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Abstract—Microgrids are local electricity systems that inte-
grate demand and distributed energy resources. They represent
a basic building block for future electricity systems that are
more cost-effective than conventional grids. Real-time energy
generation scheduling is an important issue in microgrid op-
erations. However, common approaches in conventional grids
suffer from various limitations and do not apply to microgrids:
(1) stochastic optimization approaches rely on stochastic mod-
eling, which is difficult to obtain in microgrids with significant
wind penetration and varying demand responses participation;
(2) robust optimization approaches provide no cost-efficiency
performance guarantee. In this paper, we present a real-time
scheduling solution without stochastic modeling, considering a
flexible time-window of prediction and providing performance
guarantee with minimal risk. Our solution is an generalization
of our previous work from homogeneous local generation to
heterogeneous settings. We evaluate the performance of our
proposed solution using the operating trace of a pilot microgrid
on the Bornholm Island, Denmark. We show that our solution
achieves a performance close to perfect dispatch, and is robust
to prediction errors.

I. INTRODUCTION

Recently, there has been an increased penetration of dis-
tributed renewable energy sources, demand responses partici-
pation and coupled resources (e.g., co-generation), particularly
in emerging microgrid systems. This creates enormous chal-
lenges to the design of reliable but yet cost-effective generation
scheduling strategies that can balance time-varying demand
and supply at roughly the same time.

Traditionally, generation scheduling problem has been ex-
tensively studied based on Unit Commitment (UC) [15] and
Economic Dispatch (ED) [8] problems. Unfortunately, the
classical strategies cannot cope well with the rapidly varying
intermittent sources (e.g., wind power) and demand responses.
In particular, if we consider microgrids, the abrupt changes
in local weather condition may have a dramatic impact that
cannot be amortized as in the larger-scale national grid. For
instance, in Fig. 4 we examine one-week traces of electricity
demand and wind power output of Bornholm Island, Denmark.
We observe that the net electricity demand inherits a large
degree of variability from the wind generation, casting a
challenge for accurate prediction. Furthermore, coupled en-
ergy resources (e.g., co-generation) complicate the scheduling
decisions. For instance, in Fig. 4 the heat demand exhibits
a different stochastic pattern, complicating the prediction of
overall energy demand.

To reduce the impact from prediction errors, real-time
scheduling has been increasingly advocated in the community

[14], which requires commitment and dispatch decisions as
frequently as in hourly basis. To realize real-time scheduling,
several solutions have been proposed. Stochastic optimization
approach [16] is one of the popular solutions, which however
suffers from inaccurate a-priori assumptions and parameters of
stochastic modeling. Another approach is robust optimization
[17], which optimizes commitment and dispatch decisions with
respect to a large set of demand possibilities, under security
constraints. But robust optimization cannot provide a cost-
efficiency guarantee against perfect prediction result.

In our previous work in [13], we present a scheduling
algorithm called CHASE (Competitive Heuristic Algorithm
for Scheduling Energy-generation). CHASE does not rely
on stochastic modeling and yet provides a guaranteed cost-
efficiency against perfect prediction. Furthermore, we can
theoretically show that our scheduling algorithm CHASE
is the optimal one with respect to the competitive ratio,
with a mild condition1. The implication is that CHASE can
ensure energy generation with minimal risk. Our previous
study in [13] focuses on a homogeneous setting where local
co-generation generators have the same parameters such as
maximum output levels, minimum on/off times and ramping-
up/-down rate limits. In practice, however, microgrids may
employ different types of co-generation generators with het-
erogeneous operating constraints. In this paper, we extend
CHASE to the general setting where local generators can have
heterogeneous parameters, and thus extend the applicability of
CHASE beyond the homogenous scenarios studied in [13].

Conceptually, our proposed scheduling approach can be
implemented in existing microgrids as described in Fig. 1.
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Fig. 1: Proposed implementation of CHASE in microgrids

1The competitive ratio is based on online competitive analysis [5], and here
refers to the cost of scheduling algorithm without prediction over the optimal
cost with perfect prediction over all cases.



