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ABSTRACT
This paper studies online optimization under inventory (budget)

constraints. While online optimization is a well-studied topic, ver-

sions with inventory constraints have proven difficult. We consider

a formulation of inventory-constrained optimization that is a gen-

eralization of the classic one-way trading problem and has a wide

range of applications. We present a new algorithmic framework,

CR-Pursuit, and prove that it achieves the minimal competitive ra-

tio among all deterministic algorithms (up to a problem-dependent

constant factor) for inventory-constrained online optimization. Our

algorithm and its analysis not only simplify and unify the state-of-

the-art results for the standard one-way trading problem, but they

also establish novel bounds for generalizations including concave

revenue functions. For example, for one-way trading with price

elasticity , the CR-Pursuit algorithm achieves a competitive ratio

that is within a small additive constant (i.e., 1/3) to the lower bound

of lnθ+1, where θ is the ratio between the maximum and minimum

base prices.
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1 INTRODUCTION
Online optimization is a foundational topic in a variety of communi-

ties, frommachine learning to control theory to operations research.

There is a large and active community studying online optimization

in a wide range of settings, both looking at theoretical analysis and

real-world applications. The applications of online optimization are

wide ranging, e.g., multi-armed bandits [7, 15, 51], network opti-

mization (with packing constraints) [31, 32], data center capacity

management [39, 43, 49], smart grid control [41, 47, 57], and beyond.

Further, a diverse set of algorithmic frameworks have been devel-

oped for online optimization, from the use of classical potential

functions, e.g., [1, 30], to primal-dual techniques, e.g., [31, 53], to

approaches based on receding horizon control, e.g., [44, 45]. Addi-

tionally, many variations of online optimization have been studied,

e.g., online optimization with switching costs [12, 38, 40], online

optimization with predictions [18, 38, 41], convex body chasing

[5, 10, 28], and more.

In this paper, we focus on an important class of online opti-

mization problems that has proven challenging: online optimization
under inventory (budget) constraints (OOIC). In these problems a

decision maker has a fixed amount of inventory, e.g., airlines selling

flight tickets or battery owners participating in power contingency

reserves market, and must make a decision in each of the T rounds

with the goal of optimizing per-round revenue functions. The chal-

lenge is that the decision maker does not have knowledge of future

revenue functions or when the final round will occur, i.e., the value

of T . Further, the strict inventory constraint means that an action

now has consequences for future rounds. As a result of this en-

tanglement, positive results have only been possible for inventory

constrained online optimization in special cases to this point, e.g.,

the one-way trading problem [23].

More formally, a decision maker in an OOIC participates in T
rounds, without knowing T ahead of time. In each round, the deci-

sion maker selects an action vt ≥ 0, e.g., an amount to sell, after

observing a concave revenue function дt (·). Though the decision

maker observes the revenue function each round before choosing

an action, it is typically not desirable to choose an action to max-

imize the revenue in each round due to the limited inventory ∆.

Specifically, the actions are constrained by

∑T
t=1

vt ≤ ∆, and con-

sequently an action taken at time t constrains future actions. In
particular, if the inventory is used too early then better revenue

functions may appear later, when inventory is no longer available.

OOIC generalizes many well-known online learning and revenue

maximization problems. One of the most prominent is the one-way

https://doi.org/10.475/123_4
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trading problem [23], where a trader owns some assets (e.g., dollars)

and aims to exchange them into other assets (e.g., yen) as much as

possible, depending on the price (e.g., exchange rate). There is a

long history of work on one-way trading [19, 21, 23, 29, 42, 56], as

we describe in Sec. 7, and OOIC includes both the classic one-way

trading problem and variations with concave revenue functions

and price elasticity.

Applications. Beyond the one-way trading problem, OOIC also

captures a variety of other applications. Three examples that have

motivated our interest in OOIC are (i) power contingency reserve

markets [2, 52], (ii) network spectrum trading [13, 48], and (iii)

online advertisement.

In power contingency reserve markets, the system operator faces

a contingency, e.g., shortfall of supply that may lead to cascading

blackouts, and communicates this need to either supplement the

power system using battery or cut down large scale power supply.

Consider the perspective of a battery supply owner that is deciding

when to take part in a contingency. A contingency may be solved

immediately, or it may instead cause a larger contingency whereby

the system operator is willing to pay more at a later time epoch.

In preparation to participate in these contingencies, batteries are

charged earlier and therefore the marginal cost of participation only

manifests as an opportunity cost against future participation in the

day. These situations highlight the need for the online properties

considered in our work: (i) the unknown ending time T , (ii) future
revenue functions are not known, and (iii) a costless, strict inventory

constraint.

Similarly, in spectrum trading, the owner of a spectrum band

sells bandwidth to make sure that profit or revenue is maximized

given the investments that have already been made to procure

the particular bandwidth. This means that any cost with regards

to sales only appears as opportunity cost against future possible

sales. Similarly, a potential buyer who is turned down may seek

bandwidth from a different provider, and may never return, or

situations may change between time epochs, highlighting the same

three properties as before: (i) the unknown ending timeT , (ii) future
revenue functions are not known, and (iii) a costless and strict

inventory constraint.

In online advertisement, an advertiser with a given budget would

like to invest into keywords from Internet search engines, e.g.,

Google AdWords. Potential keywords come in an online fashion

and may be unavailable at any time. It has also been shown in [22]

that revenue can be modelled as a concave function with respect

to the investment. The advertiser needs to decide how to invest its

budget for keywords to maximize the overall revenue, once again

highlighting the same three properties listed above.

Contributions. In this paper we develop a new algorithmic

framework, called CR-Pursuit, and apply it to develop online algo-

rithms for the OOIC problem with the optimal competitive ratio

(up to a problem-dependent constant factor). Further, we prove

that CR-Pursuit provides the first positive results for a generaliza-
tion of the classic one-way trading problem with concave revenue

functions and price elasticity. In more detail, we summarize our

contributions as follows.

First, we introduce a new algorithmic framework, CR-Pursuit,
in Sec. 5. The framework is based on the idea of “pursuing” an

optimized competitive ratio at all time. The framework is param-

eterized by a tight upper bound on the competitive ratio, which

is then “pursued” with the actions in each round. We apply the

framework to OOIC and generalizations of the one-way trading

problem in this paper, but the framework has the potential for broad

applicability beyond these settings as well. Along the way, we also

derive several useful results on the offline optimal solution in Sec. 4,

which may be of independent interest.

Second, in Sec. 6, we apply CR-Pursuit to the OOIC problem

to achieve the optimal competitive ratio among all deterministic

algorithms (up to a problem-dependent constant factor). To obtain

these bounds we use two technical ideas that are of general inter-

est beyond OOIC. First, we prove that it suffices to focus on the

single-parametric CR-Pursuit algorithm for achieving the optimal

competitive ratio, thus significantly reducing the search space of

optimal online algorithms. Second, we identify a “critical” input se-

quence that highlights an important structural property of the space

of input sequences. By applyingCR-Pursuit to this critical sequence,
we characterize a lower bound on the optimal competitive ratio as

lnθ + 1 where θ is the ratio between the maximum and minimum

base prices to be defined in Sec. 3. Subsequently, for any other input,

the performance ratio achieved by CR-Pursuit is upper bounded
by the product of a problem-dependent factor and the lower bound.

This structure not only suggests a principled approach to charac-

terizing the optimal competitive ratio, but also immediately shows

that CR-Pursuit achieves the optimal competitive ratio (up to a

problem-dependent factor) among all deterministic algorithms.

Third, we apply CR-Pursuit to one-way trading problems in

Sec. 7. The novel framework simplifies and unifies the state-of-the-

art results of the classic one-way trading problem. In particular,

the critical input discussed above is simply the worst case one for

classical one-way trading; hence, CR-Pursuit achieves the optimal

competitive ratio lnθ + 1. Further, we show that CR-Pursuit per-
forms well for generalizations of one-way trading where no positive

results were previously known. Specifically, for one-way trading

with price elasticity and concave revenue functions, CR-Pursuit
achieves a competitive ratio that is within a small additive constant

(i.e., 1/3) to the general lower bound of lnθ + 1.

2 RELATEDWORK.
Online optimization is a large and rich research area and excellent

surveys can be found in [3, 25]. Well-known problems in the online

optimization paradigm include the classic secretary problem [20],

the ski rental problem [36], the one-way trading problem [23], and

the k-server problem [27]. Our results represent the most general

results to date for a situation where actions are subject to a fixed

inventory constraint.

The problem considered here is a generalization of the classical

one-way trading problem, which has received considerable atten-

tion, e.g., [19, 21, 23, 29, 42, 56]. In the one-way trading problem

an online decision maker is sequentially presented with exchange

rates within a bounded region, and she desires to trade all her assets

to another. The amount of assets traded in a single time period is

assumed to be small enough to not affect the eventual price. El-

Yaniv et. al. [23] propose a threshold-based online algorithm with

competitive ratio O(lnθ ). Any remaining items must be sold at
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the last epoch as that is revenue maximizing. On the other hand,

our analysis allows for leftover inventory (since selling all assets

at the last time step may not be revenue maximizing solution for

the last time step in the presence of price elasticity or concave

revenue functions) and an unknown stopping time, while retaining

the competitive ratio.

Variants of the one-way trading problem have been studied in

the literature. Chin et al. [19] and Damaschke et al. [21] study the

one-way trading problem with unbounded prices and time-varying

price bounds, respectively. Zhang et al. [56] study the problemwhen

every two consecutive prices are interrelated. Fujiwara et al. [29]

study the problem using average-case competitive analysis under

the assumption that the distribution of the maximum exchange rate

is known. Kakade et al. [35] incorporate market volume information

and study another one-way trading model in the stock market,

called the price-volume trading problem. While the classical one-

way trading problem mostly deals with linear revenue functions,

we note that in our problem we consider general concave revenue

functions, which allows us to capture a boarder class of interesting

settings, e.g., one-way trading with price elasticity.

