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Abstract—Live media streaming has become one of the most
popular applications over the Internet. We have witnessed he
successful deployment of commercial systems with CDN- or pe
to-peer based engines. While each being effective in centai
aspects, having an all-round scalable, reliable, respong and
cost-effective solution remains an illusive goal. Moreovetoday’s
live streaming services have become highly globalized, vhait
subscribers from all over the world. Such a globalization mé&es

user behaviors and demands even more diverse and dynamic,

further challenging state-of-the-art system designs.

The emergence ofcloud computinghowever sheds new lights
into this dilemma. Leveraging the elastic resource provigining
from cloud, we present CALMS (Cloud-Assisted Live Media
Streaming), a generic framework that facilitates a migration to
the cloud. CALMS adaptively leases and adjusts cloud server
resources in a fine granularity to accommodate temporal and
spatial dynamics of demands from live streaming users. We
present optimal solutions to deal with cloud servers with dierse
capacities and lease prices, as well as the potential latdas in
initiating and terminating leases in real world cloud platforms.
Our solution well accommodates location heterogeneity, rtigat-
ing the impact from user globalization. It also enables sealass
migration for existing streaming systems, e.g., peer-toger, and
fully explores their potentials. Simulations with data traces from
both cloud service providers (Amazon EC2 and SpotCloud) and
live streaming service provider (PPTV) demonstrate that CAMS
effectively mitigates the overall system deployment cos@nd yet
provides users with satisfactory streaming latency and rat.

Index Terms—Live media streaming, migration, cloud comput-
ing, user/demand globalization.

I. INTRODUCTION
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Fig. 1: An illustration of the user demand distributions and véawias
of a popular live media streaming system (PPTV) on its twacgip
channels (CCTV3 and DragonBall) during one day.

having an all-round scalable, reliable, responsive, arst-co
effectiveness solution remains an illusive goal.

To make it even worse, today’s live streaming applications
have become highly globalized, with subscribers from adirov
the world. Such a globalization makes user behaviors and
demands even more diverse and dynamic. For illustration, we
examine the user demand distribution of PBTdne of the
most popular live media streaming systems in China with
multi-million users from a trace analysis [22][27]. Fig. 1
shows the results of two representative channels (CCTV3 and
DragonBall) during one day It is easy to see that although
PPTV is from China, it has attracted users from all over the
world, and the peak time therefore shifts from region tooagi
depending on the timezone. For example, on the CCTV3

N the past decade, live media streaming has become éf@nnel, the peak time of North America is around 20:00,

of the most popu|ar app”cations over the Internet []_4][6]/_Vhi|e for Asian users, it is around 8:00. During the period
We have witnessed a number of successful commercial @-12:00 to 20:00, the Asian users have very low demands
ployments with CDN (Content Delivery Network)- or peerWhile the European users generate most of their demands
to-peer based engines. The former achieves high avaijabi@nd the North American users also have moderate demands.

and short startup latencies, but suffers from excessivis ¢ois
deploying dedicated servers. This is particularly sevethd

Similar observations can also be found from the DragonBall
channel, despite that the streaming contents delivereden t

user demand fluctuates significantly and the servers havetw® channels are completely different. The impact of such
be over-provisioned for peak loads. The peer-to-peerisolut globalized demand turbulence has yet to be addressed in
generally incurs lower deployment cost and is more scalabfxisting systems that largely focus on regional servicdg. on
but the reliability and hence service quality can hardly be The emergence o€loud computinghowever sheds new
guaranteed. There have also been efforts toward synerdights into this dilemma. A cloud platform offers reliable,
ing dedicated servers with peer-to-peer [7]. Unfortunatelelastic and cost-effective resource provisioning, whi@s h
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been dramatically changing the way of enabling scalable and
dynamic network services [11][3][20][5]. There have been
studies on demand-driven resource provision [24][13]2%]}
there have been also initial attempts leveraging cloudicerv
to support VoD (Video-on-Demand) applications, from both
industry (e.g. Netflix) [16] and academia [25][9][12]. Live

