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Abstract—A general class of wireless relay networks with a
single source-destination pair is considered. Intermediate nodes
in the network employ an amplify-and-forward scheme to relay
their input signals. In this case the overall input-output channel
from the source via the relays to the destination effectively
behaves as an intersymbol interference channel with colored
noise. Unlike previous work we formulate the problem of the
maximum achievable rate in this setting as an optimization
problem with no assumption on the network size, topology, and
signal-to-noise ratio. Previous work considered only scenarios
wherein relays use all their power to amplify their received
signals. We demonstrate that this may not always maximize
the achievable rate in amplify-and-forward relay networks. The
proposed formulation allows us to not only recover known results
on the performance of the amplify-and-forward schemes for some
simple relay networks but also characterize the performance of
such schemes in more complex relay networks which cannot be
addressed in a straightforward manner with existing approaches.

Using cut-set arguments, we derive simple upper bounds on
the capacity of general wireless relay networks. Through various
examples, we show that a large class of amplify-and-forward
relay networks can achieve rates within a constant factor of these
upper bounds asymptotically in network parameters.

I. INTRODUCTION

During almost a decade of their existence Amplify-and-
Forward (AF) relay schemes [1] have been studied in the
context of cooperative communication [1]–[3], estimating the
capacity of relay networks [4]–[6], and analog network coding
[7]–[11]. For cooperative communication, AF schemes provide
spatial diversity to fight against fading; for capacity estimation
of relay networks, such schemes provide achievable lower
bounds that are known to be optimal in some communication
scenarios; and for analog network coding, given the broadcast
nature of the wireless medium that allows the mixing of the
signals in the air, these schemes provide a communication
strategy that achieves high throughput with low computational
complexity at internal nodes. In this paper, we concern our-
selves mostly with the capacity analysis of a general class
of AF relay networks. Extensions of our method and results
to cooperative communication and analog network coding
scenarios is part of our future work.

In previous work, while analyzing the performance of AF
schemes in relay networks one or more of the following
assumptions have been made: networks with a small number
of nodes [8], [10]; networks with simple topologies [3]–[5],
[8], [10]; or relay operation in the high-SNR regime, [10].
However, for two reasons, we believe that it is important
to characterize the performance of the AF schemes without
such assumptions. First, we feel that for a scheme such as
amplify-and-forward that allows one to exploit the broadcast

nature of the wireless medium such assumptions on the size
and topology may result in lower achievable performance than
otherwise. Second, even in the low-SNR regimes amplify-and-
forward can be capacity-achieving relay strategy in some sce-
narios, [5]. Therefore, a framework to address the performance
of AF schemes in general wireless relay networks is desired.

However, one major issue with constructing such a frame-
work is the following. In general wireless relay networks with
AF relaying, the resulting input-output channel between the
source and the destination is an intersymbol interference (ISI)
channel ([4], [10]) with colored noise. This is because both the
source signal and the noise introduced at the relay nodes may
reach the destination via multiple paths with differing delays.
Without the assumptions above, this results in a formidable
problem to analyze with the existing methods, as in [4].

Our main contribution is that we provide a framework to
compute the maximum achievable rate with AF schemes for
a class of general wireless relay networks, namely Gaussian
relay networks. This framework casts the problem of com-
puting the maximum rate achievable with AF relay networks
as an optimization problem. Our work shows that amplifying
the received signal to the maximum possible value, subject to
transmit power constraint, at intermediate nodes might result
in sub-optimal end-to-end throughput. Also, we establish the
generality of the proposed formulation by showing that it
allows us to derive in a unified and simple manner not only
the various existing results on the performance of simple AF
relay networks but also new results for more complex networks
that cannot be addressed in a straightforward manner with
existing methods. We show through various examples that for
a large class of relay networks the AF schemes can achieve
rates within a constant factor of the cut-set upper-bounds on
the capacity of general wireless relay networks.

