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Abstract—Energy consumption represents a significant cost in
data center operation. A large fraction of the energy, however, is
used to power idle servers when the workload is low. Dynamic
provisioning techniques aim at saving this portion of the energy,
by turning off unnecessary servers. In this paper, we explore how
much gain knowing future workload information can bring to
dynamic provisioning. In particular, we develop online dynamic
provisioning solutions with and without future workload informa-
tion available. We first reveal an elegant structure of the off-line
dynamic provisioning problem, which allows us to characterize
the optimal solution in a “divide-and-conquer” manner. We
then exploit this insight to design two online algorithms with
competitive ratios 2 − α and e/ (e − 1 + α), respectively, where
0 ≤ α ≤ 1 is the normalized size of a look-ahead window in
which future workload information is available. A fundamental
observation is that future workload information beyond the full-
size look-ahead window (corresponding to α = 1) will not improve
dynamic provisioning performance. Our algorithms are decentral-
ized and easy to implement. We demonstrate their effectiveness
in simulations using real-world traces.

I. Introduction
Cloud computing is a new paradigm for providing Internet

services to a large volume of end-users. In this paradigm,
cloud computing service providers provide infrastructure, in
particular data centers, as a service and charge customers
based on their usage. However, the energy consumption of data
centers hosting these services has been skyrocketing. In 2010,
data centers worldwide consumed an estimated 240 billion
kilowatt-hours (kWh) of energy, roughly 1.3% of the world
total energy consumption [2]. Power consumption at such a
level is almost enough to power all of Spain [3]. Energy-related
costs are approaching the cost of IT hardware in data centers
[4], and are growing 12% annually [5].

Recent work has explored electricity price fluctuation in
time and geographically balancing load across cloud data
centers to cut the electricity costs; see e.g., [6], [7], [8], [9]
and the references therein. To benefit from this, the energy
consumption of a data center must reflect its actual load.

Energy consumption in a data center is a product of the
power usage effectiveness (PUE)1 and the energy consumed
by the servers. There have been substantial efforts in improving
PUE, e.g., by optimizing cooling [10], [11] and power man-
agement [12]. In this paper, we focus on reducing the energy
consumed by the servers.

A preliminary version of the paper appeared in CISS in 2012[1]. Tan Lu
and Minghua Chen are with Department of Information Engineering, The
Chinese University of Hong Kong, Hong Kong. Lachlan L. H. Andrew is
with the Centre for Advanced Internet Architectures, Swinburne University
of Technology, Australia.

1PUE is defined as the ratio between the amount of power entering a data
center and the power used to run its computer infrastructure. The closer to
one PUE is, the better energy utilization is.

Real-world statistics reveals three observations that suggest
ample saving is possible in server energy consumption [13],
[14], [15], [16], [17], [18]. First, workload in a data center
often fluctuates significantly on the timescale of hours or
days, expressing a large “peak-to-mean” ratio. Second, data
centers today often provision for far more than the observed
peak to accommodate both the predictable workload and
the unpredictable flash crowds. Such static over-provisioning
results in low average utilization for most servers. Third, a
lightly-utilized or idle server consumes more than 60% of its
peak power. These observations imply that a large portion of
the energy consumed by servers goes into powering nearly-idle
servers, and it can be best saved by turning off servers during
the off-peak periods. In particular, an important technique for
reducing the energy consumption of idle servers is for servers
to autonomously turn off sub-systems [19].

One promising technique exploiting the above insights is
dynamic provisioning, which turns on a minimum number of
servers to meet the current demand and dispatches the load
among the running servers to meet Service Level Agreements
(SLA), making the data center “power-proportional”. This is
enabled by virtualization, which is the fundamental technology
that allows the cloud to exist.

There has been a significant amount of effort in developing
such technique, initiated by the pioneering works [13], [14] a
decade ago. Among them, one line of work [19], [16], [15]
examines the practical feasibility and advantage of dynamic
provisioning using real-world traces, suggesting substantial
gain is indeed possible in practice. Another line of work
[13], [20], [15] focuses on developing algorithms by utilizing
various tools from queuing theory, control theory and machine
learning to provide insights that can lead to effective solutions.
These existing works provide a number of schemes that deliver
favorable performance justified by theoretic analysis and/or
practical evaluations. See [21] for a recent survey.