Iwww.pptv.com — formerly known as PPLive.
2For ease of comparison, the user demands are normalizedebgothe-
sponding maximum demand of each day.
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Cgszd L. media source and dynamically leased cloud servers. Upon re-
@ s ceiving a user’s subscription request, the Cloud Layerreets
o this user to a properly selected cloud server. Such a retitire
is transparent to the user, i.e., the Cloud Layer is deemed as
single source server from a user’s perspective. Since the us
demands change over time, which are also location-depé&nden
the Cloud Layer accordingly dynamically adjusts the amount
and location distribution of the leased servers. Intuljivé
leases more server resources upon demand increase during
peak times, and terminates leases upon decrease.
There are however a number of critical theoretical and
practical issues to be addressed in this generic CALMS
Fig. 2: An overview of CALMS. framework. First, the cloud servers have diverse capacitie
and lease prices; the lease duration is not infinitesimally
media streaming however has more stringent playback delgyot, either, e.gl hour for Amazon EC2. As such, when
constraints with content being updated in realtime. Thgdar being leased, the server and the pricing cannot be simply
dynamic, and non-uniform client population further ag@@® terminated at anytime. In addition, for a newly leased serve
the problem, calling for new solutions toward a successfie configuration and boot up takes time, too, e.g., alieut
migration to the cloud. 10 minutes for EC2 mainly depending on the used Operating
In this paper, we present CALMS (Cloud-Assisted Liv&ystem. Though the cloud services are improving, given the
Media Streaming), a generic framework that facilitates st-CO hardware, software, and network limits, such latencies can
effective migration to the cloud. CALMS adaptively leasefardly be avoided in the near future. Therefore, CALMS must
and adjusts cloud servers in a fine granularity to accomneodgjg|| predict when to lease a new servers to meet the ever-
temporal and spatial dynamics of user demands. We presgihinging demands and when to terminate a server to minimize
optimal solutions to deal with cloud servers with diversgye |ease costs. These problems are further complicated giv
capacities and lease prices, as well as the potential it e global heterogeneous distributions of the cloud seraed
initiating and terminating leases in real world cloud piaths. that of the user demands.
Our solution well accommodates location diversity, mitigg Note that we do not assume any particular implementation
the impact from user globalization. It also enables seanlgst the User Layer in this study. They can be individual users
migration for existing streaming systems, e.g., peerderp pyrely relying on the Cloud Layer, or served by peer-to-eer
and fully explores their potentials. We further develop g cpN infrastructure, but seeking for extra assistance fiteen
set of practical solutions for dynamic adjustment of leasgg,d Layer during load surges. In other words, our CALMS
schedules, smart user redirection, and cloud server a@ankramework can smoothly migrate diverse existing live stiea
tion. To understand the performance of CALMS, extensigy systems. Also, we will explore the potential assistance
simulations have been carried out with real data traces frapam user peers in our study by investigating general smhsti
both cloud service providers (Amazon EC2 and SpotCloughat well complement existing system designs, taking into
and live media streaming service provider (PPTV). The t8subccount different issues on user dynamics such as user,churn

demonstrate that the proposed CALMS effectively mitigatgger mobility and identifying good potential user helpers.
the overall system deployment costs and yet provides users

with satisfactory streaming latency and rate. . ERAMEWORK DESIGN AND SOLUTION
The remainder of this paper proceeds as follows: Section Il o ) ) o
presents an overview of the framework. In Section IlI, we In this section, we discuss the detailed design issues and
first investigate the basic problem of leasing cloud servid€lr solutions for migrating the live media streaming appl
and provide an optimal solution, which is then extenddeftion to the cloud service. Our discussions first start from
by integrating locality-awareness and user assistance. TROdeling the basic form of the leasing cloud service problem
implementation issues and further optimization are diseds @1d then extend to integrate with locality-awareness and
in Section IV. We evaluate CALMS by trace-driven simulaYSer-assistance, respectively. We will also present akzed
tions in Section V. Section VI further discusses some op@igorithms that yield optimized solutions for addressingse

issues. Finally, Section VII concludes the paper and digemis SSUes, which will further motivate the practical soluofor
potential future directions. implementation and optimization in next section.

> User Traffic

Il. CLOUD-ASSISTEDLIVE MEDIA STREAMING A. Basic Problem: Leasing Cloud Service
(CALMS): AN OVERVIEW Denote the set of cloud servers that can be leased from
Our CALMS intends to provide a generic framework thathe cloud service providers a8 = {ci,c2, - ,¢m}. In

facilitates the migration of existing live media streamigy- practice, most cloud providers have a minimum unit time
vices to a cloud-assisted solution. Fig. 2 shows an illtisina for the duration of leasing a server (elghour for Amazon

of CALMS, which is divided into two layers, namelGloud EC2) and when being leased, a cloud server must spend some
Layer and User Layer The Cloud Layer consists of the livetime in setup and initialization before ready to use. We use
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D,, to denote this required minimum unit duration afidas the combination of both dimensions.

the latency for preparing the cloud server. For simplicitg To this end, we proposed an enhanced DFS algorithm,
assume there is always a cloud server directly connectingwbich can skip most parts of the solution space and find
the live media source to act as the live media server and uke optimal solution efficiently. The proposed algorithm is
co to denote it. LetR be the rate of the live media streamingsummarized in Fig. 3. To improve the search efficiency, we
We assume that there is a demand forecast algorithm (sucHiest sort the cloud servers id' by the ascendant order of
the algorithms proposed in [17]) to predict the demand in thike lease cost per unit upload bandwidth (lie This allows
next periodT’, where the demand may contain the estimatdte servers with cheaper upload bandwidth being explored
online population of users, their distributions at difierareas first and near-optimal solutions can then be quickly found.
or ISPs, and other type of information. At current stagédVith such solutions, we can further cut other search brasiche
we only consider the online population of users and denotdth equal or higher costs (lin€) and greatly reduce the

it as P(¢) for a given timet (¢ < T). The discussions search space for the optimal solution. In addition, we use
for utilizing other forecasted demand information will bdeaseTime[c| to denote the remained lease time of server
deferred to later subsections. Define a cloud service leawm®dleaseTimelc] > 0 means that serveris leased. Since a

schedule asS = {(x1,t1,d1), (za,t2,d2), -+, (zk,tk,di)} newly leased server needs for preparation, our algorithm
(t1 <tg <--- <ty <T), where a tuplez;,t;,d;) (z; € C, makes decisions in advance®, i.e., attime we lease a new
d; > 0 andd; mod D,, = 0 fori =1,2,---,k) means at serverc so that it can start to provide the servicedahe+ 7.

time ¢;, we start to lease cloud servey for the durationd;. Similarly, for a server: to be renewable dime, leaseTime|c]

Our problem is thus to find a proper cloud lease schedule must be equal t@’s, so that after we decide to renew ittatne,

subjecting to the following constraints: it will continue providing the service atme + Ts.