In this paper, we provide the summary of our work. We have
omitted most proofs or give only brief outlines. The proofs and
discussions can be found in our arXiv submission [12].

Organization: In Section II we introduce the general class
of Gaussian AF relay networks addressed in this paper. In Sec-
tion III we formulate the problem of maximum rate achievable
via AF schemes in these networks. In Section IV we compute
the rates achievable via AF schemes for two instances of
such relay networks under various communication scenarios,
and then in Section V we discuss the asymptotic behavior
of the gap between these rates and the corresponding cut-
set upper bounds on the capacity of general wireless relay
networks computed there. Section VI concludes the paper with
a summary.
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Fig. 1. A single source-single destination communication channel over
general Gaussian relay network with M relays.

II. SYSTEM MODEL

Let us consider a (M+2)-node wireless relay network with
source s destination t and M relays as a directed graph G =
(V,E) with bidirectional links, as shown in Figure 1. Each
node is assumed to have a single antenna and operate in full-
duplex mode. Let us assume that the degree of the source node
is Ns+1, with it being connected to the destination node and
a subset Ss of the relay nodes, Ns = |Ss|. Similarly, let us
assume that the degree of the destination node is Nt+1, with
it being connected to the source node and a subset St of the
relay nodes, Nt = |St|. In general, Ss ∪ St ⊆ V \ {s, t}.

At instant n, the channel output at node i, i ∈ V \ {s}, is

yi[n] =
∑

j∈N (i)

hjixj [n] + zi[n], −∞ < n <∞, (1)

where xj [n] is the channel input of the node j in the neighbor
set N (i) of node i. In (1), hji is a real number representing
the channel gain along the link from relay j to relay i. It is
assumed to be fixed (for example, as in a single realization of
a fading process) and known throughout the network. Further,
{zi[n]} is a sequence (in n) of independently and identically
distributed (i.i.d.) Gaussian random variables with zero mean
and variance σ2, zi[n] ∼ N (0, σ2). We also assume that zi
are independent of the input signal and of each other. The
source symbols xs[n],−∞ < n < ∞, are i.i.d. Gaussian
random variables with zero mean and variance Ps that satisfies
an average source power constraint, xs[n] ∼ N (0, Ps). We
assume that the ith relay’s transmit power is constrained as:

E[x2i [n]] ≤ Pi, −∞ < n <∞ (2)

In a general wireless relay network there may exists cycles.
If a relay merely amplifies and forwards its received signal
in such scenarios then it may use up a significant fraction
of its power budget on forwarding the previously forwarded
information. Therefore, motivated by some work on analog
network coding, such as [13], we propose the following relay
operation to allow the relays to expend their transmit power
in forwarding only the “new” information.

Relay operation: We assume that each relay node maintains
a buffer of signals it forwarded previously. Therefore, each
relay node i, after receiving the channel output yi[n] executes
the following series of steps:

Step 1: Obtain the residual signal y′i[n] by subtracting the
contributions of previously forwarded signals from yi[n].

Step 2: Compute the power P ′R,i of the residual signal y′i[n].
Step 3: At instant n + 1 transmit the scaled version of the

residual signal y′i[n] of its input at time instant n:

xi[n+ 1] = βiy
′
i[n], 0 ≤ β2

i ≤ β2
i,max = Pi/P

′
R,i, (3)

where βi is the scaling factor1. Let the network-wide scaling
vector for the M relays be denoted as β = (β1, . . . , βM ).

Using (1) and (3), the input-output channel between the
source and destination can be written as an intersymbol
interference (ISI) channel that at instant n is given by

yt[n] (4)
= hstxs[n] + zt[n]

+

Ds∑
d=1

[ ∑
(i1,...,id)∈Kd

hsi1βi1hi1i2 . . . hid−1idβidhidt

]
xs[n− d]

+

D1∑
d=1

[ ∑
(i1,...,id)∈K1,d

β1h1i1 . . . hid−1idβidhidt

]
z1[n− d]

...