However, turning servers on and off incurs a cost. Hence
the effectiveness of these exciting schemes usually relies on
the ability to predict future workload to a certain extent, e.g.,
using model fitting to forecast future workload from historical
data [15]. This naturally leads to the following questions:

• Can we design online solutions that require zero future
workload information, yet still achieve close-to-optimal
performance?

• Can we characterize the benefit of knowing future work-
load in dynamic provisioning?

Answers to these questions provide fundamental understanding
on how much performance gain one can have by exploiting
future workload information in dynamic provisioning.
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The worst-case performance of an on-line algorithm A
is often measured by its competitive ratio: the maximum,
over all possible problem instances, of ratio of the cost of
the solution found by A to the cost of the optimal off-line
solution. Recently, Lin et al. [22] proposed an algorithm
that requires almost-zero future workload information2 and
achieves a competitive ratio of 3, i.e., the energy consumption
is at most 3 times the minimum (computed with perfect future
knowledge). In simulations, they further show the algorithm
can exploit available future workload information to improve
the performance. These results are very encouraging, indicat-
ing that a complete answer to the questions is possible.

In this paper, we further explore answers to the questions,
and make the following contributions:
• We consider a scenario where a running server consumes

a fixed amount of energy per unit time. We reveal that the
dynamic provisioning problem has an elegant structure
that allows us to solve it in a “divide-and-conquer”
manner. This insight leads to a full characterization of the
optimal solution, achieved by a centralized procedure.

• We show that the optimal solution can also be attained by
a simple last-empty-server-first job-dispatching strategy
and each server independently solving a classic ski-
rental problem. We build upon this architectural insight
to design two decentralized online algorithms. The first,
named CSR, is deterministic with competitive ratio 2−α,
where 0 ≤ α ≤ 1 is the normalized size of a look-
ahead window in which future workload information is
available. The second, named RCSR, is randomized with
competitive ratio e/ (e − 1 + α). We prove that 2 − α
and e/ (e − 1 + α) are the best competitive ratios for
deterministic and randomized online algorithms under
last-empty-server-first job-dispatching strategy.

• Our results lead to a fundamental observation: under the
cost model that a running server consumes a fixed amount
of energy per unit time, future workload information
beyond the full-size look-ahead window will not improve
the dynamic provisioning performance. The size of the
full-size look-ahead window is determined by the wear-
and-tear cost and the unit-time energy cost of one server.

• We also extend the algorithms to the case where servers
take setup time Ts to turn on and workload a (t) satisfies
a(τ) ≤ (1 + γ)a(t) for all τ ∈ [t, t + Ts], achieving
competitive ratios upper bounded by (2 − α) (1 + γ) + 2γ
and e

e−1+α
(1 + γ) + 2γ.

• Our algorithms are simple and easy to implement. We
demonstrate the effectiveness of our algorithms in sim-
ulations using real-world traces. We also compare their
performance with state-of-the-art solutions.

The rest of the paper is organized as follows. We formulate
the problem in Section II. Section III reveals the important
structure of the formulated problem, characterizes the optimal
solution, and designs a simple decentralized offline algorithm
achieving the optimal. In Section IV, we propose online
algorithms and provide performance guarantees. Section V

2LCP algorithm [22] is a discrete time algorithm that only requires an
estimate of the job arrival rate of the current slot.

presents the experiments and Section VI concludes the paper.

II. Problem Formulation
A. Settings and Models

We consider a data center consisting of a set of homoge-
neous servers. Without loss of generality, we assume each
server has a unit service capacity3, i.e., it can only serve one
unit workload per unit time. Let the unit time power consump-
tion of busy and idle servers be Pb and P, respectively. We
define βon and βo f f as the cost of turning a server on and
off, respectively. This includes wear-and-tear costs, including
the amortized service interruption cost and procurement and
replacement cost of server components (hard-disks and power
supplies in particular). [20], [23]. It is comparable to the
energy cost of running a server for several hours [22].

The results we develop in this paper apply to both of the
following two types of workload:
• “mice” type workloads, such as “request-response” web

serving. Each job of this type has a small transaction size
and short duration. A number of existing works [13], [14],
[22], [24] model such workloads by a discrete-time fluid
model. In the model, time is divided into equal-length
slots. Jobs arriving in one slot get served in the same slot.
Workload can be split among running servers at arbitrary
granularity like a fluid.