(1) Service Availability Constraint: We use variableenew to distinguish whether the currently
consideredk-th server is renewed or newly leased (lihe

V(xisti,di) € S, if 3(xj,15,d;) € S anda; = xj, 12). When all renewable servers have been considered, we also

then|[ti, t; +d;) N [tj,t; +dj) =0 ; check if any new server needs to be leased (li3je If so, we

) _ } will resetk andrenew to further explore the branch (linkt).
(2) Streaming Quality Constraint: Every time a server;, is selected (lind 7-18), it will be leased
VI, <t<T for the time of D,,,, i.e., leaseTimelcy] is increased byD,,,.

Load[time + T| to Load[time + T + D,,] (or Load[time +
Ulco)+ . (U(zi)-R) .I[te[tv-i-Tg.t )] > R-P(t); D,,], depending on whether, is renewed or newly leased)
(wi ti,di)€S S will be reduced byU(ci) — R. After that, the algorithm checks

where U(-) is the upload capacity and is the indicator if any other server needs to be leased or can be renewed (line

function. The service availability constraint asks thaay 19)- If not, time will be increased (byAtime) to another
given time, a cloud server can only appear in one scheddp@sition where a server can be renewed or new servers need to
And the streaming quality constraint asks that at any givd¥¢ 1€ased. Then both andrencw will be reset accordingly.
time ¢, the streaming rate demands Bft) users have to be leastTime will also be updated by subtractingtime for
satisfied. Our objective is thus to minimize the lease costs:€2Sed servers. _
When a search branch is cut off or fully explored, the
Ci(co) + Ci(x;) - diy + Cp(R - P(t)) , search will revert to its previous status (ling-27), where the
p
(zi,ti,d:)ES t<T previous{k, time, renew, leastTime} will be be popped up

ef'rom Stack with Load and Cost being calculated oppositely

whereC,(-) andC,(-) are the costs for leasing a cloud server ~ . s :
and out-cloud bandwidth usage, respectivefys the first and o rl]mg 1|§9 W'Tlebn the seatrcg fm:jshets, thz Olpégn;é Cloﬂd lease
last part can not be reduced, we focus on minimizing g eduies will be generated and returne (iae-30), where

. : . a tuple (¢, ti, D) will be created and added int8 for a
middle part of the total costs, which we denote(@sst;cqse: )Ty .
P ! serverc; newly leased at;, and anotheD,,, will be added to

Costiease = Z Ci(x;) - d; . the tuple’s lease duration if it is renewed afterwards. WWnth
(zi,ti,di)ES have the following theorem.
This problem is challenging as the cloud servers are Schedj’heorem L:The algorithm proposed in Fig. 3 retums the

. ) i S optimal cloud lease schedule for the basic problem.
uled both along the time dimension and at each time mstancg, Proof: If without cutting branches, our solution will

along the user demand dimension. By exhaustively searchgl rch exhaustively and return the optimal schedule. Toaf pr

along both dimensions, the optimal solution can be achievc; us can be done by showing that cutting branches (jrgo
However, simply using a naive searching algorithm can tﬁ%t miss the optimal schedule, sinCest is a lower bound of

quite inefficient as the solution space increases very faht Wihose schedules whose search paths contain the currech sear

3Amazon EC2 had no charges on the traffics into the cloud as asell branch. A more detailed prOOf can be found in [21]' u

within the cloud during this research was conducted. Yendts policy starts

to charge on the traffics among different AWS regions. Ourehadd solution B. Integrating with Locality-Awareness

here can be easily adapted to the new policy by adding an esstion the . . .

traffic of one streaming rate from outside of the region tadef the region As the users may be from various locations or time zones

(except for the region whichy is in) for each used AWS region. over the world, registering to different ISPs and in differe
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Algonthm OptimalCloudLeaseSchedule()

SortC' by ascendant order of;(-) /IU

for Ve € C, leaseTime[c] «+ 0; end for

for Vt < T, Load[t] - R -P(t) — U(co); end for
SetStack empty; k < 0; time < 0; Cost « 0;
renew < false Cost™ < oco; SetStack™ empty;

areas, a further optimization to the basic problem is thus to
integrate with the locality-awareness, i.e., to maximibe t

number of users that connect to the local cloud servers. Bys:
achieving this, the delay between users and cloud servers:
can be effectively reduced, which is often a crucial factor 5:

for live media streaming. Another advantage is that such® do

locality-awareness can also help to reduce the cross-laoynd 7f
traffic (e.g. cross-ISP traffic), which is especially imgott o

when considering user assistance as discussed in the ilmfjow 10:
subsections. To this end, we use an abstract notation ‘frégio 11:
to represent the locality that we care about, which can bel?:

interpreted into different meanings in different contefe¢sg.

an area with some extent of physical closeness or a group of ».