Beyond the one-way trading problem, OOIC is also highly related

to generalizations of the secretary problem and prophet inequal-

ities, e.g., [9, 24, 50]. Strong positive results have been obtained

for these problems; however the analytic setting considered dif-

fers dramatically from the current paper. Specifically, we consider

a worst case analysis whereas analysis of the secretary problem

and prophet inequalities focus on stochastic instances. Under the

stochastic setting, so-called “thresholding” algorithms are effective;

however such algorithms have unbounded competitive ratios in

the worst case setting, even under the simplest assumptions.

Prior to this work, the most general results known for online

problems with inventory constraints are for the class of problems

termed online optimization with packing constraints, e.g., [6, 8, 11,

16, 17]. This stream of work developed an interesting algorithmic

framework based on a primal-dual or multiplicative weights update

approaches, which centers around maintaining a dual variable for

each constraint, understood as a shadow (or pseudo) price for the

constraint given the information thus far. While the inventory

constraints we consider are packing constraints, our formulation is

fundamentally different than the formulation considered in these

papers. In these papers, the constraints come in an online fashion;

whereas in our work, the revenue functions arrive in an online

fashion.

Another related online optimization problem is the k-search
problem, where a player searches for the k highest prices in a

sequence that is revealed to her sequentially. When k → ∞, the

k-max search problem becomes the one-way trading problem [42].

Lorenz et. al. [42] propose optimal deterministic and randomized

online algorithms for both the k-max search and k-min search

problem. This is different from the well-known k-server problem,

where an online algorithm must control the movement of k servers

in a metric space to minimize the movement (or latency involved)

in serving future requests. A popular algorithmic framework for the

k-server problem is the potential function framework. In contrast to

our CR-Pursuit approach, the potential function approach requires

a bound between the offline optimal cost and the online cost at

each time epoch with respect to the potential.

Finally, it is important to distinguish our work from the liter-

ature studying regret in online optimization, e.g., [18, 34]. While

regret is a natural measure for many online optimization problems,

when inventory constraints are present it is no longer appropriate

to compare against the best static action, as is done by regret. Static

actions are poor choices when optimizing revenue subject to inven-

tory constraints. Instead, competitive ratio is the most appropriate

measure. Further, note that there is a fundamental algorithmic

trade-off between optimizing regret and competitive ratio, even

when inventory constraints are not present. In particular, [4] shows

that no algorithm can obtain both sub-linear regret and constant

competitive ratio.

3 PROBLEM FORMULATION
We study an online optimization problem where a decision maker

sells inventory across an interval of discrete time slots in order

to maximize the aggregate revenue. The revenue functions of in-

dividual slots are revealed sequentially in an online fashion, and

the interval length is unknown to the decision maker. The initial

inventory is given in advance as a constraint, and it bounds the

decision maker’s aggregate selling quantities across time slots.
1

The key notations used in this paper are summarized in Tab. 1.

Throughout this paper, we use [n] to represent the set {1, 2, ...,n}
where n is a positive integer.

Table 1: Summary of Notations.

T The number of time slots

∆ The initial inventory

дt (v) The revenue function of time slot t

σ [1:t ]
Input (revenue function) sequence up to time t , i.e.,
{д1,д2, ...,дt }

p(t) Base price at time t , i.e., д′t (0)

m, M The lower and upper bounds of p(t), ∀t ∈ [T ]

θ The ratio ofM/m

λ The dual variable associated with the inventory con-

straint in OOIC

vt The selling quantity at time t

v̄t The selling quantity of CR-Pursuit(π ) at time t

v∗t The optimal selling quantity at time t under the
offline setting

v̂t A maximizer of дt (v) over [0,∆]

Φ∆(π ) The worst case (maximal) inventory over all possi-

ble sequences of inputs needed to maintain a com-

petitive ratio π ≥ 1 for CR-Pursuit(π )

More specifically, at time t ∈ [T ], upon observing the revenue

function дt (·), the decision maker has to make an irrevocable de-

cision on an action (quantity) vt . Upon choosing vt the decision

1
We emphasize that in contrast to the works on online optimization with packing

constraints [6, 8, 11, 16, 17], the uncertainty in our optimization problem is not that

the inventory constraint is unknown beforehand, but rather the revenue functions

arrives in an online fashion.
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maker receives a revenue of дt (vt ). The overall objective is to max-

imize the aggregate revenue, while respecting the inventory con-

straint

∑
t ∈[T ]vt ≤ ∆.2 We assume that дt (·),∀t ∈ [T ], satisfy the

following conditions:

• дt (v) is concave, increasing, and differentiable over [0,∆];
• дt (0) = 0;

• p(t) , д′t (0) > 0 and p(t) ∈ [m,M].

The first condition is a smoothness condition on the revenue

function and a natural diminishing return assumption. It also limits

our discussion in the more interesting setting where at each time,

selling more could never decrease revenue. The second condition

implies that selling nothing yields no revenue. The third condition

limits the marginal revenue at the origin (named base price here-

after) and ensures that it is beneficial to sell, since the base price is

positive. Denote the family of all possible revenue functions at time

t as G. We assumem andM are known beforehand to the decision

maker and denote θ = M/m.

We formulate the problem of online optimization under inven-

tory constraints (OOIC) as follows:

OOIC : max

T∑
t=1

дt (vt ) (1)

s.t.

T∑
t=1

vt ≤ ∆, (2)

var. vt ≥ 0,∀t ∈ [T ]. (3)

Without loss of generality, we assume that the inventory constraint

in (2) is active at the optimal solution.

We can interpret the inventory constraint (2) in an OOIC in a

parallel way to the inventory constraint in the one-way trading

problem [23]. In particular, in the one-way trading problem the

trader has to decide in each slot the selling quantityvt to maximize

the total revenue at the stopping time T . In fact, when setting the

family of functions G to be the family of revenue functions of the

form дt (vt ) = p(t)vt , we can see OOIC covers the one-way trading

problem as a special case. Additionally, when addressing revenue

functions of the form дt (vt ) = v(t)(p(t) − ft (vt )) where ft is a

convex function representing price elasticity, OOIC represents a

generalized one-way trading problem with price elasticity.

To study the performance of an online algorithm for OOIC we

use the competitive ratio as the metric of interest.
3
Let A be a

deterministic online algorithm. It is called π -competitive if

π = max

σ ∈Σ

ηOPT (σ )

ηA (σ )
,

2
The assumption that the action is chosen after observing the function differs from

the classical online convex optimization literature [34, 37], but matches the literature

on online convex optimization with switching costs [12, 38, 40] and the literature

on competitive algorithm design, including those on buy-or-rent decision making

problems [36, 43, 57] and metrical task systems [14, 26, 41]. It allows an isolation of

the inefficiency resulting from inventory constraints rather than also including the

inefficiency resulting from the of lack of knowledge of the function.

3
Note that many papers in the online optimization literature, e.g., [34], focus on regret
instead of competitive ratio, but regret is not an appropriate measure when inventory

constraints are considered since static actions are no longer appropriate. Our focus on

competitive ratio matches that of the literature on secretary problems [9, 50], prophet

inequalities [33, 50], online optimization with switching costs [12, 38, 40, 41, 43], etc.

where Σ is the set of all possible inputs (дt (·), t ∈ [T ]) and ηOPT (σ )
and ηA (σ ) are the revenues generated by the optimal offline algo-

rithm OPT and the online algorithm A, respectively. This value π
is the competitive ratio (CR) of the algorithm A.

4 INSIGHTS ON THE OFFLINE SOLUTION
In this section, we derive several results on the optimal offline solu-

tion. They are useful in the design and analysis of our algorithmic

framework CR-Pursuit in Sec. 5.

Under the offline setting where дt (·), ∀t ∈ [T ], are known in

advance to the decision maker, OOIC is a convex problem and can

be solved efficiently. Letv∗ be the optimal primal solution and λ∗ be
the optimal dual variable associated with the inventory constraint

in (2). We note that λ∗ can be obtained by the algorithm in Alg. 2

in Appendix A.1, based on a binary search idea. The following

proposition gives a set of optimality conditions for the optimal

primal solutions v∗ and the optimal dual variable λ∗.

Proposition 1. Under our setting that the inventory constraint is
active at the optimal solution, the optimal primal and dual solutions
v∗ and λ∗ satisfy (i) λ∗ ≥ 0 and

∑T
t=1

v∗t = ∆ and (ii) for each t ∈ [T ],{
v∗t = 0, if д′t (0) < λ∗;

v∗t ∈ Vt (λ
∗) , {vt |д

′
t (vt ) = λ∗,vt ∈ [0,∆]}, otherwise.

(4)

Recall that at time t , the marginal revenue evaluated at vt is

д′t (vt ), which is no larger than the base price p(t) = д′t (0) due to the
concavity of дt (·). The optimal dual variable λ∗ can be interpreted

as the marginal cost (shadow price) of the inventory. Then Proposi-

tion 1 says that, at the optimal solution, the marginal revenue must

equal the marginal cost in the slots with positive selling quanti-

ties. Moreover, it is optimal to sell only in the slots in which the

base price is higher than the optimal marginal cost, i.e., p(t) > λ∗.
These observations are similar to those in the Cournot competition

literature, e.g., [46].