• “elephant” type workloads , such as virtual machine
hosting in cloud computing. Each job of this type has
a large transaction size, and can last for a long time. We
model such workload by a continuous-time brick model.
In this model, time is continuous, and we assume one
server can only serve one job4. Jobs arrive and depart at
arbitrary times, and no two job arrival/departure events
happen simultaneously.

For the discrete-time fluid model, servers toggled at the
discrete time epoch will not interrupt job execution and thus no
job migration is incurred. This neat abstraction allows research
to focus on server on-off scheduling to minimize the cost.
For the continuous-time brick model, when a server is turned
off, the long-lasting job running on it needs to be migrated
to another server. In general, such non-trivial migration cost
needs to be taken into account when toggling servers.

In the following, we present our results based on the
continuous-time brick model. We add discussions to show the
algorithms are also applicable to the discrete-time fluid model.

We assume that each job is present on a closed interval of
time. The number of jobs as a function of time is then a non-
negative, integer valued upper semi-continuous function a. For
convenience, we further assume that a changes by at most 1

3In practice, server’s service capacity can be determined from the knee of
its throughput and response-time curve [16].

4This could be justified if there were a SLA in cloud computing that requires
the job does not share the physical server with other jobs due to security
concerns. The problem is substantially different if a single server can host
multiple virtual machines (VMs). Specifically, if the scheduling discipline
is restricted to being non-clairvoyant (job sizes are only known when they
complete) then VM migration becomes much more beneficial than in the
case that scheduling discipline is clairvoyant; without VM migration, the
competitive ratio is at least as large as the number of VMs that can be hosted
on a single server in the case that scheduling discipline is non-clairvoyant.
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at any time. To avoid technicalities, we assume a is bounded
and not always zero.

The number of servers “on” (serving or idle) can be defined
as follows. For each server s, define a function us that is right
continuous with us(0−) = 0, counting the number of times the
server has turn on, and a function ds that is left continuous with
and ds(0) = 0, counting the number of times the server has
turned off. The state of server s at time t is then xs(t) = us(t)−
ds(t), which must be either 0 or 1. Then define u =

∑
s usand

d =
∑

s ds. The total number of servers on is x = u − d.
To focus on the cost within [0,T ], we require x(0) = a (0)

and x (T ) = a (T ). For convenience, we set a (t) = 0 for all
t < 0 and all t > T .

Define the cost of server s on an interval [t1, t2) as

cs(t1, t2) = P
t2w

t1

xs(t) dt+βon(us(t2)−us(t1))+βo f f (ds(t2)−ds(t1))

(1)
where the integral represents the running cost, and the other
terms are the switching costs. Note that this includes any cost
of switching on at t2 even though that is not in the interval,
and neglects the cost of switching off at t1even though that
is in the interval. Consequently, for any t1 < t2 < t3 we have
cs(t1, t3) = cs(t1, t2) + cs(t2, t3).

It will sometimes be useful to consider the entire switching
cost on a closed interval. Let Pon(t1, t2) and Po f f (t1, t2) denote
the total wear-and-tear cost incurred by turning on and off

servers in [t1, t2], respectively. They take the on-off cost at
t1 and t2 into account. Specifically, if u has left limits and
d has right limits, then Pon(t1, t2) = βon(us(t2) − us(t−1 )) and
Po f f (t1, t2) = βo f f (ds(t+2 ) − ds(t1)). Our results depend only on
the sum Pon + Po f f , but we retain both terms to emphasize the
two physical processes.

B. Problem Formulation

We formulate the problem of minimizing server operation
cost in a data center in an interval [T1,T2] given an initial
number of “on” servers X1and a final number of “on” servers
X2 as follows:

P[a (t) , X1, X2,T1,T2] :

min P
T2w

T1

x (t) dt + Pon(T1,T2) + Po f f (T1,T2) (2)

s.t. x(t) ≥ a(t),∀t ∈ [T1,T2], (3)
x(T1) = X1, x(T2) = X2, (4)

var x(t) ∈ Z+, t ∈ [T1,T2], (5)

where Z+ denotes the set of non-negative integers. In partic-
ular, we are interested in the “Server Capacity Provisioning”
problem, SCP, given by P[a (t) , a(0), a(T ), 0,T ].