ASes belonging to one ISP). Lét = {A;, As,--- , A, } be

the set of regions that the cloud servers and users may be in4:
For a cloud server;, we usec; € A; to denote that it is in 15

the regionA,. In addition, we further exten®(t) to P(A, ¢)
to denote the online population of users in regiérat time

t. The basic problem thus can be rewritten as to find a propeng:

16:

if Cost > Cost™, goto 25;
else iftime +Ts > T,
Cost™ + Cost; Stack™ < Stack; goto 25;
end if
k+—k+1;
if £ <|C|and ((‘renew and
leaseT'ime[ci] > 0) or (renew and
leaseTime[ck] # Ts)), continue;
else ifrenew and k > |C| + 1 and
Load[time + Ts] > 0,
k < 0; renew <« false continue;
else if (lrenew and k > |C|) or (renew and
k > |C| + 1), goto 25;
end if
Push{k, time, renew, leastTime} in Stack;
UpdateLoad, leaseTime and Cost;

cloud lease schedul&, subjecting to the service availability 19:
constraint and the following new streaming quality corigtra

if Load[time + Ts] < 0 and (renew or
k=Cl+1),
Increasdime until time +Ts > T or

VI, <t<T, Je € C, leaseTimelc] — Atime = T, or
Load[time + Ts] > 0;
U(co) + Z (U(xl) — R) . I[t et T tv+dv)} 21: k < 0; UpdateleaseTime by Atime,
(25,ti,d;)ES Eltetlstitds 22: renew < if Ic € C, leaseTime[c] = Ts;
23: end if
>R- Z P(A,t) . 24: continue;
e 25: if Stack is not empty,
26: PopStack; Update Load and Cost;
Our objective is now to minimize the lease costs: 27: end if
28: while Stack is not empty;
Costicase = »_  Ci(w:)-di , 29:  Generate optimal cloud lease schedsiléom Stack™;
(zi,ti,di)ES 30: return S;

as well as maximize the locality, which is defined as: Fig. 3: Algorithm to compute the optimal cloud lease schedule.

the two parts together. This new problem can also be solved by

Locality = min | R-P(A4,t
o Ry Z P(A,t) Z;AZE% ( ) the algorithm proposed in Fig. 3, with some proper but simple
t<T AcA modifications. We defer the detailed discussion to the next
subsection with the consideration of exploring user resesir
S U6 Ty aeed] )
(wisti,di)€S [tetrct T i wiea] C. Exploring User Resources

These two objectives may contradict with each other, aslt is known that peer-to-peer streaming is highly scalable
leasing more servers in each region improves the locality Btirough exploring user contributed resources. Howeves in
also raises the lease cost. We adopt the following linear-cofre peer-to-peer system, users may join or leave at their

bination form to align them together with different weights own wills, and their available upload bandwidth may vary
significantly from time to time and from user to user. Even if

the aggregate user contributed upload bandwidth is equal to
greater than the total demand, a pure peer-to-peer design ma
wherep and ¢ are two parameters that can assign differestill suffer from content bottlenecks [15], where users éhav
weights to the two goals. Assuming that the demand estimatigpload bandwidth but no expected streaming content availab
is upper bounded over time duratidh, Costa. is thus for sharing. An extreme is a flashcrowd; that is, during a peak
the minimum lease costs of the case where the demandiige, many fresh users join the system with a vast amount of
constantly set to be the maximum demand within As  ready-to-share upload bandwidth but no content available.
Locality is a ratio of the intra-region streaming traffic over Our CALMS could also benefit from such readily available
the total streaming traffiq,l — Locality) is thus the ratio of resources in the User Layer, and yet it can elegantly méigat
the cross-region traffic over the total traffic, which shoalsb the aforementioned problems. To this end, we introduce a
be minimized likeCost;cqs.. To make the lease cost part alsjroup of parametersy 3), which we call asuser assistance

a ratio ranged betweelo, 1], we further divideCost;case DY  index Both of the two parameters range franio 1. o deter-
Costma, and then use parameterandg to linearly combine mines the ratio of the user contributed upload bandwidth tha

Costicase .
B Rm—— -(1—-L lity) ,
Costmaz Ta- ocality)
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can be effectively used to assist the live streamjhgenotes
the minimum ratio of cloud servers to be reserved to deal with
the content bottleneck (since the cloud servers always thave
updated streaming content to share). The full version of owr
problem thus can be written as to find a proper cloud lease
scheduleS, subjecting to the service availability constraint
and the following updated streaming quality constraint tha
considers both locality and user resources:

Fig. 4: lllustration of Cloud Layer organization.

capacity may not be forecasted precisely, where the acgurac

VI, <t<T, often degrades as the predication time gets more forward

than the current time. This renders that a statically coegbut
Uleo) + Z (U(ﬂfi) - R) 'I[te[tﬁn,tﬁdi)} optimal cloud lease schedule for a long period may become
(@it di) €S less useful due to the prediction error. Another issue is how
to organize the leased servers in the Cloud Layer. Since
+ min <a' Z B(A,t), (1-8)-R- Z ]P’(A,t)) they may be from different regions, a careless organization
AEA A€A may introduce unnecessary cross-boundary and crossaregio

>R. ZP(A’t) : traffics and also degrade the performance. Similar sitoatio

also happens to the User Layer, where users need to be

. L . carefully organized to enable assistances among each other
whereB(4, ¢) is the aggregate user upload bandwidth in re0I%4k \ell as enforce locality and good QoS. In this section, we

A at time¢. Our objective is still to minimize present our solutions to address these issues.