Next, we reveal two interesting observations on the offline opti-

mal aggregate revenue. Recall the input (revenue function) sequence

until time t is

σ [1:t ] = σ [1:t−1] ∪ {дt (·)} = σ [1:t−2] ∪ {дt−1(·)} ∪ {дt (·)} = · · · .

Recall that ηOPT

(
σ [1:t ]

)
is the offline optimal aggregate revenue

given the input σ [1:t ]
. The following lemma bounds the increment

of the optimal aggregate revenue as t increases.

Lemma 2. Let λt−1 and λt be the optimal dual variables associated
with the inventory constraint given the inputs σ [1:t−1] and σ [1:t ] =

σ [1:t−1]∪{дt (·)}, respectively. Let ṽt be the optimal offline solution in
the (last) time slot t given the input σ [1:t ]. The following inequalities
hold:

ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)
≥дt (ṽt ) − λt ṽt , (5)

and

ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)
≤дt (ṽt ) − λt−1ṽt ≤ дt (v̂t ) ,

(6)

where v̂t is the maximizer of дt (·) over [0,∆].
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Note that λt−1 and λt are the marginal costs of inventory at the

optimal solutions to OOIC given the inputs σ [1:t−1]
and σ [1:t ] =

σ [1:t−1]∪{дt (·)}, respectively. The terms λt ṽt and λt−1ṽt represent
the upper and lower bounds of the cost of committing ṽt to obtain

the new additional revenueдt (ṽt ) in time slot t . Thus the difference
between them represents a bound on the “profit” obtained in slot t .
Intuitively, Lemma 2 says that one can bound the optimal offline

revenue increment by these profit bounds, as shown in (5) and (6).

The proof of Lemma 2 is included in the Appendix A.3; we give

the proof idea here. Compared with the optimal solution under

σ [1:t−1]
, the optimal solution under σ [1:t ]

is smaller at τ ,∀τ ≤ t − 1,

in order to commit ṽt to дt (·), which cause a decrement in revenue.

Furthermore, the per-unit revenue lost is upper bounded by λt and
lower bounded by λt−1. Combining the two understandings gives

the bounds of the increment on optimal revenue at each time.

The upper bound in (6) also highlights an intuitive result that

the increment of the optimal aggregate revenue from t − 1 to t is at
most дt (v̂t ), i.e., the maximum revenue one can obtain in slot t .

Our last result in this section, as stated in the lemma below,

reveals another subtle yet important property of the increment of

the optimal aggregate revenue.

Lemma 3. Let σ̃ be an input sequence. σ̄ is another input sequence
constructed by interchanging дτ and дτ+1 in σ̃ , for any selected τ ∈

[T ]. We have

ηOPT

(
σ̃ [1:τ ]

)
−ηOPT

(
σ̃ [1:τ−1]

)
≥ ηOPT

(
σ̄ [1:τ+1]

)
−ηOPT

(
σ̄ [1:τ ]

)
.

(7)

The left- (resp. right-) hand-side of (7) can be regarded as the

increment дτ contributes to the offline optimal under σ̃ (resp. σ̄ ).
Inequality (7) means that moving дτ+1 ahead of дτ (as under σ̄ ) will
not increase the contribution of дτ to the offline optimal. Lemma 3

basically states that regardless of the input sequence thus far, the

impact or improvement in the offline optimal that дτ brings at the

time it appears in the input sequence has a “diminishing effect” in

time. The proof of Lemma 3 is essentially based on the bounds on

the increment of offline optimal at each time in Lemma 2. We leave

the proof in Appendix A.4.

5 CR-PURSUIT ALGORITHMIC FRAMEWORK
In this section, we present CR-Pursuit, a new algorithmic frame-

work for solving OOIC under the online setting, where the interval

length T is not known beforehad and the revenue functions дt (·),
t ∈ [T ], are revealed in a slot-by-slot fashion.

CR-Pursuit is parameterized by a competitive ratioπ , and chooses
actions with the goal of “pursuing” this competitive ratio, i.e., main-

taining the competitive ratio against the offline optimal of the previ-

ously observed revenue functions at all time. We derive bounds on

the optimal competitive ratios and use them to operate CR-Pursuit
accordingly.

In the following, we first present the CR-Pursuit framework

and show that one can optimize the only parameter of CR-Pursuit
to achieve the best possible competitive ratio, thus significantly

reducing the search space of optimal online algorithms. Then, we

identify a “critical” input sequence that highlights an important

structural property of the space of input sequences. By applying

CR-Pursuit to this critical sequence, we characterize a lower bound

Algorithm 1 CR-Pursuit(π ) Online algorithm

1: Input: π > 1, ∆
2: Output: v̄t , t ∈ [T ]
3: while t is not the last slot do
4: Obtain ηOPT

(
σ [1:t ]

)
by solving the convex problem OOIC

given the input until t , i.e., σ [1:t ]

5: Obtain a v̄t ∈ [0,∆] that satisfies (8)
6: end while

on the optimal competitive ratio as lnθ + 1, where we recall that

θ = M/m is the ratio between the maximum and minimum base

prices. Then, for any other input, the performance ratio achieved

by CR-Pursuit (with the same parameter) is upper bounded by the

product of a problem-dependent factor and the lower bound. This

structure not only suggests a principled approach for characterizing

the optimal competitive ratio, but also immediately shows that CR-
Pursuit (with a parameter being the product of the lower bound and

the problem-dependent factor) achieves the optimal competitive

ratio (up to a problem-dependent factor) for solving OOIC among

all deterministic algorithms.

CR-Pursuit. Recall that σ [1:t ] = {д1,д2, ...,дt } is the input up

to time t and ηOPT

(
σ [1:t ]

)
is the corresponding optimal offline

revenue. The class of online algorithms that make up theCR-Pursuit
framework, denoted as CR-Pursuit(π ) and presented in Alg. 1, can

be described as follows: Given any π ≥ 1, at the current time t ,
CR-Pursuit(π ) outputs a v̄t ∈ [0,∆] that satisfies

дt (v̄t ) =
1

π

[
ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)]
. (8)

We remark that such v̄t always exists, because (i) дt (·) is a continu-
ous and increasing function and (ii) the right-hand-side of (8) is in

[дt (0),дt (v̂t )] according to Lemma 2.

Essentially, CR-Pursuit(π ) aims at keeping the offline-to-online
revenue ratio to be π > 1 at all time, i.e.,

t∑
τ=1

дτ (v̄τ ) =
1

π
ηOPT

(
σ [1:t ]

)
, ∀t ∈ [T ]. (9)

While CR-Pursuit(π ) can be defined for any π , the solution

obtained by CR-Pursuit(π ) may violate the inventory constraint in

OOIC and be infeasible. This motivates the following definition.

Definition 4. CR-Pursuit(π ) is feasible if Φ∆ (π ) ≤ ∆, where

Φ∆ (π ) ,max

σ ∈Σ

T∑
t=1

v̄t (σ ), (10)

and v̄t (σ ) is the output of CR-Pursuit(π ) at time t under the input σ .

If CR-Pursuit(π ) is feasible, i.e., it can maintain the offline-to-

online revenue ratio to be π under all possible input sequences

without violating the inventory constraint, then by definition it is

π -competitive. We present a useful observation on Φ∆ (π ).

Lemma 5. Φ∆ (π ) is strictly decreasing in π over [1,∞).

Lemma 5 follows naturally since attempting to preserve a smaller

competitive ratio requires selling a larger inventory to match the

discounted revenue obtained by the offline optimal algorithm. It



ACM Sigmetrics conference, June 2019, Phoenix, AZ USA Q. Lin, H. Yi, J. Pang, M. Chen, A. Wierman, M. Honig, and Y. Xiao

also implies that if CR-Pursuit(π1) is feasible for some π1, then any

online algorithm CR-Pursuit(π ) with π ≥ π1 is also feasible. Thus

an upper bound on the optimal competitive ratio in this case gives

a feasible competitive online algorithm.

TheOptimal Competitive Ratio.Wenow present a key result,

which says that it suffices to focus on CR-Pursuit for achieving the

optimal competitive ratio.

Theorem 6. Let π∗ be the unique solution to the characteristic equa-
tionΦ∆ (π ) = ∆. ThenCR-Pursuit(π∗) is feasible and π∗ is the optimal
competitive ratio of deterministic online algorithms.

Before we proceed to prove Theorem 6, we first present the

following lemma characterizing a class of worst case inputs for

CR-Pursuit. The results will be used in the proof of Theorem 6.

Lemma 7. For any CR-Pursuit(π ), there exists an input sequence
σ such that (i) CR-Pursuit(π ) sells exactly the Φ∆ (π ) amount of
inventory and (ii) д′t (v̄t (σ )) is non-decreasing in t .

Lemma 7 states that to compute Φ∆ (π ), it is sufficient to fo-

cus on the input sequences that will lead to a non-increasing se-

quence of marginal revenue д′t (v̄t ) at the solution obtained by CR-
Pursuit(π ). Intuitively, these sequences will cause theCR-Pursuit(π )
algorithm to sell large quantities at lower prices in the early slots,

without knowing that themarginal revenues at later slots are higher,

which is exploited by the offline optimal solution. As a result, CR-
Pursuit(π ) will need to sell the “worst” amount of inventory to keep

the revenue ratio π .
The proof of Lemma 7 is provided in Appendix A.5, based on

the subtle yet important property of the offline optimal aggregate

revenue in Lemma 3. The idea of the proof, roughly speaking, is

that if the worst case input sequence is not as stated, then we can

swap revenue functions within the sequence to construct a new

worst case one that satisfies the conditions. Putting the preceding

lemmas together, we are now ready to prove Theorem 6.