The objective is to minimize the sum of server energy con-
sumption and the wear-and-tear cost. The actual summation
of the two parts of the cost is

r T
0 P [x (t) − a (t)] + Pba (t) dt +

Pon(0,T )+Po f f (0,T ), since the busy and idle powers can differ.
However

r T
0 Pba (t)−Pa (t) dt is constant for given a (t), and so

to minimize the total cost is to minimize (2). The constraints

in (3) say the service capacity must satisfy the demand. The
constraints in (4) are the boundary conditions.

Remarks:
1) The problem SCP does not consider the possible migra-

tion cost associated with the continuous-time discrete-
load model. Fortunately, our results later show that we
can schedule servers according to the optimal solution,
and at the same time dispatch jobs to servers in a way
that aligns with their on-off schedules, thus incurring no
migration cost. Hence, the minimum server operation
cost remains unaltered even we consider migration cost
in the problem SCP (which can be rather complicated
to model).

2) The formulation remains the same with the discrete-time
fluid workload model where there is no job migration
cost to consider.

3) The problem SCP is similar to a common one considered
in the literature, e.g., in [22], with a specific (linear)
cost function. The benefit of SCP is that we retain the
constraint that the decision variables be integers instead
of real numbers. This is important for clusters and small
data centers.

There are an infinite number of integer variables x (t), t ∈
[0,T ], in the problem SCP, which make it challenging to solve.
Moreover, in practice the data center has to solve the problem
without knowing the workload a(t), t ∈ [0,T ] ahead of time. In
reality, a (t) is not continuous and it may be right continuous or
left continuous at all the discontinuous points. However, in our
SCP problem, we will modify a (t) to make it right continuous
when a (t) increases by one left continuous when a(t) decreases
by one. This simple modification will not change the optimal
value of SCP.

Next, we design an off-line algorithm, including (i) a job-
dispatching algorithm and (ii) a server on-off scheduling
algorithm, to solve the problem SCP optimally. We then extend
the algorithm to its on-line versions and analyze their perfor-
mance guarantees with or without (partial) future workload
information.

III. Optimal Solution and Offline Algorithm

We study the off-line version of the server cost minimization
problem SCP, where the workload a(t) in [0,T ] is given.

We first design a procedure to construct an optimal solution
to problem SCP. We then derive a simple and decentralized
algorithm, upon which we build our online algorithms.

A. Structure of Optimal Solution

We first define the “critical interval” as

∆ ,
βon + βo f f

P
(6)

Let M be the maximum value of a(t), t ∈ [0,T ]. We then
define ā (t),t ∈ [−2∆,T + 2∆] as an extension of a (t):

ā (t) =


a (t) t ∈ [0,T ]
0 t ∈ (−2∆, 0) ∪ (T,T + 2∆)
M + 1 t ∈ {−2∆,T + 2∆}
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Figure 1: Example of solution constructed by Optimal Solution
Construction Procedure.

Let x∗(t), t ∈ [0,T ], be an optimal solution to the problem
SCP, and the corresponding minimum server operation cost be
P∗. The optimal solution can be constructed as follows.

Optimal Solution Construction Procedure:
For A from 1 to M + 1 do

Find all the intervals (τ, τ′)in [−2∆,T + 2∆] such that
ā (τ) ≥ A, ā (τ′) ≥ A and ā (t) < A,∀t ∈ (τ, τ′).

For all intervals (τ, τ′) do
If τ′ − τ ≤ ∆ then

(re)assign x (t)← min [ā (τ) , ā (τ′)];
Else

for any part of the interval that x (t) has not
already been set, set x (t)← ā (t).

End if
End For

End For

One example of x (t) , t ∈ [0,T ] can be found in Fig. 1.
The following theorem is proved in Appendix A using

proof-by-contradiction and counting arguments.

Theorem 1. The result of the Optimal Solution Construction
Procedure, x (t), t ∈ [0,T ], is an optimal solution to the
problem SCP. Moreover, the optimal us and ds have both left
and right limits.

B. Intuitions and Observations

Consider the example shown in Fig. 2. During [0,T ], the
system starts and ends with two jobs and two running servers.
Let the servers whose jobs leave at times 0 and T be S1 and
S2, respectively.