A€A

Costieas ,
L L O%ease | q - (1 — Locality) ,
Costmaz A. Cloud Layer Organization and Evolution
while with the user-assistance taken into account, theitgca ag the Cloud Layer is the core part of the CALMS
measure is now calculated as framework, its organization is thus very important to the

Locality — . Z Z min <R (A, 1), performance of the migrated live media streaming appbecati

1
R- P(A, t As the tree structure is well known for its efficiency for
Z Z (A1) i<rach organization, in our implementation, we adopt a tree stimgct

Ak for the Cloud Layer. In particular, we let servef be the
Z U(;) - I[te[tﬁn titdy) el root of the tree and in charge of the whole Cloud Layer. The
(wi,ti,di) €S T servers in the interior part of the tree relay the live strizgm
content to other servers to amplify the upload capacity. #ed
+min (- B(A4,t),(1—-8) - R-P(4, t))) , remaining servers in outskirts then transmit the live stieg

content to the User Layer.
so as to maximize the traffics from local users/servers, thusSince the leased cloud servers may be from different re-
reducing the latency and improving the overall performancejions, naively organizing servers into a tree may still eaus
To address this problem, some modifications need to pgor performance. Fig. 4 shows an example, where each circle
applied to the algorithm proposed in Fig. 3. Firbhad now denotes a cloud server and the number inside denotes the
needs to have a second dimension to distinguish the demagnsifion that the server belongs to. In this figure, there3are
from different regions and when initialized (lir), it needs cloud servers of unit upload capacities leased from each of
to further subtract the user contributed upload bandwibith. the regions ofl to 3, which are expected to provide similar
addition, theC'ost computation (linel8 and26) now needs to upload capacities to each region. By a naive organization
integrate with the locality, where for a time instarice time shown on the left part, the upload capacities provided bydtlo
(which means that new cloud servers still may be leased f#rvers to each region @ 4 and6, which is greatly different
this time instance), we us& - P(A,t) to approximate the from the expectation; while by handling carefully as shown o
locality in a regionA, so that the compute@'ost still keeps the right part, the upload capacities for each region besome
to be a lower bound and the optimality of the cloud leasg 3 and4. In addition, by the naive organization, to arrive at
schedule returned by the algorithm can thus be achieved. WWe User Layer, the live media streaming traffics must cross
omit more details here due to the space limitation, which ca least one region boundary and may cross as many as
be found in [21]. We then have the following corollary. region boundaries; while the carefully handled organdrati
Corollary 1: The modified algorithm returns the optimalcan effectively reduce such cross-boundary traffics.
cloud lease schedule with the consideration of both localit To deal with these issues, we let servgrselect and keep
and user resources. tracking a root server for each region from the leased sgerver
When a cloud server is newly leased, it will first be redirdcte
IV. MIGRATION IMPLEMENTATION AND OPTIMIZATION  tg the root server in the same region, and the root server will
Previous section addresses the major design problems lierresponsible to help the newly leased server join the sabtr
CALMS. However, in practice, there still remain some issugsoted at itself. If a region currently has no root serveryse
that need to be considered carefully. First, the user deraadd ¢y will temporarily take the role until a server from that regio
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is leased. And if a root server is stopped due to the decreadiegt is naturally provided by the tree organization. We let
demand in its region, the root server will select anotheveser the last server that the user has been redirected to keep the
in the same region from its descendants to take its role.flfll information of that user. Such information will then be
no such server exists, servey will take the role temporarily. aggregated and reported to this server’s parent. This psoce
In addition, the root server of each region will also help twill continue on level by level until reaching the root seareg
optimize the server organization within its region, such abat region. The root server of each region will then aggreega
allocating the servers with higher upload capacities clése and report the user information directly to servgr By this
itself as well as moving a server to a hew parent closer to theeans, when a user is being redirected, the current seter th
root server than the current parent, so that the height of tissues the redirection can then choose the next stop for the
subtree rooted at the root server can be minimized. user based on the collected user information.

Through our simulation results in Section V, we observe this To deal with user dynamics, each user will periodically
design, combined with the locality-aware scheduling pegab report its updated information to its server. The servet wil
in the previous section, can substantially reduce the eroséso check whether the user has left if a report has not been
boundary traffic as compared to a straightforward approadteived recently. And when a server needs to be stopped due
without locality-awareness. to the decreased demands from its region, it will first redire

all its users one by one to servey to redo the join process,

B. User Layer Organization and Evolution then stop and leave the Cloud Layer.

The main task of the User Layer organization is to enforce
locality and good QoS as well as enable user-assistancen Whe Dynamic Lease Scheduling
a user joins the live media streaming session, it will first be In practice, the user demand and capacity forecast may
redirected to the root server at the same region if therelie inaccurate, and such inaccurate may cause a statically
available upload capacity within that region, otherwise thcomputed cloud lease schedule for a long future period be-
user will be redirected to the root server of other regiorhwitcomes less useful or even invalid. To overcome this problem,
available upload capacity. The root server then decidesavheve use dynamic lease scheduling instead for the migration
the user should go next. If there is available upload capacimplementation. In particular, with the collected aggrtega
directly from the servers in the region, the user will then ba@formation (such as current total user demand and total
redirected to the server that can provide the upload cgpaciipload capacity) from each region, seregmwill dynamically
If not, the user will be redirected to a server that contaimecompute the cloud lease schedule in the following twoscase
information about users that can provide the upload capacit Case 1 If current user demands are greater than the
This server will then randomly choose some users with enougtediction or current user upload capacities are less than t
aggregate upload capacities and send their IPs to the nepfgdiction, serverey will dynamically recalculate the cloud
joined user. The user will then add these users as neighblease schedule with the updated information and then lease
and exchange the live media streaming content with them aglditional cloud servers by the new schedule.
a peer-to-peer protocol. Case 2 If a cloud server has been leased for the multiple