Proof of Theorem 6. The feasibility of CR-Pursuit(π∗) is be-

cause of the definition of π∗
. What remains to be proved is that π∗

is the optimal competitive ratio.

Consider an arbitrary deterministic online algorithm different

from CR-Pursuit(π∗), denoted as A. We will show that A cannot

achieve an offline-to-online revenue ratio smaller than π∗
over an

input sequence that we construct.

Let σ̃ [1:T ] = {д̃1, д̃2, ..., д̃T } be a worst case input sequence of

CR-Pursuit(π∗) that satisfies the conditions in Lemma 7. Let v̄t and
vA
t be the corresponding solutions of CR-Pursuit(π∗) and A at

time t , respectively. We have

•
∑T
t=1

v̄t = Φ∆ (π∗) = ∆;
• д̃′t (v̄t ) is non-decreasing in t .

We now construct an input sequence over which A cannot

achieve an offline-to-online revenue ratio smaller than π∗
, by feed-

ing д̃1, д̃2, ..., д̃T to A and stop at any time that we need.

We first present д̃1 toA in the first slot. IfvA
1

≤ v̄1, we stop and

set T = 1 in this constructed sequence. In this case, we have

д̃1

(
vA

1

)
≤ д̃1 (v̄1) =

1

π∗
ηOPT

(
σ̃ [1:1]

)
,

thus the competitive ratio of A is at least π∗
. Otherwise we have

vA
1
> v̄1 and we continue to present д̃2 to A in the second slot.

In general, if at time t the total selling quantity of A so far is

no larger than that of CR-Pursuit(π∗), i.e.,
∑t
τ=1

v̄τ , we end the

trading period. Otherwise, we continue to the t + 1 slot and present

A with the revenue function д̃t+1(·).

Let τ be the earliest slot such that at the end of time τ , the total
selling quantity of A is less than that of CR-Pursuit(π∗). Such τ

exists; otherwise, we will have

∑T
t=1

vA
t >

∑T
t=1

v̄t = ∆, which
implies that A is not feasible. Given such τ ∈ [T ], we have

t∑
ξ=1

vA
ξ >

t∑
ξ=1

v̄ξ ,∀t ∈ [τ − 1], (11)

and

τ∑
ξ=1

vA
ξ ≤

τ∑
ξ=1

v̄ξ . (12)

We now show that, for the input sequence σ̃ [1:τ ]
, the aggregate

revenue of A is no larger than that of CR-Pursuit(π∗), i.e.,

τ∑
ξ=1

д̃ξ

(
vA
ξ

)
−

τ∑
ξ=1

д̃ξ

(
v̄ξ

)
≤ 0, (13)

which then implies that the online algorithm A is at best π∗
-

competitive. By the concavity of д̃t (·), we have

τ∑
ξ=1

[
д̃ξ

(
vA
ξ

)
− д̃ξ

(
v̄ξ

)]
≤

τ∑
ξ=1

д̃′ξ

(
v̄ξ

) (
vA
ξ − v̄ξ

)
= д̃′τ (v̄τ )

©­«
τ∑
ξ=1

vA
ξ −

τ∑
ξ=1

v̄ξ
ª®¬

−

τ−1∑
t=1

[
д̃′t+1

(v̄t+1) − д̃′t (v̄t )
] ©­«

t∑
ξ=1

vA
ξ −

t∑
ξ=1

v̄ξ
ª®¬ .

By (12) and that д̃′τ (v̄τ ) ≥ 0 as д̃τ (·) is an increasing function, the

first term in the last line of derivation is non-positive. By (11) and

that д̃′t (v̄t ) is non-decreasing in t , each term in the summation in

the last line of derivation is non-negative. As such, the right-hand-

side is non-positive and the inequality in (13) holds. �

6 COMPETITIVE ANALYSIS OF CR-PURSUIT
The results in the previous section highlight a principled approach

to construct an optimal online algorithm. Specifically, the first step

is to mathematically characterize Φ∆ (π ). Then we solve the charac-

teristic equation Φ∆ (π ) = ∆ to obtain the optimal competitive ratio

π∗
, and CR-Pursuit(π∗

) is an optimal online algorithm for solving

OOIC. For special cases such as the one-way trading problem [23]

where дt (v) = p(t) · v , we can obtain the closed-form expression

of Φ∆ (π ) and compute the optimal competitive ratio (as demon-

strated in Sec. 7.1). However, it is difficult to obtain a closed-form

expression for general concave revenue functions. Instead, we char-

acterize an upper bound on Φ∆ (π ), based on which we can give an

upper bound on the optimal competitive ratio π∗
and consequently

a feasible online algorithm.

Before moving to the upper bound though, it is helpful to under-

stand a lower bound on the optimal competitive ratio. For this, we
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can simply refer to the literature on one-way trading. In particular,

it has been shown that the optimal competitive ratio of the classic

one-way trading problem is lnθ + 1 [23, 54]. Since OOIC covers

one-way trading as a special case, the optimal competitive ratio for

any online algorithm solving OOIC is lower bounded by lnθ + 1.

Interestingly, it is possible to interpret this bound in the context

of the CR-Pursuit framework. In particular, in Sec. 7.1. we identify

the worst case input in one-way trading (defined in Sec. 7.1) as a

“critical" input sequence, reflecting an interesting structure on the

space of input sequences. By applying CR-Pursuit to this sequence,

we characterize a lower bound on the optimal competitive ratio as

lnθ + 1.

It turns out that for any other inputs, the performance ratio

achieved by CR-Pursuit is upper bounded by the product of a

problem-dependent factor and the lower bound lnθ+1. This insight

leads to the following results.

Theorem 8. Recall that G is the set of all possible д(·) and v̂ ∈ [0,∆]

is the maximizer of д(·). Let c = supд∈G
д′(0)
д(v̂)/v̂ , then the optimal

competitive ratio π∗ satisfies

lnθ + 1 ≤ π∗ ≤ c (lnθ + 1) .

Theorem 8 characterizes an upper bound on the optimal com-

petitive ratio in the case for general revenue functions дt , and also

implies that CR-Pursuit(c (lnθ + 1)) is feasible and its competitive

ratio is c (lnθ + 1). Note that c is a constant that depends on the

gradient properties (in particular the base price) and the maximizers

of the revenue functions
4
. For many interesting problems, this c is

bounded and small. For example, for the one-way trading problem

where the revenue functions are linear, i.e.,дt (v) = p (t)v,∀t ∈ [T ],
we have c = 1. As another example, for the one-way trading with

linear price elasticity where the revenue functions are quadratic,

i.e., дt (v) = (p (t) − αtv)v,∀t ∈ [T ], we have c = 2.

To prove this theorem, we use a sequence of lemmas elaborated

as follows. We begin with Lemma 9, which gives an upper bound

on the total selling quantity by CR-Pursuit(π ) in each time slot to

maintain the offline-to-online revenue ratio. Recall that the output

of the algorithm CR-Pursuit(π ) at slot t , дt (v̄t ) is given in (8), and

p (t) = д′t (0) is the base price at slot t .

Lemma 9. For any input sequence σ , we have

v̄t ≤ c
дt (v̄t )

p(t)
,∀t ∈ [T ].

The proof of Lemma 9 is included in Appendix A.6, by leveraging

the definition of c and that дt (v) is an increasing concave function.

Next, we present an interesting result that bounds the contribu-

tion to the online revenue in all the slots whose base prices is no

higher than any specific threshold.

4
While c is a constant when the family of revenue functions are fixed, it is indeed true

that c could presumably be driven to be infinitely large, e.g., with revenue functions

that are concave and increasing. This parameter c can be seen in an economical sense

as a comparison between the base price and the average price at the maximizer of the

function. Since the former is already bounded in [m, M ], we look at the case when the

latter is small. These situations are hard to derive any interesting online optimization

as the functions require too much commitment even in bad time epochs, and have low

average prices. This results in low committed average prices while the offline optimal

may eventually not have to participate in these time epochs.

Lemma 10. For any input sequence σ ∈ Σ, for any threshold price
p ∈ [m,M], we have ∑

{t : p(t )≤p }

дt (v̄t ) ≤
1

π
p · ∆.

Lemma 10 is intuitive in that the left-hand-side is the online

revenue obtained by CR-Pursuit(π ) in the slots whose base prices

is not higher than p. The right-hand-side is simply the maximum

revenue achievable by CR-Pursuit(π ) in these slots according to its

design. In the proof, we first observe that if p (t) < p, ∀t ∈ [T ], the
result is immediate. As for general cases, based on Lemma 3, we

can construct new input sequences by moving forward the slots

with p (t) ≤ p in σ , while increasing the online revenue in the

slots that we are interested in. At last, we obtain an input sequence

with larger online revenue in these slots, which are now all in the

beginning of the input sequence. The total online revenue in them

is bounded by p · ∆/π . Lemma 10 allows to prove a key step used

in the proof of Theorem 8 below.

Lemma 11. For any input sequence σ , we have
T∑
t=1

дt (v̄t )

p (t)
≤

∆

π
(lnθ + 1) . (14)

The idea to prove Lemma 11 is to construct an optimization

problem, whose optimal objective value bounds the left-hand-side

in (14), subject to the constraint from Lemma 10. Then we show

the optimal objective value can be further upper bounded by the

right-hand-side in (14).

We are now ready to prove Theorem 8.

Proof of Theorem 8. It is clear thatCR-Pursuit is at best (lnθ + 1)-

competitive, as it covers the one-way trading problem as a special

case, which has an optimal competitive ratio of lnθ + 1.

To establish the upper bound, by Lemmas 9 and 11, we observe

Φ∆ (π ) = max

σ ∈Σ

T∑
t=1

v̄t ≤

T∑
t=1

c
дt (v̄(t)

p (t)

≤ c
∆

π
(lnθ + 1) .