At time 0, a job leaves. Let T be the time T until a(t) again
reaches the level a(0). The procedure compares T against ∆. If
∆ > T , then it sets x(t) = 2 and keeps all two servers running
for all t ∈ [0,T ]; otherwise, according to Optimal Solution
Construction Procedure, x(t) = 1 for t ∈ [0,T1] ∪ [T2,T ] and
x(t) = 0,∀t ∈ [T1,T2] if ∆ > δ1 or x(t) = 0,∀t ∈ [T1,T2] if
∆ ≤ δ1.

These actions reveal two important observations, upon
which we build a decentralized off-line algorithm to solve the
problem SCP optimally.
• Newly arrived jobs should be assigned to servers in the

reverse order of their last-empty-epochs.
• Upon being assigned an empty period, a server only needs

to independently make locally energy-optimal decision

t

a(t)

1
2

T

1

2

3

0 T1 T2 T

Figure 2: An example of a time period [0,T ]. Interval δ1 =

T2 − T1, δ2 = T2, and δ3 = T − T1.

In the example, when a new job arrives at time T2, the
procedure implicitly assigns it to server S2 instead of S1. As a
result, S1 and S2 have empty periods of T and δ1, respectively.
This may sound “unfair” compared to an alternative strategy
that assigns the job to the early-emptied server S1, which gives
S1 and S2 empty periods of δ2 and δ3, respectively. However,
at each decision point, allocating to the last-empty server
results in a distribution of the idle times I that is “convexly
larger” than that resulting from any other allocation; i.e., it
maximizes E[(I − x)+] for all x [25]. Note that if x is the time
after which the server decides to sleep, then E[(I − x)+] is the
expected energy saving.

It is straightforward to verify that in the example, upon a job
leaving server S1 at time 0, the procedure implicitly assigns
an empty-period of T to S1, and turns S1 off if ∆ < T and
keeps it running at idle state otherwise. Similarly, upon a job
leaving S2 at time T1, S2 is turned off if ∆ < δ1 and stays
idle otherwise. Such comparisons and decisions can be done
by individual servers themselves.

C. Offline Algorithm Achieving the Optimal Solution

The Optimal Solution Construction Procedure determines
how many running servers to maintain at time t, i.e., x∗(t),
to achieve the optimal server operation cost P∗. However, as
discussed in Section II-A, under the continuous-time brick
model, scheduling servers on/off according to x∗(t) might incur
non-trivial job migration cost.

Exploiting the two observations made in the case-study at
the end of last subsection, we design a simple and decentral-
ized off-line algorithm that gives an optimal x∗(t) and incurs
no job migration cost.

Decentralized Off-line Algorithm:
A central job-dispatching entity implements a last-empty-

server-first strategy. In particular, it maintains a stack (i.e.,
a Last-In/First-Out queue) storing the IDs for all idle or off

servers. Before time 0, the stack contains identifiers (IDs) for
all the servers that are not serving.
• Upon a job arrival: the dispatcher pops a server ID

from the top of the stack, and assigns the job to the
corresponding server (if the server is off, the dispatcher
turns it on).
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• Upon a job departure: a server becomes idle, and the
dispatcher pushes the server ID into the stack.

Each server:
• Upon receiving a job: the server starts serving the job

immediately.
• Upon a job leaving this server: let the departure epoch be

t1. The server searches for the earliest time t2 ∈ (t1, t1 +∆]
such that a(t2) = a(t1). If no such t2 exists, then the server
turns itself off. Otherwise, it stays idle.

We remark that in the algorithm, we use the same server to
serve a job during its entire sojourn time. Thus there is no job
migration cost. The following theorem justifies the optimality
of the off-line algorithm.

Theorem 2. The proposed off-line algorithm achieves the
optimal cost of the problem SCP.

Proof: Refer to Appendix B.
There are two important observations. First, the job-

dispatching strategy only depends on the past job arrivals
and departures. Consequently, the strategy assigns a job to
the same server no matter whether it knows future job ar-
rival/departure times or not; it also acts independently from
servers’ off-or-idle decisions. Second, each individual server
is actually solving a classic “ski-rental” (rent-or-buy) problem
[26]. Each chooses whether to “rent”(keep idle and pay an
ongoing energy cost) or to “buy” (turn off now and pay a on-
off wear-and-tear cost), but the number of rounds is jointly
determined by the job-dispatching strategy.

