively allows us to express
SNRi, 2 ≤ i ≤ L + 1, only in terms of β1 and to prove
that the same value of β1 (specifically β1,max) maximizes all
of them. We summarize this in the following proposition.



Proposition 1: For a linear AF network, βopt = (βopt1 , . . . ,
βoptL ) that solves (11) can be computed recursively as

βopti = argmax
β2
i≤β2

i,max

SNRi+1(β
opt
1 , . . . , βopti−1, βi), 1 ≤ i ≤ L

Corollary 1: For a linear AF network with Ps = P1 =
. . . = PL = P and h0 = h1 = . . . = hL = h, the maximum
achievable information rate R = O(1/L).

Proof: Using Proposition 1, we show in [8] that

(βopti )2 = β2
i,max = β2 = P/(h2P + σ2), 1 ≤ i ≤ L

Therefore from (16), we have

SNRt =

(
h2P

σ2

)2
1− (βh)2

1− (βh)2L+2
(βh)2L

This implies that rate R = 1
2 log(1+SNRt) varies asymptot-

ically with L as R ≤ 1
2L

(h2P/σ2)2

1+h2P/σ2 .

B. General Layered Networks

We now discuss our result for the general layered networks,
discussed in Section II, in general SNR regime.

Lemma 2: Consider a layered relay network of L+2 layers,
with source s in layer ‘0’, destination t in layer ‘L+ 1’, and
L layers of relay nodes between them. The lth layer contains
nl nodes, n0 = nL+1 = 1. A network-wide scaling vector
βopt = (βopt1 , . . . ,βoptL ) that solves (11) for this network, can
be computed recursively for 1 ≤ l ≤ L as

βoptl = argmax
β2

l≤β
2
l,max

nl+1∏
i=1

(1 + SNRl+1,i(β
opt
1 , . . . ,βoptl−1,βl)),

where βoptl is the subvector of optimal scaling factors for the
nodes in the lth layer, βoptl = (βoptl1 , . . . , βoptlnl

) and constraints
β2
l ≤ β2

l,max are component-wise β2
li ≤ β2

li,max.
Remark 1: Lemma 2, in other words, states that the sub-

vector of the optimal scaling vector βopt corresponding to
the scaling factors of the nodes in the lth layer, is one that
maximizes the product

∏nl+1

i=1 (1 + SNRl+1,i) over the nodes
in the next layer. However, log

∏nl+1

i=1 (1 + SNRl+1,i) equals∑nl+1

i=1 Rl+1,i, the sum of the information rates to the nodes in
the l+1st layer. Therefore an interpretation of the Lemma 2 is:
if starting with the first layer, the scaling factors for the nodes
in each successive layer are chosen such that the sum-rate of
the nodes in the next layer is maximized, then such a choice
also leads to a globally optimal solution of the problem (11).

Remark 2: The problem (11) is a hard optimization problem
in
∑
l nl variables as noted in Section III. However, Lemma 2

leads to the decomposition of this problem into a cascade of
L such subproblems, where the lth subproblem involves nl
variables. This results in exponential reduction in search space
required to solve (11) in general layered networks.

Proof: For the ease of presentation, we discuss the proof
for a class of layered networks where channel gains along all
links between the nodes in two adjacent layers are equal, as in
Figure 2. We call such layered networks as “Equal Channel
Gains between Adjacent Layers (ECGAL)” networks.

s

k − 1 k k + 1

t

1

2

1

2

1

2

S +N1

S +N2

hk−1

hk−1

hk−1

hk−1

hk

hk

hk

hk

hs

hs

hL

hL

L + 10

Fig. 2. An ECGAL network of L + 2 layers, with source s in layer ‘0’,
destination t in layer ‘L + 1’, and L layers consisting of two relay nodes
each between them. The channel gains along all links between two adjacent
layers are equal.

Consider the ECGAL network shown in Figure 2. We
assume that all relays have the same transmit power constraint
EX2 ≤ P . Consider three adjacent layers k−1, k, and k+1.

Claim: The scaling factors for the nodes in layer k − 1
that maximize

∏2
i=1(1 + SNRk,i) also maximize

∏2
i=1(1 +

SNRk+1,i) and vice-versa.
Proof: Let the source signal components3 of the input at the

two nodes in the layer k− 1 be denoted as S, with var(S) =
S2. Let the noise components at the two nodes be denoted as
N1 and N2, respectively, with var(N1) = var(N2) = N2.

The SNRs at the nodes in layers k and k + 1 are given as:

SNRk,1 = SNRk,2 =
α2

γ2

SNRk+1,1 = SNRk+1,2 =
α2h2k(β3 + β4)

2

σ2 + γ2h2k(β
2
3 + β2

4)
,

with α2 = S2h2k−1(β1+β2)
2 and γ2 = σ2+h2k−1N

2(β2
1+β

2
2).