By solving c ∆π (lnθ + 1) = ∆, we get that π̄ = c (lnθ + 1) and

Φ∆ (π̄ ) ≤ ∆. Then according to the definitions, CR-Pursuit(π̄ ) is
feasible and is π̄ -competitive. Hence, π̄ is an upper bound for the

optimal competitive ratio π∗
. �

Theorem 8 implies that CR-Pursuit achieves the optimal com-

petitive ratio (up to a problem-dependent factor c) among all deter-

ministic online algorithms.

7 APPLICATION TO ONE-WAY TRADING
In this section, we apply CR-Pursuit to the classic one-way trading

problem [23] and its generalizations, illustrating that the framework

can both match state-of-the-art results for the classic setting and

provide new results for generalizations that have previously resisted

analysis. In particular, using the CR-Pursuit framework, we obtain

an online algorithmmatching the optimal competitive ratio (lnθ+1)

for the classic one-way trading problem in Proposition 13 and a near-

optimal (lnθ + 4/3) result for the case with linear price elasticity in
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Theorem 16. Furthermore, the algorithmic framework also extends

to any convex price elasticity, and yield online algorithms with

order-optimal competitive ratio in these cases.

This section also provides an illustration of how the framework

can be applied to specific problem domains to obtain tighter com-

petitive ratio upper bounds that the generic ones under general

settings. In particular, for one-way trading with linear price elas-

ticity, the upper bound derived from Sec. 6 is 2(lnθ + 1) while the

bound obtained in this section is lnθ + 4/3.

In Sec. 7.1, we obtain a close-form expression of Φ∆(π ) and
compute the optimal π∗

in this special case. In Sec. 7.2, we show the

ease of generalizing the one-way trading problem, to cases where

price formation include price elasticity, an aspect that has been left

out and desired in the one-way trading community.

7.1 Classic One-way Trading
In the classic one-way trading problem, a trader owns some assets

(e.g., one dollar) at the beginning and aims to exchange it into

another assets (e.g., yen) as much as possible, depending on the

price (e.g., exchange rate). Thus, the one-way trading problem is

a special case of the OOIC problem with дt (vt ) = p(t)vt for all

t ∈ [T ] and the input at time t can be simplified as p(t).
As a direct application, one can obtain from Sec. 6 that the upper

bound for the one-way trading problem is lnθ + 1, which matches

the lower bound. Thus, we immediately know that the optimal com-

petitive ratio for one-way trading is lnθ+1 andCR-Pursuit(lnθ+1)

is an optimal deterministic online algorithm. In this section, with

the aim of demonstrating the possibility of mathematically charac-

terizing Φ∆(π ) in specific problems, we first derive a closed-form

expression of Φ∆(π ), then we obtain the optimal competitive ratio

π∗
by solving the characteristic equation Φ∆(π ) = ∆.
In the classic one-way trading problem, given any input up to

time t , denoted as σ [1:t ] , {p(1),p(2), ...,p(t)}, the optimal offline

revenue can be expressed as ηOPT (σ
[1:t ]) = ∆ · maxσ [1:t ]. Given

any π ≥ 1, we focus on CR-Pursuit(π ) defined in Sec. 5. At time t ,
CR-Pursuit(π ) sells the amount v̄t ∈ [0,∆] that satisfies:

v̄t =
1

π · p(t)

[
ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)]
. (15)

As discussed, CR-Pursuit(π ) aims at keeping the offline-to-online
revenue ratio to be π > 1 at all time.

From Sec. 5, we know that if Φ∆(π ) ≤ ∆, then CR-Pursuit(π )
is feasible and it is π -competitive. In the following, our goal is to

derive a close-form expression of Φ∆(π ).
Observe that at slot t , the selling decision of CR-Pursuit(π∗) can

be simplified as

v̄t =
∆

π∗ · p(t)

(
maxσ [1:t ] − maxσ [1:t−1]

)
. (16)

This suggests that CR-Pursuit(π∗) will sell only when the current

price is higher than the best price so far. With this observation, we

have the following lemma.

Lemma 12. ForCR-Pursuit(π )with π ≥ 1, given any inputσ [1:T ], to
compute Φ∆(π ), it is sufficient to consider increasing-price sequences.

Lemma 12 is a corollary of Lemma 7 in that while the marginal

prices are determined by the participation of the algorithm in the

latter, it is constant here in the classic one-way trading problem.

Lemma 12 can be proved by observing that the revenue of both the

offline and online algorithms remain unchanged if the current price

is not the highest price so far, and in that case removing this price

from the input sequence will not affect the behaviors of both the

offline and online algorithms. From Lemma 12, we know that it is

sufficient to consider the following increasing price sequence with

length n ≤ T :

m ≤ p1 < p2 < · · · < pn ≤ M . (17)

Under the given price sequence, the optimal offline revenue at time

t ∈ [n] can be simplified as

ηOPT

(
σ [1:t ]

)
= pt∆.

According to (16), the output of CR-Pursuit(π ) is given by

v̄t =
∆

π

pt − pt−1

pt
,∀t ∈ [n],

where p0 = 0. Then we have

Φ∆(π ) = max

p1,p2, · · · ,pn

n∑
t=1

v̄t

= max

p1,p2, · · · ,pn

∆

π

(
1 +

p2 − p1

p2

+ · · · +
pn − pn−1

pn

)
(a)
=

∆

π

(
1 +

∫ M

m

1

x
dx

)
=

∆

π
(1 + lnθ ) ,

where (a) holds when the input sequence in (17) satisfiesn → ∞ and

pi → pi+1,∀i ∈ [n−1]. Indeed, this is the worst case input sequence

for one-way trading problem, also known as the “critical” input

sequence. Setting Φ∆(π ) = ∆ yields the solution that π∗ = lnθ + 1.

Consequently, we have the following result.

Proposition 13. With π∗ = lnθ +1, CR-Pursuit(π∗) is feasible and
an optimal online algorithm for the one-way trading problem.

The proof follows the same idea and approach as that of Theo-

rem 6. We leave it as an exercise for readers.

7.2 One-way Trading with Price Elasticity
In this subsection, we consider the one-way trading problem in a

generalized setting with an additional flexibility on the price model

playing the role of price elasticity. We assume that price is affected

by the total quantity sold at each slot, implying that the decision

of how much to sell affects the trading price, usually known in the

economics literature as price elasticity.
Specifically, we assume that at each slot t ∈ [T ], the price elas-

ticity, defined as , ft (v), is a convex non-negative function of

the selling quantity with f (0) = 0. Under this setting, the revenue

function at time t becomes дt (v) = (p(t) − ft (v))v . This setting can
be considered as a special case of OOIC and the input at time t can
be simplified as (p(t), ft (v)). Here we have д

′
t (0) = p(t) ∈ [m,M]

and ft (v) ∈ [0,+∞),∀v ∈ [0,∆], ft (0) = 0. Namely, the set of all

possible revenue functions can be expressed as

G = {дt (v)|дt (v) = (p(t) − ft (v))v,p(t) ∈ [m,M],

ft (v) ∈ [0,+∞),∀v ∈ [0,∆], ft (0) = 0} .
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Note that when ft (v) = 0,∀t ∈ [T ], the problem reduces to one-

way trading problem considered in Sec. 7.1. Thus we note that

any deterministic online algorithm in one-way trading with price

elasticity has a competitive ratio of at least lnθ + 1. When ft (v) =
αtv,αt ≥ 0,∀t ∈ [T ], the problem becomes a one-way trading

problem with linear price elasticity, which is a common setting in

economic literature, e.g., in Cournot competition [46].

Consider the online algorithm CR-Pursuit(π ) defined in Sec. 5.

When there is price elasticity in the setting, it is difficult to obtain

the closed-form expression of Φ∆(π ). We follow the analysis in Sec.

6 to obtain an upper bound on Φ∆(π ).
In particular, restating Lemma 9 under the parametric assump-

tions of дt (vt ) in the one-way trading problem with price elasticity,

we can upper bound the selling quantity of CR-Pursuit(π ) at each
slot with a better characterization of c , reflected in the following

lemma.

Lemma 14. For any input sequence σ , we have

v̄t ≤ c
дt (v̄t )

p(t)
,∀t ∈ [T ],

where
c = 2

(
1 +

√
1 − 1/π

)−1

. (18)

We note that value of c given in (18) is smaller than that derived

in Lemma 9. The idea of the proof in Appendix A.10 is similar to

that of Lemma 9, but we further utilize the special structure of дt (·)
here (i.e., the convexity of ft (·)). The tighter characterization of c
allows us to develop an online algorithm with better competitive

ratio as compared to the one obtained as a result of Sec. 6.

Lemma 15. For CR-Pursuit(π ) with π ≥ 1, we have

Φ∆(π ) ≤ Φ̄(π ),

where Φ̄(π ) , 2∆
[
π

(
1 +

√
1 − 1/π

)]−1

(lnθ + 1).

Lemma 15 shows that Φ∆(π ) is upper bounded by Φ̄(π ). It is
easy to show that Φ̄(π ) is decreasing in π ≥ 1. Thus by setting

Φ̄(π̄ ) = ∆, we can guarantee that CR-Pursuit(π̄ ) is feasible. Then
we have the following result, which shows that the competitive

ratio of CR-Pursuit(π̄ ) is lnθ + Ω(1).

Theorem 16. Let π̄ = (lnθ + 1)2 /(lnθ + 3/4) < lnθ + 4/3. The
online algorithm CR-Pursuit(π̄ ) is feasible and is thus π̄ -competitive.