Next, we exploit these two observations to extend the
off-line algorithm to its online versions with performance
guarantees.

IV. Online Dynamic Provisioning with or without Future
Workload Information

Inspired by our off-line algorithm, we construct online
algorithms by combining (i) the same last-empty-server-first
job-dispatching strategy as the one in the proposed off-line
algorithm, and (ii) an off-or-idle decision module running on
each server to solve an online ski-rental problem. To evaluate
our online algorithms, we compare its performance to that
of the best off-line algorithm. We say a deterministic online
algorithm A is R-competitive if for all input sequences σ, we
have

CA (σ) ≤ RCopt (σ) + O(1)

where CA (σ) is the cost of algorithm A and Copt (σ) is the
offline optimal. We say a randomized online algorithm A, is
R-competitive 5 if for all input sequences σ, we have

E [CA (σ)] ≤ RCopt (σ) + O(1)

where E [CA (σ)] is the expectation of the cost of algorithm A
with respect to its random choices for input sequence σ, and
Copt (σ) is the offline optimal.

5against an “oblivious adversary”

As discussed at the end of last section, the last-empty-
server-first job-dispatching strategy utilizes only past job ar-
rival/departure information. Consequently in both the offline
and online cases, it assigns the same set of jobs to the same
server at the same sequence of epochs.

Lemma 3. For the same a (t) , t ∈ [0,T ], under the last-empty-
server-first job-dispatching strategy, each server will get the
same job at the same time and the job will leave the server
at the same time for both off-line and online situations.

Lemma 3 is true because last-empty-server-first job-
dispatching strategy only depends on past workload and it is
independent of the past statuses of servers.

As a result, in the online case, each server still faces the
same set of off-or-idle problems as in the off-line case. This
is the key to deriving the competitive ratios of the online
algorithms we will present.

Each server, not knowing the empty periods ahead of time,
needs to decide whether to stay idle or turn off (and if so
when) in an online fashion. One natural approach is to adopt
classic algorithms for the online ski-rental problem.

A. Dynamic Provisioning without Future Workload Informa-
tion

For the online ski-rental problem, the break-even algorithm
in [26] and the randomized algorithm in [27] have com-
petitive ratios 2 and e/ (e − 1), respectively. The ratios have
been proved to be optimal for deterministic and randomized
algorithms, respectively. Directly adopting these algorithms
in the off-or-idle decision module leads to two online so-
lutions for the problem SCP with competitive ratios 2 and
e/ (e − 1) ≈ 1.58. These ratios improve the best known ratio 3
achieved by the algorithm in [22].

The resulting solutions are decentralized and easy to im-
plement: a central entity runs the last-empty-server-first job-
dispatching strategy, and each server independently runs an
online ski-rental algorithm. For example, if the break-even
algorithm is used, a server that just becomes empty at time
t will stay idle for an amount of time ∆. If it receives no
job during this period, it turns itself off. Otherwise, it starts
to serve the job immediately. As a special case covered by
Theorem 5, it turns out this directly gives a 2-competitive
dynamic provisioning solution.

B. Dynamic Provisioning with Future Workload Information

Studies of online problems usually assume zero future
information. However, in our data center dynamic provision-
ing problem, one key observation many existing solutions
exploited is that the workload exhibits highly regular patterns.
Thus the workload information in a near look-ahead window
may be accurately estimated by machine learning or model
fitting based on historical data [15], [28]. Can we exploit such
future knowledge, if available, in designing online algorithms?
If so, how much gain can we get?

Let us elaborate through an example to explain why and how
much future knowledge can help. Suppose at any time t, the
workload information a(t) in a look-ahead window [t, t + α∆]
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is available, where α ∈ [0, 1] is a constant. Consider a server
running the break-even algorithm that becomes empty at time
t1, and has an empty period infinitesimally longer than ∆.

Following the standard break-even algorithm, the server
waits for time ∆ before turning itself off. In this example,
it receives a job immediately after t1 + ∆ epoch, and it has
to power up to serve the job. This incurs a total cost of 2P∆

as compared to the optimal one P∆, which is achieved by the
server staying idle all the way.