+

DM∑
d=1

[ ∑
(i1,...,id)∈KM,d

βMhMi1 . . . hid−1idβidhidt

]
zM [n− d],

where Kd, 1 ≤ d ≤ Ds, is the set of d-tuples of node indices
corresponding to all paths from the source to the destination
with path delay d and Ds is the length of the longest such path.
Note that along such paths Ds ≤ M . Similarly, Km,d, 1 ≤
m ≤ M, 1 ≤ d ≤ Dm, is the set of d-tuples of node indices
corresponding to all paths from the mth relay to the destination
with path delay d and Dm is the length of the longest such
path. It should be noted that max(D1, . . . , DM ) = Ds − 1.

Let us introduce modified channel gains as follows. For all
the paths between the source s and the destination t:

h0 = hst, (5)

hd =
∑

(i1,...,id)∈Kd

hsi1βi1hi1i2 . . . hid−1idβidhidt, 1 ≤ d ≤ Ds

For all the paths between the mth-relay, 1 ≤ m ≤M , and t:

hm,0 = 0, (6)

hm,d =
∑

(i1,...,id)∈Km,d

βmhmi1 . . . hid−1idβidhidt, 1 ≤ d ≤ Dm

In terms of these modified channel gains2, the source-
destination ISI channel in (4) can be written as:

yt[n] =

Ds∑
j=0

hjxs[n− j] +
D1∑
j=0

h1,jz1[n− j] (7)

+ . . .+

DM∑
j=0

hM,jzM [n− j] + zt[n]

1In general, βi may depend on ith relay’s past observations. βi[n] =
fi,n(Yi[n − 1], . . . , Yi[1]). However, due to practical considerations, such
as low-complexity operation, we do not consider such scenarios here.

2The modified channel gains for a possibly exponential number of paths as
in (5) and (6) can be efficiently computed using the line-graphs [14].



III. ACHIEVABLE RATES FOR THE SOURCE-DESTINATION
ISI CHANNEL IN AF RELAY NETWORKS

Lemma 1: For a given length-M vector β, the achievable
rate for the channel in (7) with i.i.d. Gaussian input is3:

I(Ps,β) =
1

2π

∫ π

0

log

[
1+

Ps
σ2

|H(λ)|2

1 +
∑M
m=1 |Hm(λ)|2

]
dλ, (8)

where

H(λ) =

Ds∑
j=0

hje
−ijλ, Hm(λ) =

Dm∑
j=0

hm,je
−ijλ, i =

√
−1 (9)

Proof: In [15] a Discrete Fourier Transform (DFT)-based
formalism is developed to compute the capacity of Gaussian
channels with ISI. We compute the maximum achievable rate
for the channel in (7) for a given β by generalizing this
formalism to also include the ISI channel for Gaussian noise
at each relay node resulting in colored Gaussian noise at the
destination. The details of the proof are in [12].

For a given network-wide scaling vector β, the achievable
information rate is given by I(Ps,β). Therefore the maximum
information-rate IAF (Ps) achievable in an AF relay network
with i.i.d. Gaussian input is defined as the maximum of
I(Ps,β) over all feasible β, subject to per relay amplification
constraint (3). In other words:

(P1): IAF (Ps)
def
= max

β:0≤β2
i≤β2

i,max

I(Ps,β) (10)

In general AF relay networks the simultaneous relay trans-
missions may interfere and if the relays always amplify the
received signals to the maximum possible then it may result
in sub-optimal end-to-end throughput. Therefore the scaling
factor for each relay must be optimally chosen to maximize
the achievable rate. This is emphasized by the problem P1 and
its significance is illustrated by the following example.