To enforce good QoS and handle the content bottlenetitnes of D,, (i.e., if hecessary, the cloud server can now be
problem that may exist, when a server randomly picks usestopped without introducing further delay and cost), serve
for the newly joined user, only those with high playback will check if current user demands in that region are less
buffer levels will be selected and sent out by the server. than the half of current upload capacities even with thigeser
addition, we also let a user with high upload capacity tstopped. If so, it will stop this server to reduce costs and
preempt a user that directly downloads from a server but witacompute the cloud lease schedule accordingly.
low upload capacity. And when the playback buffer level of In addition, due to the content bottleneck issue, sometimes
a user becomes low, either due to user dynamics or netwdnle QoS perceived at users may degrade even the total upload
bandwidth fluctuation, the user will request more neighboespacity is still greater than the total user demand. To make
from its server to maintain good live streaming quality. the Cloud Layer responsive to such situations, we also aolle

To track such user information at the Cloud Layer whilehe playback buffer level of each user when tracking other
keeping good scalability, we adopt a hierarchical striectumformation. Servercy will then check the minimum buffer



SUBMITTED TO TRANSACTIONS ON NETWORKING FOR POSSIBLE PUBCATION 7

12 12 12 150
I cCTV3 I cCTV3 I CCTV3 - I CCTV3
1 [ DragonBall 1 [ DragonBall = 1 [ DragonBall 3 [ DragonBall
g £
g g = g
©os O o8 S 08 2 100
& 3 3} 2
] 5 4 ]
3 [ @ £
= 0.6 3 0.6 g 0.6 g
N B o 2
T ] 5 2
£ 04 £ 04 g 04 S 50
s El s ]
= £ g
02 02 5 0.2 z
z o
0 - 0 - 0 - 0 -
Max-Central Max-CDN ~ CALMS P2P-Locality Max-Central Max-CDN ~ CALMS P2P-Locality Max-Central Max-CDN ~ CALMS P2P-Locality Max-Central Max-CDN ~ CALMS P2P-Locality

Approach Approach Approach Approach

Fig. 9: Lease costs of different Fig. 10: Total costs of different Fig. 11: Cross-region traffics of Fig. 12: Playback discontinuity
approaches. approaches. different approaches. of different approaches.

level of the users who have already started playing the mediaparticular, we set each data block is of 1-second video and
streaming. If the minimum level is below a threshold, whichssume TCP is used for the transmission. The playback buffer
indicates potential content bottleneck may happen, sefyeris set to the size enough to hald data blocks. The playback
will lease a new server to increase the content availakility will start when at leas80 continuous data blocks are received

recompute a new lease schedule accordingly. at the buffer. For comparison, we implement other three
approachedviax-Centralstatically provisions servers all from
V. PERFORMANCEEVALUATION one region by the maximum user demand in the corresponding

simulations are conducted on the block level and driven I§{USters to provide the live media streaming servidax-CDN

real traces and data sets collected from Amazon EC2 an@!g0 Provisions servers by the maximum user demand, but the
popular live media streaming system (PPTV). We first briefl rovisioned servers may be selected from different regions
introduce the collected traces and data sets, and themaentiPased on the average user demands from each region. This

streaming service?2P-Localityonly uses the servey as the

streaming server and delivers streaming content by peer-to

peer technology and with locality-awareness, which enaslat
1) Amazon EC2 Measuremer@ur measurement on Ama-ihe solution for peer-to-peer live media streaming.

zon EC2 is mainly on the bandwidth distribution between | aqdition, we use the following four metrics in our simula-

cloud servers and users. In particular, we first send DNJp: | ease costss the costs for leasing cloud servers, which
requests to the EC2 domains to find the IP addresses gfrasents the major concern from the live media streaming
EC2 servers. The DNS server replies with a list of uniqugyice providersCross-region traffids the amount of traffic

IP prefixes which are reserved by Amazon for their ECat crosses different regions. This metric shows the iyeal
instances. Based on this IP list, we further probe these Jzareness of an approach and is also an indicator to the
prefixes with ICMP, TCP and UDP packets from differenfeneral performance as lower cross-region traffic mearts tha
locations, identifying active instances and then meaguhieir ,sers are closer to their servers and the Cloud Layer are well
bandwidth accordingly. Fig. 5 shows the measured bandwidifyanizedplayback discontinuitys the average duration that
dlstflbut|ons between different c[oud servers and uset8eO 5 ser may experience discontinued playback per hour, which
settings are adopted from previous measurement and evalumainly caused by that the streaming data packets fail to
ation works [4][11][18] and the Amazon EC2 official webyyrive at a user before its playback deadli¢artup latency
site [2]. A more detailed description can be found in [21]. 5 the |atency taken by a user between its requesting to join