Define for j = k, k + 1

SNRj =
∏

i∈{1,2}

(1 + SNRj,i) = (1 + SNRj,1)
2

First let us consider the problem

max
β2
k,i≤β

2
k,max

SNRk+1, (19)

where β2
k,max = P

α2+γ2 , i ∈ {1, 2}. In [8], we prove that
(β2
k,max, β

2
k,max) is the only solution of (19).

Substituting the above solution of (19) in the expression for
SNRk+1 above, allows us to express it in terms of βk−1,1 and
βk−1,2 as SNR′k+1. Consider the following two problems.

max
β2
k−1,i≤β

2
k−1,max

SNR′k+1, (20)

max
β2
k−1,i≤β

2
k−1,max

SNRk, , (21)

where β2
k−1,max = P

S2+N2 , i ∈ {1, 2}. In [8], we prove
that (β2

k−1,max, β
2
k−1,max) is the only solution of both the

problems (20) and (21). Thus proving our claim.
Carrying out the above procedure in the proof of our claim

recursively for all k layers, 1 ≤ k ≤ L, proves the lemma for
the ECGAL networks.

3Given the symmetry of the ECGAL network, the source signals at the
input of the nodes in every layer are identical.



V. ILLUSTRATION

In the following, we illustrate the usefulness of Lemma 2 by
computing the maximum achievable ANC rate in a network
scenario without any a priori assumption on input signal
scaling factors and the received SNRs, as in [3], [4].

Example 2: Consider the ECGAL network of Figure 2 with
L layers of relay nodes between the source and the destination
and N nodes in each layer. We assume all relay nodes have the
same transmit power constraint EX2 ≤ P . We assume that the
channels gains along all links are equal and denoted as h. From
the symmetry of the network, it follows that β2

li,max = β2
l,max,

1 ≤ l ≤ L, 1 ≤ i ≤ N , where

β2
l,max =

P/σ2[
h
l−1∏
i=1

(Nβih)
]2 Ps

σ2 +N
l−1∑
i=1

(βih
l−1∏
j=i+1

(Nβjh))2 + 1

Using Lemma 2, we can solve problem (11) for this network.
The solution βopt is such that all relays in a layer use the
same scaling factor and it is equal to the maximum value of
the scaling factor for the nodes in the layer, i.e. β2

li = β2
l,max,

1 ≤ l ≤ L, 1 ≤ i ≤ N . The corresponding SNRt is:

SNRt,opt =
h2Ps
σ2

(Nh)2L
∏L
l=1 β

2
l

1 +Nh2
∑L
l=1(Nh)

2(L−l)∏L
i=l β

2
i

(22)

and the maximum achievable ANC rate in this scenario is
RANC = 1

2 log(1 + SNRt,opt). In the following, we further
discuss the computation of RANC in two particular scenarios.

Case 1: Let Ps → 0, then for the leading order in N :

SNRt,opt =
N2Ps
σ2

Nh2P

σ2

1

1 + L/N

The received SNR at the lth layer varies with the number of
preceding layers as SNR ∼ (1 + l−1

N )−1. Therefore, for any
fixed δ as in [3], [4], an arbitrarily large number of layers
may violate the high-SNR regime condition mink∈l PR,k ≥
1/δ, l = 1, . . . , L as L grows. Thus the approaches in [3], [4]
cannot be used to exactly compute SNRt,opt as above or the
optimal ANC rate in such networks.

Case 2: Let Ps →∞. In this case, for the leading order in
N we have

SNRt,opt = Nx
1

1 + L/N
, x =

Nh2P

σ2

Therefore, RANC = 1
2 log(1 + SNRt,opt) approaches the

MAC cut-set bound C = 1
2 log(1+Nx) [6], within a constant

gap as x→∞, as shown in Figure 3.

VI. CONCLUSION AND FUTURE WORK

We consider the problem of maximum rate achievable with
analog network coding in general layered networks. Previ-
ously, this problem was addressed assuming that the nodes
in all but at most one layer in the network are in the high-
SNR regime, and each node forwards the received signal at
the upper bound of its transmit power constraint. We provide
a key result that allows us to exactly compute the maximum

Fig. 3. For the ECGAL network in Example 2, Case 2: the gap C − R
between MAC cut-set bound C and analog network coding rate R = RANC
as parameter x = Nh2P

σ2 increases. The number of nodes in each layer is
N = 5. We observe that for a given number of layers in the network the
gap approaches a constant value. As the number of layers in the network
increases, the corresponding gap also increases.

ANC rate in a class of symmetric layered network without
these two assumptions. Further, our result significantly reduces
the computational complexity of this problem for general
layered networks. We illustrate the significance of our result
by computing the maximum ANC rate for one particular relay
network in a scenario that cannot be addressed using existing
approaches. In the future, we plan to extend this work to
general wireless networks.
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