Example 1: Let us consider the well-studied diamond
network, [10]. It is defined as G = (V,E) with V = {s, t, 1, 2}
and E = {(s, 1), (s, 2), (1, t), (2, t)}. Let hs1 = 1, hs2 =
0.1, h1t = h2t = 1. Let Ps = P1 = P2 = 10 and noise
variance σ2 = 0.1 at each node. Therefore, we have

β2
1,max =

P1

h2s1Ps + σ2
= 0.99, β2

2,max =
P2

h2s2Ps + σ2
= 50.0

From (10), we have the following rate maximization problem:

IAF = max
β1,β2

1

2
log

[
1 + 100

(β1 + 0.1β2)
2

1 + β2
1 + β2

2

]
subject to constraints 0 ≤ β2

1 ≤ β2
1,max and 0 ≤ β2

2 ≤ β2
2,max.

The objective function is plotted in the Figure 2 for
β1 = 0.995. The optimal solution of this problem is (β1 =
0.995, β2 = 0.225). Therefore, it follows that in this case
β2 = β2,max is not the optimal amplification factor.

3The derivation of an expression for I(Ps,β) with jointly Gaussian inputs
is similar to the proof of Lemma 1 in [12]. However as such an expression
does not aid in the presentation of our ideas we do not discuss it in this paper.

β2
Fig. 2. The achievable rate for the Example 1 when β1 = β1,max and β2
lies in [−β2,max, β2,max].

With this observation and the definition of the relay opera-
tion in the Section II, it is appropriate to call the forwarding
scheme proposed in this paper as subtract-scale-and-forward.

The problem P1 is computationally-hard to solve for all
but some trivial relay networks [12]. However under some
assumptions on relay operations, its solution can be efficiently
approximated. This we discuss in detail in [12] and demon-
strate below for two instances of general AF relay networks.

IV. APPROXIMATING THE RATE IAF (Ps)

Let us consider the problem P1 when the relays operate
without delay4, [8]. Therefore, xi[n] = βiy

′
i[n], 1 ≤ i ≤ M .

With this assumption, the output (7) describes a source-
destination channel for which the maximum achievable rate
is given by the solution of the following problem:

(P2): IAF (Ps) = max
β

1

2
log

[
1+

Ps
σ2

|H(0)|2

1+
∑M
m=1|Hm(0)|2

]
(11)

such that 0 ≤ β2
i ≤ β2

i,max = Pi/P
′
R,i.

Let us consider the problem P2 when the relay nodes are
constrained to use the same scaling-factor, that is, βi = β,
for all 1 ≤ i ≤ M . In the practical setting, this assumption
considerably simplifies the system-design with β set to one
particular value for all relay nodes. Then, P2 reduces to

(P3): IAF (Ps)= max
β:βi=β

1

2
log

[
1+

Ps
σ2

|H(0)|2

1+
∑M

1 |Hm(0)|2

]
(12)

Note that the solution of P2 cannot be smaller than the
solution of P3 because the set of feasible β : βi = β, for P3
is a subset of the set of feasible β for P2.

Note 1: In general, β2
i,max ∼ Pi. Therefore

∑
β2
i,max ∼∑

Pi. However, with our assumption of equal β, βi,max =
βmax, so we have Mβ2

max ∼
∑
Pi or β2

max ∼M−1
∑
Pi.

Next, we discuss the solution of P3 in different scenarios
for two special cases of the general class of relay networks
we address in this paper.

4The possible system instability resulting from this assumption is avoided
by the relay-operation in the Section II.



h
st

h
s1

h
sM

h
Mt

h
1t

s t

1 M2 M−1

Fig. 3. Type-A Relay Network.

A. Type-A Relay Network

Definition: For one source-destination pair and M re-
lays, Type-A network is defined as: G = (V,E), where
V = {s, t, 1, . . . ,M} and E = {(s, t), (s, i), (i, t) : i ∈
{1, . . . ,M}}, as illustrated in Figure 3. Note that this is the
same network as discussed in [4].