2) PPTV Traces:PPTV is one of the largest commercialpe session and receiving enough data to start playback.
peer-to-peer live streaming systems to date, attractirgy ov

100, 000 online users during peak times, and is also one of th¢ |mpacts of Different Parameter Settings

mqstly examined systems in academia [.6][8][27]' Our simu- We first conduct simulations to investigate the impacts of
lations are based on traces from two of its popular channel

G?gerent parameter settings. Fig. 7 demonstrates howethsel
namely, C.CTV3 and DragontII. These traces are gath_erceost and cross-region traffic change with differgpig values.
by an online crawler that continuously collects informatio

. . .. “For ease of comparison, the results are normalized by the
from each channel [22]. Fig. 6 shows the region distributio : L . « 10-2
of PPTV users in one day’s traces and Fig. 1 shows the @orrespondmg minimum values. Whegyg is small (€ 10°),

U on traffic is minimized while iniroduci
SR o . cross-region traffic is minimized while introducing the
demands distributions and variations. Other settings tatheu | .

live media streaming users are adopted from [6][27]. highest lease costs. On the other hand, whangrows large

(> 102), it results in the minimum lease cost but at the

expenses of excessive cross-region traffic. Moreover,invith

B. Methodology the region nearl0~!, both the lease cost and cross-region
With the data sets and traces from Amazon EC2 and PPTkffic stay relatively low. We thus pick up this valpgq = 0.1

we then conduct extensive block level simulations to eveluaas the default for the remaining evaluations.

our migration framework. We adopt a typical live media We next investigate the impacts of differentand 5 values

streaming setting as used in PPTV [6] and CoolStreaming [14h the playback discontinuity. The results are shown in &ig.

A. Data Sets and Traces
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It is easy to see that the impact ¢f is more significant than those in the CCTV3 trace. This is also because the
than that of «, while the results are different. Whea DragonBall channel attracts much more Asian user demands
becomes larger, the playback discontinuity slightly iases, than from the other regions, which allows the server/peer
which matches the definition ef since more user-assistanceselections to be more dedicated in Asia and results in more
are involved, resulting in that more content bottlenecky mantra-region traffics instead of cross-region traffics. Aldy
happen and degrade the playback quality. On the other haodmparing among the three approaches, we can find that
the playback discontinuity changes inversely with the gallby both dynamically provisioning enough cloud servers and
of 8. This also matches the definition ¢f as reserving exploiting user-assistance, CALMS can actually achieve a
more cloud servers to compensate the content bottlenedks Wwalance of the locality provided by either mechanism, akvay
improve the playback quality. More interestingly, the fdagk avoid the worst case — having the highest cross-regiondyaffi
discontinuity will change more dramatically as either oé thand stays close to the best one.

two parameters changes within the region(06f2,0.7). We

thus chooser = 0.2 and 8 = 0.7 as the default setting. E. QoS Perceived by Users
] ] Previous subsection has shown that migrating the live media
D. Performance Observed at Service Providers streaming application to the cloud service can achieve good

With the default parameter setting, we then conduct simperformance as observed at the service providers. Next we go
lations to see how CALMS performs with both CCTV3 anan to explore possible benefits that may be brought to users.
DragonBall traces. Fig. 9 shows the lease costs of differentWe first investigate the playback discontinuity, which is
approaches. For ease of comparison, the lease costs in ed@wn in Fig. 12. We can see that CALMS performs similar
trace are normalized by the corresponding cost of the Mao- both Max- approaches and achieves very low playback
Central approach. It is not surprising that P2P-Locality tree  discontinuity. On the other hand, due to the peer dynamics
lowest costs. At the same time, our CALMS also has muend content bottlenecks, P2P-Locality suffers relativiyh
lower lease costs, achievirdg.5%-45.1% of the Max-Central playback discontinuity with the average as many as a26ér
approach and0.5%-39.6% of the Max-CDN approach, re- seconds per hour. To better understand the QoS perceived by
spectively. Another observation is that the lease costhién teach user, we also draw the CDF of the playback discontinuity
DragonBall trace are generally higher than those in the CETWor both CALMS and P2P-Locality in Fig. 13. It is clear to
trace. This is because the content provided in the DragdnBs¢e that for P2P-Locality, some users may suffer playback
channel attracts much more Asian user demands than thdseontinuity up to neaB00 seconds per hour, which means
from the other regions and the lease prices of Amazon EC2that these users cannot watch the live media for more than
Asia are relatively higher, which further verifies the lagal 20% of the time. On the other hand, by provisioning enough
awareness of both the Max-CDN and CALMS approachedoud servers to provide both upload contents and capsgcitie
Since Amazon EC2 also charges for the data traffic transferl@ALMS significantly reduces the worst case playback discon-
out of the cloud boundary, we also examine the total costs tofuity to aroundl minute and affords more thadt% of the
different approaches, which is shown in Fig. 10. It is easy tsers to enjoy zero playback discontinuity.
see that even with the data transfer costs, CALMS can stillBesides watching live media fluently, a user also prefers
reduce a great amount of the total costs by rougBli-30%, to short waiting time before the live media can start to play.
which further demonstrates the effectiveness of migratiiveg Fig. 14 shows the startup latency of different approaches. D
live media streaming application to the cloud service. to the delay of being redirected to other servers and fillipg u