Proof. With π̄ = (lnθ + 1)2 /(lnθ + 3/4), we have Φ̄(π̄ ) = ∆.
From Lemma 15, we know that Φ∆(π̄ ) ≤ Φ̄(π̄ ) = ∆. Thus the results
are immediate. �

Note that π̄ < lnθ + 4/3, which is very close to the lower bound

of lnθ + 1. It also improves beyond the result of 2(lnθ + 1) if we

follow the characterization in Sec. 6; the improvement is because

of the tighter bound through Lemma 14.

8 BEYOND THEWORST CASE MENTALITY
Our CR-Pursuit framework focuses only on achieving competitive-

ness under the worst case inputs. This may limit its applications

as worst case inputs or situations may seldom occur in practice.

Intuitively, a “better" online algorithm would sell more of its inven-

tory when the incoming revenue function is “not adversarial”, i.e.,

being more opportunistic. By design, CR-Pursuit is pessimistic: it

only maintains a fixed competitive ratio π∗
for the whole trading

period, even if some inputs are not adversarial. One way to improve

the performance of CR-Pursuit for non-adversarial cases is as fol-
lows: instead of trying to keep the competitive ratio as π∗

during

the whole period, the online algorithm adaptively chooses a πt to
maintain at time t . This πt is chosen as the smallest, yet attainable,

competitive ratio at time t , given the previous inputs and outputs

of the algorithm, and taking into account the possible inputs in

future slots. This approach allows an online algorithm to instead

pursue a competitive ratio more adaptive to the inputs, improving

its average-case performance. We have recently applied the idea to

develop online electric vehicle charging algorithms with optimal

worst case and uniquely strong average-case performance [55].

To better illustrate this idea, consider the following example of

one-way trading. Let the first price be p(1) = M . The original CR-
Pursuit algorithm sells an ∆/(lnθ + 1) amount of inventory, and

is satisfied with pursuing such competitive ratio at all time. The

suggested algorithm in this section knows that the optimal offline

value cannot increase any further, and would therefore sell all the

inventory, i.e., we can set π1 = 1. In this case, it will sell all the

inventory in the first slot and achieve an offline-to-online revenue

ratio of 1 for the particular input.

9 CONCLUDING REMARKS
Online optimization is an important line of research with wide

ranging applications. It has been tackled by multiple algorithmic

approaches over the previous decades, each proving successful

for different problem variations, e.g., primal-dual approaches for

online covering and packing problems or potential functions for

the k-server problem.

In this work, we present a novel algorithmic framework for

online optimization with inventory constraints. The framework

“pursues” a bound on the competitive ratio, tracking the changes

in the offline optimal algorithm and ensuring that the offline-to-

online revenue ratio for the instance remains bounded throughout

the entire period. This idea allows us to provide an nearly optimal

algorithm for online optimization with inventory constraints as

well as generalizations of the classical one-way trading problem.

Specifically, our analysis and algorithms generalize naturally to one-

way trading problems with price elasticity and concave revenue

functions, yielding almost optimal (in terms of competitive ratio)

online algorithms in those settings.

While our focus in this paper is on settings where inventory

cannot be replenished, there is a wide range of applications with

both selling periods and buying periods, like battery arbitrage in

contingency markets. Usually in these markets, prices are highly

affected by the selling quantities and also other factors that vary

in time, which lead to unknown incoming revenue functions. We

believe that the CR-Pursuit framework is promising for these prob-

lems as well, and can potentially be applicable to much broader

classes of online optimization problems.

For example, our focus in this paper has been on worst case

analysis but the CR-Pursuit framework can also be used to provide

“beyondworst case” results by parameterizing the bound in different

ways by, for example, utilizing properties of the instances relevant
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to the application, and adaptively considering the input seen so far;

see a recent example in [55]. Additionally, the framework can make

use of randomization when pursuing the CR bound. This may allow

improvement beyond the deterministic lower bound discussed in

this paper, although it is an open question whether randomized

algorithms can outperform deterministic algorithms for OOIC.
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A APPENDIX
A.1 A Binary Search Algorithm for Computing

λ∗

We summarize the algorithm in Algorithm 2.

Algorithm 2 A Binary search algorithm for Computing λ∗

1: if maxvt ∈Vt (0)
∑T
t=1

vt ≤ ∆ then
2: return λ∗ = 0;

3: else
4: Pick λL = 0, λH = maxt ∈T

(
д′t (0)

)
;

5: while |λL − λH | > ϵ do
6: λM =

λL+λH
2
,vt = 0,∀t ∈ T ;

7: Compute ∆max = maxvt ∈Vt (λM )

∑T
t=1

vt

8: Compute ∆min = minvt ∈Vt (λM )

∑T
t=1

vt .
9: if ∆min > ∆ then
10: λL = λM ;

11: end if
12: if ∆max < ∆ then
13: λH = λM ;

14: end if
15: if ∆min ≤ ∆ ≤ ∆max then
16: break;

17: end if
18: end while
19: return λ∗ = λM ;

20: end if

A.2 Proof of Proposition 1
Proof. We prove this theorem by investigating the KKT condi-

tions of problem OOIC and exploring the structure of the optimal

solution.

The Lagrangian for problem OOIC is defined as

L (v, λ, µ) =
T∑
t=1

дt (vt ) + λ

(
∆ −

T∑
t=1

vt

)
+

T∑
t=1

vt µ(t),

where λ ≥ 0 and µ(t) ≥ 0, ∀t ∈ [T ] are the Lagrangian multipli-

ers. The following KKT conditions give us a set of necessary and

sufficient conditions for optimality:

д′t (vt ) − λ + µ(t) =0, ∀t ∈ [T ],

T∑
t=1

vt ≤∆,

vt ≥0, ∀t ∈ [T ],

µ(t) ≥0, ∀t ∈ [T ],

λ ≥0,

vt µ(t) =0, ∀t ∈ [T ],

λ

( T∑
t=1

vt − ∆

)
=0.

Suppose v∗, µ∗ and λ∗ are the optimal solutions that satisfy the

KKT conditions. Denote the set T0 = {t |v∗t > 0,∀t ∈ [T ]}, then
according to the KKT conditions, we have

µ∗(t) = 0, ∀t ∈ T0, (19)

λ∗
©­«
∑
t ∈T0

v∗t − ∆
ª®¬ = 0, (20)

д′t (v
∗
t ) − λ∗ = 0, ∀t ∈ T0, (21)

Since д′t is concave, д
′
t (·) is non-increasing in vt . According to

(21) we have

д′t (0) ≥ д′t (v
∗
t ) = λ∗, ∀t ∈ T0;

namely,

д′t (0) ≥ λ∗ ∀t ∈ T0. (22)

Thus given a λ∗, we can use (22) to determine the set T0.

For ease of presentation, we denote

Vt (λ) = {v |д′t (v) = λ,v ∈ [0,∆]}.

Now consider the following two cases:

(1) ∆ ≥ maxvt ∈Vt (0)
∑T
t=1

vt . In this case, we observe that the

solution

v∗t ∈ Vt (0),∀t ∈ [T ],

λ∗ = 0,

µ∗(t) = 0,∀t ∈ [T ],

satisfies the KKT conditions, thus it is the optimal solution.

(2) ∆ < maxvt ∈Vt (0)
∑T
t=1

vt . In this case, we must have λ∗ > 0.

According to (20) and (21), we have

v∗t ∈ Vt (λ
∗) and

T∑
t=1

v∗t = ∆.
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It is straightforward to check that vt ,∀t ∈ T0, is non-increasing

w.r.t. λ. Meanwhile, according to (22), we know that the size of set T0

is non-increasing w.r.t. λ. Putting together these two observations,

we conclude that

∑
t ∈T0

vt is non-increasing w.r.t. λ. Thus given
∆ > 0, there exists a unique λ = λ∗ that satisfies

∑
t ∈T0

v∗t = ∆.
Since KKT conditions are necessary and sufficient for optimality

of convex problems, we can conclude that λ∗ is the optimal dual

solution. �

A.3 Proof of Lemma 2
Proof of Lemma 2. We prove this lemma in the following two

steps:

Step I, we prove that ηOPT

(
σ [1:t ]

)
−ηOPT

(
σ [1:t−1]

)
≥ дt (ṽt )−

λt ṽt . To see this, we denote optimal solution at time τ ∈ [t] under

input σ [1:t ]
as ṽτ . Note that ṽτ ∈ Vτ (λt ),τ ∈ [t] or ṽτ = 0 if

Vτ (λt ) = ∅. Similarly, denote optimal solution at time τ ∈ [t − 1]

under input σ [1:t−1]
as v̄τ . Note that v̄τ ∈ Vτ (λt−1),τ ∈ [t − 1]

or v̄τ = 0 if Vτ (λt−1) = ∅. Also ṽτ ≤ v̄τ ,τ ∈ [t − 1] (by the

non-increasing of д′t (v) and λt ≥ λt−1). Then we have

ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)
=

t∑
τ=1

дτ (ṽτ ) −
t−1∑
τ=1

дτ (v̄τ )

=дt (ṽt ) +
t−1∑
τ=1

(дτ (ṽτ ) − дτ (v̄τ ))

(a)
≥дt (ṽt ) +

t−1∑
τ=1

λt (ṽτ − v̄τ )

(b)
≥дt (ṽt ) − λt ṽt .