There are four modules in the implementation. First, we
employ the prediction module to obtain the intermittent energy
and load of the next hour. We note that the short time
prediction is much more precise than the day-ahead prediction.
Based on hourly prediction, we carry the real-time scheduling
with CHASE. Next, the schedule is executed. After a day
of commitment and dispatch execution, the performance is
evaluated by Perfect Dispatch (PD). The notion of PD is
proposed by PJM, which refers to the generation scheduling
with perfect prediction. Although this solution is hypothetical,
a PD solution serves as a baseline for benchmarking actual
daily grid performance [9].

Our study provides the following contributions:
• In Sec. II, we formulate the microgrid energy genera-

tion scheduling problem for a general scenario where
microgrids employ intermittent renewable energy sources
and diverse co-generation generators with heterogeneous
operating constraints including maximum output levels
and ramping-up/-down rate limits. This generalizes the
homogeneous setting considered in our previous work
[13] where local generators have identical parameters. We
then generalize our recently-proposed algorithm CHASE
to the new heterogeneous scenarios considered in this
paper in Sec. III.

• We also show in Sec. III that for arbitrarily uncertain
demand and intermittent renewable energy generation,
our extended algorithm CHASE achieves a cost within a
constant times of that achieved by PD. In other words,
CHASE has a bounded operational risk under any un-
certain circumstances. This is in contrast to conventional
generation scheduling approaches which might have un-
bounded operational risk, i.e., their costs can be arbitrarily
larger than that achieved by PD, if their assumed models
do not match the input uncertainty in practice.

• We evaluate our algorithm using the operating trace of a
pilot microgrid on the Bornholm Island, Denmark in Sec.
IV. We show that our algorithm achieves a performance
close to PD, and is robust to prediction errors.

II. PROBLEM SETTINGS

We consider a typical scenario where a microgrid orches-
trates different energy generation sources to minimize cost for
satisfying both local electricity and head demands simultane-
ously, while meeting operational constraints of electricity sys-
tem. We will formulate a microgrid cost minimization problem
(MCMP) that incorporates intermittent energy demands, time-
varying electricity prices, local generation capabilities and co-
generation in Sec. II-B.

We define the notations in Table I.

A. Model
Intermittent Energy Demands: We consider arbitrary

renewable energy supply (e.g., wind). Let the net demand
(i.e., the residual electricity demand not balanced by wind
generation) at time t be a(t). Note that we do not rely on
any specific stochastic model of a(t).

External Power from Electricity Grid: The microgrid can
obtain external electricity supply from the central grid for

T The total number of intervals (unit: hour)
N The total number of local generators
n The id of the n-th local generator, 1 ≤ n ≤ N
β The startup cost of local generator ($)
cm The sunk cost per interval of running local generator ($)
co The incremental operational cost per interval of running local

generator to output an additional unit of power ($/Watt)
cg The price per unit of heat obtained externally using natural

gas ($/Watt)
Ln The maximum power output of the n-th generator (Watt),

1 ≤ n ≤ N.
Tn

on The minimum on-time of the n-th generator, once it is turned on
Tn

off The minimum off-time of the n-th generator, once it is turned off
Rn

up The maximum ramping-up rate of the n-th generator (Watt/hour)
Rn

dw The maximum ramping-down rate of the n-th generator (Watt/hour)
η The heat recovery efficiency of co-generation
a(t) The net power demand minus the instantaneous wind power

supply and stored power from battery (Watt)
h(t) The space heating demand (Watt)
p(t) The spot price per unit of power obtained from the

electricity grid (Pmin ≤ p(t) ≤ Pmax) ($/Watt)
σ(t) The joint input at time t: σ(t) , (a(t), h(t), p(t))
yn(t) The on/off status of the n-th local generator (on as “1” and

off as “0”), 1 ≤ n ≤ N
un(t) The power output level when the n-th generator is on (Watt),

1 ≤ n ≤ N
s(t) The heat level obtained externally by natural gas (Watt)
v(t) The power level obtained from electricity grid (Watt)

TABLE I: Notations of formulation.

unbalanced electricity demand in an on-demand manner. We
let the spot price at time t from electricity grid be p(t). We
assume that Pmin ≤ p(t) ≤ Pmax. Again, we do not rely on
any specific stochastic model on p(t).

Local CHP Generators: The microgrid has N units of
heterogenous local CHP generators, each having an maximum
power output capacity Ln. Without loss of generality, we
assume L1 ≥ L2... ≥ LN . Other setting of local generators
follows a common generator model [12], see Table I.