We solve the problem P3 in the following two scenarios.
Scenario 1 (No attenuation network): Let us assume that

there is no attenuation along any link in the network, that is,
hst = hsi = hit = 1, 1 ≤ i ≤M . In this case, we have:

IAF (Ps) = max
0≤β2≤β2

max

1

2
log

[
1 +

Ps
σ2

(1 +Mβ)2

1 +Mβ2

]
Lemma 2: IAF (Ps) attains global maximum at βopt = 1.
Now let us consider two particular ways in which βmax

varies with network size.
Scenario 1, Case A (Increasing relay power): For the given

network with M relay nodes, let us assume that the sum power
of the relay nodes is constrained as follows:

M∑
m=1

E[X2
m] ≤

M∑
m=1

Pi ≤Mu+1Q, u > 0, Q = constant

So β2
max =MuQ. From Lemma 2, we have for M →∞.

IAF (Ps) =

 1
2 log[1 +

Ps

σ2 (1 +M)], if βmax ≥ 1,

1
2 log[1 +

Ps

σ2 (M + 2
βmax

)], otherwise
(13)

Scenario 1, Case B (Constant total relay power): Consider
the case where the sum power of relays is fixed irrespective of
the number of relays, that is

∑M
m=1 Pi ≤ Q,Q = constant.

Therefore, we set β2
max = Q

M . As M → ∞, for sufficiently
large M , βmax < βopt = 1. Therefore, from Lemma 2, β =
βmax maximizes the achievable rate and we have for M →∞

IAF (Ps) =
1

2
log

[
1 +

Ps
σ2

Q

1 +Q
M

]
(14)

Scenario 2 (Bounded channel gains): Let us consider the
scenario where the channel gains are arbitrary, but strictly
bounded, 0 < hst, hsi, hit <∞, 1 ≤ i ≤M . The problem P3
in this case is:

IAF (Ps) = max
0≤β2≤β2

max

1

2
log

[
1+

Ps
σ2

(hst + β
∑M
i=1 hsihit)

2

1 + β2
∑M
i=1 h

2
it

]
Lemma 3: IAF (Ps) attains its global maximum at βopt =∑M
i=1 hsihit

hst
∑M

i=1 h
2
it

.
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Fig. 4. Type-B Relay Network.

Increasing relay power: Let us consider the increasing
total relay power scenario as in Scenario 1, Case A. Let
β2
max = MuQ. In this case, following Lemma 3, we obtain

the following lower bound on the achievable rate as M →∞:

IAF (Ps) >
1

2
log

[
1 +

Ps
σ2

(Mhmin + 1)
h2s,maxhmin

hmax

]
, (15)

if βmax ≥
∑M
i=1 hsihit

hst
∑M
i=1 h

2
it

,

IAF (Ps) >
1

2
log

[
1 +

Ps
σ2

(Mhmin +
1

βmax
)
h2s,maxhmin

hmax

]
,

otherwise,

where hs,max = max{hst, hs1, . . . , hsM}, hmin =
min{h1t, . . . , hMt}, and hmax = max{h1t, . . . , hMt}.

B. Type-B Relay Network

Definition: For one source-destination pair and M relays,
Type-B network is defined as: G = (V,E), where V =
{s, t, 1, . . . ,M} and E = {(s, t), (s, i), (i, t), (j, j + 1) : i ∈
{1, . . . ,M}, j ∈ {1, . . . ,M − 1}}, as shown in Figure 4.

For such networks, we consider the no-attenuation scenario
where all channel gains are set to unity, that is, hst = hsi =
hit = 1, 1 ≤ i ≤M as well as hi,i+1 = 1, 1 ≤ i ≤M − 1.

Proposition 1: The problem P3 in this case with odd M is:

IAF (Ps, β) =
1

2
log

[
1+

Ps
σ2

(
1− βM β+1

β−1 + 2β2 β
M−1

(β−1)2
)2

1 + 2
∑M−1

2
i=1 H2

i +H2
M+1/2

]
,

where Hi=


β
β−1 (β

M−i+1 − 1 + βi − β), 1 ≤ i ≤ M−1
2 ,

β + 2β2 β
M−1

2 −1
β−1 , i = M+1

2

IAF (Ps) = max
0≤β2≤β2

max

IAF (Ps, β) (16)

It can be proved that the objective function is quasiconcave
[16], therefore a unique global maximum exists. However,
obtaining a closed-form expression for βopt does not appear
straightforward. Let β that solves (16) be denoted as β = βopt.