Fig. 11 shows the cross-region traffics generated by diftereahe playback buffers, both Max- approaches have the startup
approaches, which are also normalized by the correspondiatgncy of abou® seconds. CALMS, by provisioning enough
cross-region traffic of the Max-Central approach. As the Maxloud servers with upload contents and capacities, can also
CDN, CALMS and P2P-Locality approaches are all localityachieve a similar startup latency. On the other hand, thieugta
aware, it is thus not surprising that their cross-regioffic latency of P2P-Locality is almost of doubled length of the
are much lower than that of the Max-Central approach. Yether three approaches due to the long latency for identfyi
an interesting thing is that the cross-region traffics of thenough peers with both the live media streaming contents and
three approaches in the DragonBall trace are much lowsrailable upload capacities.
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approaches by SpotCloud. of different approaches by Spot-of different approaches by Spotferent approaches by SpotCloud.
Cloud. Cloud.
VI. FURTHERDISCUSSIONS tributes the maintenance cost to the server’s contribsetet,

As this paper focuses on providing fundamental understarfféatly reducing the lease cost of each server. The other
ings on migrating the live media streaming to the clou@bservation is that in this new type of pIatfo_rm_, although
we only provide basic schemes in Section IV to handle g€ server contributor/sellers are highly geo-distritlue.g.
inaccuracies in the user demand/capacity forecast. It fs yecountries for SpotCloud in Fig. 15), the aggregate server
interesting to explore the impact of the forecast accuracy §2Pacities may not be as strong as the datacenter clouds (if
the performance. Based on our preliminary simulations ai£'e is one) in the same region. This explains why the cross-
analysis, it can be briefly summarized in several folds.tFird€gion traffic by SpotCloud is much higher than Amazon EC2.
if the user demand is overestimated, the cross-regiondraffi’€S€ observations motivate a possible hybrid design to use
and the QoS perceived by users are not affected, while fpth types of cloud platforms to provide the live streaming
lease cost increases. If the demand is underestimatediteoth@Pplication, where the datacenter clouds as the backbone to
lease cost and QoS may drop and the cross-region traffic nfjforce enough server capacities and good performande, wit
increase. On the other hand, if the user capacity is underetfie servers contributed/sold by others from this new type of
mated, both the cross-region traffic and QoS are not aﬁect@@tform as edge servers to further reduce the lease costs.
while the lease cost may increase. And if overestimatedajt m
degrade the QoS, increase the cross-region traffic, andteedu VIl. CONCLUSION AND FUTURE WORK
the lease cost. In CALMS, the capacity forecast inaccuracy i This paper presented CALMS, a generic framework that
partially overcome by carefully setting and 3, where lowa  facilitates migrating live media streaming to a cloud plat-
value or highs value can reduce the framework’s dependendéerm. Being the very first paper towards this direction, we
on the user capacities but may introduce extra lease cadtived to offer fundamental understandings on the praktic
For the demand forecast error, we believe that to the overtgasibility and theoretical constraints in the migratioie
performance, overestimation is better than underestimatifirst modeled the basic problem of leasing cloud services to
This suggests that one may map the demand forecast probRtaport time-varying user demands and developed an optimal
to the classic ski-rental problem [10] and apply the simpigorithm. We then extended our solution to integrate iogal
break-even online algorithm. We omit more details here dawareness and user-assistance, alleviating the impast fro
to the space limitation, which can be found in [21]. Outhe service globalization. We further designed a series of
preliminary results show as long as the decisions of differepractical solutions for both cloud and user layer orgarsrat
approaches are made by the same demand forecast algori@fg optimization, as well as dynamic lease scheduling that
with only overestimation errors, CALMS can still achieve thaccommodates inaccuracy in demand and capacity forecast.
similar performance as shown in the last section. Extensive simulations driven by traces from both cloud iserv

Another open issue is that recently increasing attentiopgoviders (Amazon EC2 and SpotCloud) as well as live media
from both industries and academia have been attracted bgtegaming service provider (PPTV) demonstrated the cost-
new type of cloud platform featured as allowing the users &ffectiveness and superior streaming quality of CALMS,neve
contribute/sell their own idle computing resources anddbuiwith highly dynamic and globalized demands.
their own cloud services. It is thus interesting to investiigthe =~ We are currently conducting more simulations to evaluate
potential of this type of platform to migrate the live straagn and improve CALMS with data sets and traces from other
application. To this end, we select a typical example, thdoud providers and live media streaming providers. We epe
Enomaly’s SpotCloud [19][23], to run simulations with thd0 develop a prototype for further verification and evaloti
measured information shown in Figs. 15 and 16. The resué are also interested in exploring other open issues such as
are shown in Figs. 17-20, where the lease cost and crog€€signing better user demand/capacity forecast mechanism
region traffic are normalized by those values of the Maxnd extending CALMS to other type of cloud platform, e.g.,
Central approach on Amazon EC2. Besides the superiorityAMazon CloudFront [1], a cloud-based CDN platform.
our CALMS solution, we find two interesting observations
comparing to the results on Amazon EC2: First, the lease cost ACKNOWLEDGMENT
of this new type of platform is very low and generally lesstha Feng Wang's research is supported by a Start-up Grant
10% of Amazon EC2. This is because this new platform digrom the University of Mississippi, MS. Jiangchuan Liu’s
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