Co-generation and Heat Demand: The local CHP gener-
ators can simultaneously generate electricity and useful heat.
Let the heat recovery efficiency for co-generation be η, i.e., for
each unit of electricity generated, η unit of useful heat can be
supplied for free. Alternatively, without co-generation, heating
can be generated separately using external natural gas, which
costs cg per unit time. Thus, ηcg is the saving due to using
co-generation to supply heat, provided that there is sufficient
heat demand.

To ensure insightful results, we assume that co + cm
LN

<
Pmax + η · cg . This ensures that the minimum co-generation
energy cost is cheaper than the maximum external energy
price. If this is not the case, it is always optimal to obtain
power and heat externally.

B. Problem Definition

The microgrid operational and generation cost in [1, T ] is
given by

Cost(y, u, v, s) ,
∑T

t=1

{
p(t) · v(t) + cg · s(t)+ (1)∑N

n=1 [co · un(t) + cm · yn(t) + β[yn(t)− yn(t− 1)]+]
}
,

which includes the cost of grid electricity, the cost of the
external gas, and the operating and switching cost of local



CHP generators in the entire horizon [1, T ].
We formally define the MCMP as a mixed-integer program-

ming problem, given electricity demand a, heat demand h, and
grid electricity price p as time-varying inputs:

min
y,u,v,s

Cost(y, u, v, s) (2)

s.t. un(t) ≤ Ln · yn(t), (3)∑N
n=1un(t) + v(t) = a(t), (4)

η ·
∑N

n=1un(t) + s(t) = h(t), (5)
un(t)− un(t− 1) ≤ Rn

up, (6)
un(t− 1)− un(t) ≤ Rn

dw, (7)
yn(τ) ≥ 1{yn(t)>yn(t−1)}, t+1 ≤ τ ≤ t+Tn

on-1, (8)
yn(τ) ≤ 1-1{yn(t)<yn(t−1)}, t+1 ≤ τ ≤ t+Tn

off -1, (9)

var yn(t) ∈ {0, 1}, un(t), v(t), s(t) ∈ R+
0 , (10)

n ∈ [1, N ], t ∈ [1, T ],

where 1{·} is the indicator function and R+
0 represents the set

of non-negative numbers. Specifically, constraint (3) captures
the constraint of maximal output of the local generator. Con-
straints (4)-(5) ensure that the demands of electricity and heat
energy balance, respectively. Constraints (6)-(7) capture the
constraints of maximum ramping-up/down rates. Constraints
(8)-(9) capture the minimum on/off period constraints.

III. MAIN RESULTS

In our previous work in [13], we present an algorithm
CHASE for scheduling energy generation in microgrids with
renewable energy sources and local generators with identical
operating parameters. In this section, we generalize CHASE to
the new heterogenous scenario we formulated in Sec. II, where
microgrids employ different types of co-generation generators
with heterogenous operating constraints including maximum
output levels and ramping-up/-down rate limits.

In particular, at each time slot, we repeat the following
three-step process:

STEP 1: Division of demand. By this process, the total
demand is divided into layers of sub-demand σly−n(t) =(
aly−n(t), hly−n(t)

)
(see Fig. 2), such that n-th layer is

assigned to be supplied by a specific generator with capacity
Ln. The sub-demand σtop(t) = (atop(t), htop(t)) is supplied
externally.

(a) Division of the electricity de-
mand.

(b) Division of the heat demand.

Fig. 2: The demand division sub-process. CHASE always
deliver the demand to the generator with large capacity.

STEP 2: Deciding commitment variable (yn(t)) for each
sub-process. The decision process is illustrated in Fig 3.
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Fig. 3: The commitment variable (yn(t)) decision sub-process

In Fig 3, let ∆n , ψn(σn(t), 0)− ψn(σn(t), 1), and

ψn(σn(t), yn(t)) , min
un(t),vn(t),sn(t)

p(t)vn(t) + cg · sn(t)

+co(t) · un(t) + cm · yn(t)

s.t. un(t) + vn(t) = an(t).

sn(t) + η · un(t) = hn(t).

un ≤ yn(t) · Ln.

STEP 3: Deciding dispatch variables (un(t)) decision sub-
process. When yn(t) is determined, the optimal un(t) can
be decided by solving the following single-time-slot dispatch
problem:

min
un(t),vn(t),sn(t)

p(t)vn(t) + cgsn(t) + co(t)un(t)

s.t. un(t) + vn(t) = an(t).

sn(t) + η · un(t) = hn(t).

un ≤ yn(t) · Ln.

un(t)− un(t− 1) ≤ Rn
up.

un(t− 1)− un(t) ≤ Rn
dw.