For (a), it comes from the concavity of дτ (v) and ṽτ ≤ v̄τ ,τ ∈

[t −1]. For (b), we claim that

∑t−1

τ=1
v̄τ ≤

∑t
τ=1

ṽτ . To see this, when
λt = 0, we must have λt−1 = 0. In this case, ṽτ = v̄τ ,∀τ ∈ [t − 1]

and thus we have

∑t−1

τ=1
v̄τ ≤

∑t
τ=1

ṽτ . When λt > 0, from the

KKT conditions in (20), we have

∑t
τ=1

ṽτ = ∆ ≥
∑t−1

τ=1
v̄τ . Then

we conclude that

∑t−1

τ=1
v̄τ ≤

∑t
τ=1

ṽτ and consequently, we have∑t−1

τ=1
(ṽτ − v̄τ ) ≥ −ṽt .

Step II, we prove that ηOPT

(
σ [1:t ]

)
−ηOPT

(
σ [1:t−1]

)
≤ дt (ṽt )−

λt−1ṽt ≤ дt (ṽt ) ≤ дt (v̂t ). Similarly, we have

ηOPT

(
σ [1:t ]

)
− ηOPT

(
σ [1:t−1]

)
=дt (ṽt ) +

t−1∑
τ=1

(дτ (ṽτ ) − дτ (v̄τ ))

(a)
≤дt (ṽt ) +

t−1∑
τ=1

λt−1(ṽτ − v̄τ )

(b)
=дt (ṽt ) − λt−1ṽt

≤дt (ṽt ) ≤ дt (v̂t ).

For (a), it is by the concavity of дτ : дτ (ṽτ ) ≤ дτ (v̄τ )+λτ−1(ṽτ −v̄τ )
(Note that λτ = д′τ (v̄τ )) and λt−1 ≥ λτ ,∀τ ∈ [t − 1]. For (b),

when λt−1 = 0, it holds immediately; when λt−1 > 0, we have∑t
τ ṽτ = ∆ =

∑t−1

τ=1
v̄τ , which implies

∑t−1

τ=1
(ṽτ − v̄τ ) = −ṽt . �

A.4 Proof of Lemma 3
Proof. Denote the input under σ̃ as дt . Denote the input under

σ̄ as д̄t , The optimal dual variable under σ̃ [1:t ]
(resp. σ̄ [1:t ]

) as λt
(resp.

¯λt ). We have,

дt = д̄t ,∀t ≤ τ − 1 ∨ t ≥ τ + 2.

Besides, дτ = д̄τ+1,дτ+1 = д̄τ . Let vt (resp. v̄t ) be the optimal

offline solution at time t given the input σ̃ [1:t ]
(resp. σ̄ [1:t ]

).

1) If λτ ≤ ¯λτ , then

ηOPT

(
σ̃ [1:τ ]

)
− ηOPT

(
σ̃ [1:τ−1]

) (a)
≥дτ (vτ ) − λτvτ

(b)
≥дτ (v̄τ+1) − λτ v̄τ+1

(c)
≥дτ (v̄τ+1) − ¯λτ v̄τ+1

(a)
≥ ηOPT

(
σ̄ [1:τ+1]

)
− ηOPT

(
σ̄ [1:τ ]

)
.

For (a), it is by lemma 2. For (b), it is by the concavity of дt and for

(c), it by λτ ≤ ¯λτ .
2) If λτ ≥ ¯λτ , then similarly

ηOPT

(
σ̄ [1:τ ]

)
− ηOPT

(
σ̄ [1:τ−1]

) (a)
≥дτ+1(v̄τ ) − ¯λτ v̄τ

(b)
≥дτ+1(v̄τ ) − λτ v̄τ

(c)
≥дτ+1(vτ+1) − λτvτ+1

(a)
≥ ηOPT

(
σ̃ [1:τ+1]

)
− ηOPT

(
σ̃ [1:τ ]

)
.

For (a), it is by lemma 2. For (b), it is by λτ ≥ ¯λτ . For (c), it is by the

concavity of дt . Also, with

ηOPT

(
σ̄ [1:τ ]

)
− ηOPT

(
σ̄ [1:τ−1]

)
+ ηOPT

(
σ̄ [1:τ+1]

)
− ηOPT

(
σ̄ [1:τ ]

)
=ηOPT

(
σ̄ [1:τ+1]

)
− ηOPT

(
σ̄ [1:τ−1]

)
=ηOPT

(
σ̃ [1:τ+1]

)
− ηOPT

(
σ̃ [1:τ−1]

)
=ηOPT

(
σ̃ [1:τ+1]

)
− ηOPT

(
σ̃ [1:τ ]

)
+ ηOPT

(
σ̃ [1:τ ]

)
− ηOPT

(
σ̃ [1:τ−1]

)
,

we can have

ηOPT

(
σ̄ [1:τ+1]

)
−ηOPT

(
σ̄ [1:τ ]

)
≤ ηOPT

(
σ̃ [1:τ ]

)
−ηOPT

(
σ̃ [1:τ−1]

)
.

�

A.5 Proof of Lemma 7
Proof of Lemma 7. Suppose an arbitrary σ̃ ∈ arg maxσ

∑
t vt ,

under which д′t (vt ) is not non-decreasing in t , where vt is the sell-
ing quantity of CR-Pursuit(π ) under σ̃ . That is, exist a τ , д′τ (vτ ) >

д′τ+1
(vτ+1). Denote the optimal dual variables under σ̃ [1:t ]

as λt .
Note that λt is non-decreasing in t . Without loss of generality, we

assume that λt < λt+1 or λt = λt+1 = 0, ∀t . We construct a new

input sequence σ̄ by interchanging дτ and дτ+1 in σ̃ and denote

the input under σ̄ as д̄t , the output of CR-Pursuit(π
∗) under σ̄ as

v̄t . The optimal dual variable under σ̄ [1:t ]
as

¯λt . By definition, we

can easily observe that,

ηOPT

(
σ̃ [1:t ]

)
= ηOPT

(
σ̄ [1:t ]

)
,∀t ≤ τ − 1 ∨ t ≥ τ + 1;
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vt = v̄t ,∀t ≤ τ − 1 ∨ t ≥ τ + 2;

дt = д̄t ,∀t ≤ τ − 1 ∨ t ≥ τ + 2.

Besides, дτ = д̄τ+1,дτ+1 = д̄τ . We claim that σ̄ ∈ arg maxσ
∑
t vt

and д̄′τ (v̄τ ) = д′τ+1
(vτ+1) < д′τ (vτ ) = д̄′τ+1

(v̄τ+1). To see this,

consider the following two cases.

(1) λτ = λτ+1 = 0. Under this case, we have

ηOPT

(
σ̃ [1:τ ]

)
− ηOPT

(
σ̃ [1:τ−1]

)
= ηOPT

(
σ̄ [1:τ+1]

)
− ηOPT

(
σ̄ [1:τ ]

)
= дτ (v̂τ ),

where v̂τ = arg maxv дτ (v). Then vτ = v̄τ+1. Similarly, we have

vτ+1 = v̄τ .
∑
t vt =

∑
t v̄t . We conclude that σ̄ ∈ arg maxσ

∑
t vt

and д̄′τ (v̄τ ) = д
′
τ+1

(vτ+1) < д′τ (vτ ) = д̄
′
τ+1

(v̄τ+1).

(2) 0 ≤ λτ < λτ+1. First, we have

дτ (vτ ) + дτ+1(vτ+1) =
ηOPT

(
σ̃ [1:τ+1]

)
− ηOPT

(
σ̃ [1:τ−1]

)
π∗

=
ηOPT

(
σ̄ [1:τ+1]

)
− ηOPT

(
σ̄ [1:τ−1]

)
π∗

= дτ+1(v̄τ ) + дτ (v̄τ+1),

which implies

дτ (vτ ) − дτ (v̄τ+1) = дτ+1(v̄τ ) − дτ+1(vτ+1).

Second, we claim that v̄τ+1 ≤ vτ . From Lemma 3, we have

ηOPT

(
σ̄ [1:τ+1]

)
−ηOPT

(
σ̄ [1:τ ]

)
≤ ηOPT

(
σ̃ [1:τ ]

)
−ηOPT

(
σ̃ [1:τ−1]

)
.

Then дτ (vτ ) ≥ дτ (v̄τ+1) and v̄τ+1 ≤ vτ are straightforward.

Third, we show дτ (vτ ) = дτ (v̄τ+1) and thus v̄τ+1 = vτ by

contradiction. Suppose дτ (vτ ) > дτ (v̄τ+1) and thus v̄τ+1 < vτ .
we show that

∑
t vt <

∑
t v̄t which contradict the fact that σ̃ ∈

arg maxσ
∑
t vt . To see this, observe that we have

д′τ+1
(vτ+1)(vτ − v̄τ+1)

(a)
< − д′τ (vτ )(v̄τ+1 −vτ )

(b)
≤дτ (vτ ) − дτ (v̄τ+1)

=дτ+1(v̄τ ) − дτ+1(vτ+1)

(b)
≤д′τ+1

(vτ+1)(v̄τ −vτ+1).

For (a), it is by д′τ (vτ ) > д′τ+1
(vτ+1) ≥ λt+1 > 0 and v̄τ+1 < vτ .

For (b), it is from the concavity of дτ . As д
′
τ+1

(vτ+1) ≥ λτ+1 > 0,

we have

vτ +vτ+1 < v̄τ + v̄τ+1,

which leads to

∑
t vt <

∑
t v̄t .

So we conclude that дτ (vτ ) = дτ (v̄τ+1) and thus v̄τ+1 = vτ .
Consequently, дτ (vτ+1) = дτ+1(v̄τ ) and thus v̄τ = vτ+1. It is then

straightforward that

σ̄ ∈ arg max

σ

∑
t
vt ,

and

д̄′τ (v̄τ ) = д
′
τ+1

(vτ+1) < д′τ (vτ ) = д̄
′
τ+1

(v̄τ+1).