Constant total relay power: Let us consider the case where
the sum power of relay nodes is fixed irrespective of the
number of relay nodes as in Scenario 1, Case B. Let β2

max =
Q
M . As M → ∞, for sufficiently large M , βmax < βopt.
Therefore, β = βmax maximizes the achievable rate and we
have the following rate achievable asymptotically as M →∞

IAF (Ps) =
1

2
log

[
1 +

Ps
σ2
M(1 +

2Q

M
)

]
(17)



V. ASYMPTOTIC CAPACITY

We first derive an upper bound to the capacity of general
wireless relay networks we address in this paper. We then
discuss the asymptotic behavior of the gap between this upper
bound and the lower bounds computed in the previous section.

Proposition 2: The capacity C of a general wireless relay
network is upper-bounded as C ≤ min{CBC , CMAC}, where
CBC and CMAC are the upper bounds on the capacity of
the broadcast cut at the source and multiple-access cut at the
destination respectively, and are given as follows

CBC = log

[
1 +

Ps
σ2

(h2st +
∑
i∈Ss

h2si)

]
CMAC = log

[
1 +

Ps +
∑
i∈St

Pi

σ2
(h2st +

∑
i∈St

h2it)

]
Remark 3: Proposition 3 in [4] can be obtained as a special

case of this proposition by setting Ns = Nt =M .

A. Type-A Relay Networks
No attenuation, increasing relay power: In this case, the

broadcast bound CBC is always asymptotically smaller than
the multiple-access bound CMAC , as follows from

2CMAC−CBC ≈ 1 +
Mu+1Q

P
, for large M.

Therefore it suffices to compute the asymptotic gap between
CBC and the lower bound in (13). In fact, in this case we have

CBC − 2IAF (Ps) = 0, for all M ≥ 1

The actual capacity C of the relay network in this case is
bounded by CBC/2 ≤ C ≤ CBC .

No attenuation, constant total relay power: In this case also
CBC is asymptotically smaller than CMAC , as shown below

lim
M→∞

2CMAC−CBC = 1 +
Q

P

Therefore we only address the asymptotic gap between CBC
and the lower bound in (14). We have

lim
M→∞

CBC − 2IAF (Ps) =
1

2
log(1 + 1/Q)

The actual capacity C of the relay network in this case is
bounded by 1

2 (CBC −
1
2 log(1 + 1/Q)) ≤ C ≤ CBC .

Bounded channel gains: The gap between CBC and lower
bound of achievable rate in (15) is bounded asymptotically as:

lim
M→∞

CBC − 2IAF (Ps) ≤
1

2
log

[
hmax
h2min

]
B. Type-B Relay Networks

No attenuation, constant total relay power: In this case too
CBC is always asymptotically smaller than CMAC . Therefore
we only address the asymptotic gap between CBC and the
lower bound in (17). We have

lim
M→∞

CBC − 2IAF (Ps) = 0

The actual capacity C of the relay network is bounded by
CBC/2 ≤ C ≤ CBC .

VI. CONCLUSION AND FUTURE WORK

We provide a framework to analyze the performance of
the AF relay schemes in a general class of Gaussian relay
networks. We show that compared to the existing methods,
the proposed framework not only allows us to characterize
the performance of general AF relay networks in a unified
manner but it also provides tighter lower bounds. We also
show that AF schemes can be capacity achieving for a large
class of wireless relay networks. An extension of our work
also facilitates the computation of achievable rates for analog
network coding scenarios for non-layered networks and low
to moderate SNR regimes. We plan to address it in the future.
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