In the above problem, un(t− 1) is the last time-slot dispatch
variable, which was determined. The above problem is a
linear programming problem, and can be solved with efficient
algorithms [6]. Finally, we set v(t) = a(t) −

∑
un(t),

s(t) = h(t)− η ·
∑
un(t).

By the the following theorem, we show that CHASE
achieves a good performance guarantee against PD.

Theorem 1. The cost of algorithm CHASE is at most
(3− 2α) · max (r1 · r2) times of that achieved by PD. Here
constants α, r1, r2 are given by:

α , (co + cm/LN )/(Pmax + η · cg) ∈ (0, 1];

r1 , 1 + max

{
Pmax + cg · η − co

LNco + cm
max

{
0, L1 − Rmin

up

}
,

co
cm

max
{

0, L1 − Rmin
dw

}}
;
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(b) One week data in May

Fig. 4: Net electricity demand and heat demand for a typical
week in January and May. The net demand is computed by
subtracting the wind generation from the electricity demand.

r2 , 1 +
cm · Tmax

on + L1(Pmax + cg · η)(Tmax
on + Tmax

off )

β
.

where Rmin
up and Rmin

dw are the minimal ramp up/down rate
among all local generators, and Tmax

on and Tmax
off are the

maximal minimum on/off time among all local generators.

The full proof is referred to our technical report [3].
For fast response generators2, ramp limit constraints (6)(7)

and minimum on/off constraints (8)(9) can be omitted (i.e.,
Rmin

up ,Rmin
dw → L1 and Tmax

on ,Tmax
off → 0). Under this scenario,

r1 and r2 will decrease to 1 and the competitive ratio of
CHASE becomes 3 − 2α, which is strictly smaller than 3,
independent of input and system settings. Furthermore, we
prove that under this special scenario, CHASE achieves the
smallest c.r. among all the real-time scheduling algorithms.
We note that we generalize CHASE to the version that can
exploits a flexible time-window prediction in [3].

IV. EMPIRICAL EVALUATIONS

We evaluate the performance of our algorithm based on
evaluations using operating traces of a pilot microgrid on the
Bornholm island, Denmark [11], [1], [7]. Our objectives are
three-fold: (i) evaluating the potential benefits of CHP and
the ability of our algorithms to unleash such potential, (ii)
corroborating the empirical performance of CHASE under
various realistic settings, and (iii) understanding how the
prediction error impacts the performance.

A. Parameters and Settings
Demand and Wind Trace: We use one-week trace in

January and May in Bornholm island3, respectively. This trace
is shown in Fig. 4.

Electricity and Natural Gas Prices: We use the corre-
sponding grid electricity price (Fig. 4) and natural gas price
data (Table. II) in Denmark.

January, 2007 May, 2007
Natural Gas 0.0282 $/kWh 0.0291 $/kWh

TABLE II: The natural gas purchase price in Denmark.

Generator Model: We adopt generators with specifications
the same as the one in [4]. We adopt ten generators with
capacity 1MW×1, 2MW×3 and 5MW×6. Other parameters

2Such as generators based on gas turbines and diesel engines.
3The data is generated by scaling down the western Denmark data by [11].

are shown as follows: co = 0.051$/KWh, cm = 150$/h,
η = 1.8, β = 1400$, Ton = Toff = 3h and Rup = Rdw =
1MW/h.

Local Heating System: We assume an on-demand heating
system with capacity sufficiently large to satisfy all the heat
demand by itself and without on-off cost or ramp limit. The
efficiency of a heating system is set to 0.8 according to [2],
and consequently we can compute the unit heat generation
cost to be cg = 0.0179$/KWh.

Cost Benchmark: We use the cost incurred by using only
external electricity, heating and wind energy (without CHP
generators) as a benchmark. We evaluate the cost reduction
due to our algorithm.

Comparisons of Algorithms: We compare three algorithms
in our simulations. (1) our algorithm CHASE; (2) the Fixed
Horizon Control (FHC) algorithm4; and (3) the Perfect Dis-
patch (PD) solution.