By continuously interchanging дτ and дτ+1 that fails to satisfy

д′τ+1
(vτ ) ≤ д′τ (vτ+1), we finally attain a sequence in arg maxσ

∑
t vt

such that д′t (vt ) is non-decreasing in t . �

A.6 Proof of Lemma 9
Proof. First, from Lemma 2, we easily conclude that v̄t ≤ v̂t ,

where v̂t is the optimizer of дt (·). By the concavity of дt (·), we have

дt (v̄t ) ≥
v̄t
v̂t

дt (v̂t ) +

(
1 −

v̄t
v̂t

)
дt (0) ≥

v̄t
v̂t

дt (v̂t ) ,

which then gives v̄t ≤
дt (v̄t )

дt (v̂t )/v̂t
. Then, using the definition of c ,

we arrive at

v̄t ≤
p(t)

дt (v̂t ) /v̂t

дt (v̄t )

p(t)
≤ c

дt (v̄t )

p(t)
.

�

A.7 Proof of Lemma 10
Proof. For ease of presentation, define

xp ,
π

∆

∑
{t : p(t )≤p }

дt (v̄t ).

It is then equilivalent to show that xp ≤ p. Define T1 , min{t :

p(τ ) > p,∀τ ≥ t} − 1, i.e., for any t > T1, we have p(t) > p, or
equivalently if p(t) ≤ p, then t ≤ T1. By definition, xp is determined

by σ [1:T1]
only. Thus, in this proof, we only focus on the input

horizon t ∈ [T1].

We first consider a special case when p(t) ≤ p, ∀t ∈ [T1]. By

that дt (v),∀t ∈ [T1] are concave functions, we have

ηOPT

(
σ [1:T1]

)
=

T1∑
t=1

дt
(
v∗t

)
≤

T1∑
t=1

(
дt (0) + д

′
t (0)v

∗
t
)
=

T1∑
t=1

p(t)v∗t ,

where v∗t , t ∈ [T1] are the solution of the optimal offline algorithm

under input σ [1:T1]
. Then according to (9) and that ηOPT

(
σ [1:T1]

)
≤

p · ∆, we have

xp =
π

∆

T1∑
t=1

дt (v̄t ) =
1

∆
ηOPT

(
σ [1:T1]

)
≤ p.

We now consider the general cases, where there could be some

slot(s) τ ∈ [T1] such that p(τ ) > p. The we construct a new input

sequence σ̄ by interchange дτ and дτ+1 in σ . Denote the input

under σ̄ as д̄t . Let x̄p , p̄(t) be the corresponding variables under σ̄ .
To show that xp ≤ p, we first show xp ≤ x̄p . By definition, we

observe that,

ηOPT
(
σ t

)
= ηOPT

(
σ̄ t

)
,∀t ≤ τ − 1 ∨ t ≥ τ + 1;

дt = д̄t ,∀t ≤ τ − 1 ∨ t ≥ τ + 2.

Besides, дτ = д̄τ+1,дτ+1 = д̄τ .We discuss two cases.

• When p(τ + 1) > p: it is easy to see that x̄p = xp .
We then prove xp ≤ p as follows: We continuously inter-

change with p(τ ) > p with the input at its next slot until all

the slots with p(t) ≤ p is at the front of it. At the meantime,

xp keeps on non-decreasing. Finally, we get a σ ′
, in which

the price at each slot in [T ′
1
] (T ′

1
is corresponding to T1 but

defined under σ ′
) is less or equal to p, and xp ≤ x ′p . Since in

σ ′
, p ≥ p(t), ∀t , from our analysis in the first part (special

case), we have x ′p ≤ p. It then follows that xp ≤ p.
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• When p(τ + 1) ≤ p: we have

xp − x̄p =
ηOPT

(
σ [1:τ+1]

)
− ηOPT

(
σ [1:τ ]

)
∆

−

ηOPT

(
σ̄ [1:τ ]

)
− ηOPT

(
σ̄ [1:τ−1]

)
∆

(a)
≤ 0,

where the step (a) is because of Lemma 3.

Next, we prove xp ≤ p. We continuously interchange withp(τ ) >
p with the input at its next slot until all the slots with p(t) ≤ p is

at the front of it. At the meantime, xp keeps on non-decreasing.

Finally, we get a σ ′
, in which the price at each slot in [T ′

1
] (T ′

1
is

corresponding to T1 but defined under σ ′
) is less or equal to p, and

xp ≤ x ′p . Since in σ ′
, p ≥ p(t), ∀t , from our analysis in the first

part (special case), we have x ′p ≤ p. It then follows that xp ≤ p.
�

A.8 Proof of Lemma 11
Proof. Suppose in σ [1:T ]

, p(t) takes n different values, which

are denoted as m ≤ p1 ≤ p2 ≤ · · · · · · ≤ pn ≤ M . And define

yi ,
∑
t, p(t )=pi

π
∆дt (v̄t ). Note that we have

T∑
t=1

дt (v̄t )

p(t)
=

∆

π

n∑
i=1

yi
pi
.

From Lemma 10, we have

∑i
j=1

yj = xpi ≤ pi .

Consider the following optimization problem:

max

n∑
i=1

yi
pi

s .t .
i∑
j=1

yj ≤ pi , i ∈ [n]

yi ≥ 0, i ∈ [n].

The KKT conditions are sufficient and necessary conditions for

optimality for the above convex problem. Denote µi ≥ 0, i ∈ [n] as
the dual variables, then the KKT conditions can be expressed as:

1

pi
−

n+1−i∑
j=1

µi = 0,∀i ∈ [n], (23)

µi (pi −
i∑
j=1

yj ) = 0,∀i ∈ [n], (24)

µi ≥ 0,∀i ∈ [n],

yi ≥ 0,∀i ∈ [n].

From (23), we know that µi > 0 for all i ∈ [n]. Thus from (24), we

have

pi −
i∑
j=1

yj = 0,∀i ∈ [n].

Thus we know the optimal primal solution is

yi = pi − pi−1,∀i ∈ [n],

wherep0 = 0. And the optimal objective value equals to

∑n
i=1

pi−pi−1

pi .

So

T∑
t=1

дt (v̄t )

p(t)
=

∆

π

n∑
i=1

yi
pi

≤
∆

π

n∑
i=1

pi − pi−1

pi

=
∆

π

(
p1

p1

+

n∑
i=2

pi − pi−1

pi

)
≤

∆

π

(
1 +

∫ pn

p1

1

x
dx

)
≤

∆

π
(1 + lnθ ) .

This completes our proof.

�

A.9 Proof of Lemma 12
Proof. We show that any input σ [1:T ]

is equivalent to (in the

sense that the behaviors of both offline algorithm and the proposed

online algorithm remain unchanged) an increasing price sequence

as the following:

m ≤ p1 < p2 < · · · < pn ≤ M, (25)

where n ≤ T . According to (16), CR-Pursuit(π ) will sell only when

the current price is larger than the highest price in history. Thus

for any input σ [1:T ]
, we can delete the slots when CR-Pursuit(π )

does not sell, and the outputs of CR-Pursuit(π ) is then equivalent

to the resulting increasing price sequence. �

A.10 Proof of Lemma 14
Proof. By Lemma 2 and definition of дt (v̄t ), we know that

πдt (v̄t ) = ηOPT

(
σ [1:t

)
− ηOPT

(
σ [1:t−1]

)
≤ дt (v̂t ) and then v̄t ≤

v̂t , where v̂t as the optimizer of дt (vt ). To simplify the explanation,

let k = дt (v̄t ) and α =
f (v̂t )
v̂t

.

Define д̃t (vt ) = (p(t) − αvt )vt . By the convexity of ft (·), ft (0) =
0, we have ft (vt ) ≤ αvt ,∀vt ≤ v̂t . Then дt (vt ) ≥ д̃t (vt ),∀vt ≤ v̂t

Suppose ṽt is the smaller solution satisfying д̃t (ṽt ) = k , i.e.,

ṽt =
p(t) −

√
p2(t) − 4αk

2α
=

2k

p(t)
(
1 +

√
1 − 4αk

p2(t )

) .
By observing

kπ ≤ дt (v̂t ) = д̃t (v̂t ) ≤
p2(t)

4α
,

we have
4αk
p2

t
≤ 1

π (note that this also implies the existence of ṽt ).

We then easily conclude

ṽt ≤
2k

p(t)

(
1 +

√
1 − 1

π

) .
We claim v̄t ≤ ṽt . If ṽt > v̂t , we have v̄t ≤ v̂t < ṽt ; Otherwise,

ṽt ≤ v̂t , we have

k = дt (v̄t ) = д̃t (ṽt ) ≤ дt (ṽt ).
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Following дt (vt ) is increasing in [0, v̂t ], we conclude v̄t ≤ ṽt .
Finally, we conclude

v̄t ≤
2k

p(t)

(
1 +

√
1 − 1

π

) = 2(
1 +

√
1 − 1

π

) дt (v̄t )
p(t)

.

�

A.11 Proof of Lemma 15
Proof. From Lemma 14, we have

Φ∆(π ) = max

σ [1:T ]

T∑
t=1

vt ≤
2(

1 +

√
1 − 1

π

) T∑
t=1

дt (v̄t )

p(t)
.

By Lemma 11, we know that

T∑
t=1

дt (v̄t )

p(t)
≤

∆

π
(1 + lnθ ). (26)

Then we can bound Φ∆(π ) as

Φ∆(π ) ≤
2(

1 +

√
1 − 1

π

) T∑
t=1

дt (v̄t )

p(t)

≤
2∆

π

(
1 +

√
1 − 1

π

) (1 + lnθ ).

This completes our proof.

�
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