B. Potential Benefits of CHP

Purpose: The experiments in this subsection aim to answer
two questions. First, what is the potential savings with micro-
grids? Second, what is the difference in cost-savings with and
without the co-generation capability? In particular, we conduct
two sets of experiments to evaluate the cost reductions of
various algorithms. Both experiments have the same default
settings, except that the first set of experiments (referred to
as CHP) assumes the CHP technology in the generators are
enabled, and the second set of experiments (referred to as
NOCHP) assumes the CHP technology is not available, in
which case the heat demand must be satisfied solely by the
heating system.

Observations: First, looking at the performance of PD,
we observe that PD achieves much more cost savings during
May than during January. This is because the electricity price
during May is very high, thus we can benefit much more from
using the relatively-cheaper local generation as compared to
using grid energy only. Moreover, PD achieves much more
cost savings when CHP is enabled than when it is not during
January. This is because, during January, the electricity price
is relatively low and the heat demand is high. Hence, just
using local generation to supply electricity is not economical.
Rather, local generation becomes more economical only if it
can be used to supply both electricity and heat together.

Second, CHASE performs consistently close to PD across
inputs, even though the different settings have very different
characteristics of demand and supply. In contrast, the perfor-
mance of FHC depends heavily on the input characteristics.
For example, FHC achieves some cost reduction during May
and autumn when CHP is enabled, but achieves 0 cost reduc-
tion in all the other cases.

4In FHC, an estimate of the near future (e.g., in a window of length w)
is used to compute a tentative control trajectory that minimizes the cost over
this time-window. All steps in the predication window are implemented. In
the next time slot, the prediction window shifts forward by w. Then, another
control trajectory is computed based on the new future information, and again
all steps are implemented. This process then continues. FHC represents the
traditional scheduling approach based on perfect prediction.
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Fig. 5: Cost reductions for January and May .

C. Benefits of Perfect Prediction
Purpose: We compare the performances of CHASE to FHC

and PD for different sizes of the perfect prediction window
and show the results in Fig. 6. The vertical axis is the cost
reduction as compared to the cost benchmark in Sec. IV-A
and the horizontal axis is the size of prediction window, which
varies from 0 to 20 hours.
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Fig. 6: Cost reduction as a function of perfect prediction
window length.

Observations: We observe that the performance of our real
time algorithm CHASE is already close to PD even when
no or little perfect prediction information is available (e.g.,
w = 0, 1, and 2). In contrast, FHC performs poorly when the
prediction window is small. When w is large, both CHASE
and FHC perform very well and their performance are close
to PD when the prediction window w is larger than 15 hours.

An interesting observation is that it is more important to
perform intelligent energy generation scheduling when there
are no or little prediction information available. When there
are abundant prediction information available, both CHASE
and FHC achieve good performance and it is less critical to
carry out sophisticated algorithm design.

D. Impacts of Prediction Error
Purpose: Previous experiments show that our algorithm

have better performance if a larger time-window of accurate
prediction input information is available. The input informa-
tion in the prediction window include the wind station power
output, the electricity and heat demand, and the central grid
electricity price. In practice, these prediction information can
be obtained by applying sophisticated prediction techniques
based on the historical data. However, there are always pre-
diction errors. For example, while the day-ahead electricity
demand can be predicted within 2-3% range, the wind power
prediction in the next hours usually comes with an error range
of 20-50% [10]. Therefore, it is important to evaluate the
performance of the algorithms in the presence of prediction
error.

Observations: To achieve this goal, we evaluate CHASE
with prediction window size of 3 hours. According to [10],
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(a) Wind power prediction error
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Fig. 7: Cost reduction as a function of the size prediction error.

the hour-level wind-power prediction-error in terms of the
percentage of the total installed capacity usually follows beta
distribution. Thus, in the prediction window, a zero-mean beta-
distributed prediction error is added to the amount of wind
power in each time-slot. We vary the standard deviation of the
prediction error from 0 to 100% of the half of the total installed
capacity. Similarly, a zero-mean beta distributed prediction
error is added to the heat demand, and its standard deviation
also varies from 0 to 100% of the half peak demand. We
average 20 runs for each algorithm and show the results in
Figs. 7a and 7b. As we can see, CHASE is fairly robust to
the prediction error. Besides, the impact of the prediction error
is relatively small when the prediction window size is small,
which matches with our intuition.
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