Another strategy that costs less is as follows. The server
stays idle for an amount of time (1 − α) ∆, and peeks into
the look-ahead window [t1 + (1 − α) ∆, t1 + ∆]. Due to the last-
empty-server-first job-dispatching strategy, the server can easy
tell that it will receive a job if any a(t) in the window exceeds
a(t1), and no job otherwise. In this example, the server sees
itself receiving no job during [t1 + (1 − α) ∆, t1 + ∆] and it
turns itself off at time t1 + (1 − α) ∆. Later it turns itself on to
serve the job right after t1 + ∆. Under this strategy, the overall
cost is (2 − α) P∆, which is better than that of the break-even
algorithm.

This example shows it is possible to modify classic online
algorithms to exploit future workload information to obtain
better performance. To this end, we propose new future-aware
online ski-rental algorithms and build new online solutions.

We model the availability of future workload information
as follows. For any t, the workload in the window [t, t + α∆]
is known, where α ∈ [0, 1] is a constant and α∆ represents the
size of the window.

We present both the modified break-even algorithm and the
decentralized and deterministic online solution named CSR
(Collective Server-Rentals) as follow. The modified future-
aware break-even algorithm is very simple and is summarized
as the part in the server’s actions upon job departure.

Future-Aware Online Algorithm CSR:
A central job-dispatching entity implements the last-empty-
server-first job-dispatching strategy, i.e., the one described in
the off-line algorithm.
Each server:
• Upon receiving a job, the server starts serving the job

immediately.
• Upon a job leaving this server and it becomes empty, the

server waits an amount of time (1 − α) ∆.
– If it receives a job during the period, it starts serving

the job immediately.
– Otherwise, it looks into the look-ahead window of

size α∆. It turns itself off, if it will receive no job
during the window. Otherwise, it stays idle.

In fact, as shown in Theorem 5 later in this section, the
algorithm CSR has the best possible competitive ratio for any
deterministic algorithms. Thus, no deterministic algorithms
can achieve better competitive ratio than the algorithm CSR.

The competitive ratio can be improved by replacing the de-
terministic sleep decision by a randomized decision, similarly
to [27], but extended to consider future information. However,
if servers are turned off after random times, then it is possible

that the last-empty server is off even though there are idle
servers. Instead of using the last-empty server, we will dispatch
the job to the server, if any, that is on but has been idle least
time, as done in [29].

The following decentralized and randomized online algo-
rithm named RCSR (Randomized Collective Server-Rentals)
is new, and has the best possible competitive ratio.

Future-Aware Online Algorithm RCSR:
A central job-dispatching entity implements the least-idle
job-dispatching strategy.
Each server:
• Upon receiving a job: resets all timers, and start serving

the job immediately.
• Upon a job leaving this server: records the occupancy as

a, and initializes a timer to expire time Z into the future,
where Z has probability density

fZ(z) =
exp(z/ {(1 − α) ∆})

(e − 1 + α) (1 − α) ∆
10<z≤(1−α)∆ +

α

e − 1 + α
δ(z)

(7)
where δ is the Dirac delta distribution, and 1X = 1 if X
is true, and 0 otherwise.

• Upon expiration of the timer, consult the prediction
engine. If the maximum occupancy in the coming window
of size α∆ is less than a, then turn off. Otherwise, remain
idle until a job is assigned.

The following lemma, proved in Appendix C, shows that
RCSR performs at least as well as it would under the last-
empty-server-first job-dispatching strategy, which will allow
us to obtain a competitive ratio.

Lemma 4. For any given workload, the cost of using RCSR
is, with probability 1, no greater than the cost of applying
last-empty-server-first with the same per-server sleep policy,
provided that the same random number Z is generated under
both schemes for any given job departure.

The two future-aware online algorithms inherit the nice
properties of the proposed off-line algorithm in the previous
section. The same server is used to serve a job during its entire
sojourn time. Thus there is no job migration cost. Although the
job-dispatching entity in our algorithms is centralized, it just
maintains a stack and estimates future workload. The majority
of the algorithm is performed by the (decentralized) servers.
This makes CSR and RCSR easy to implement and scalable.

Observing no such future-aware online algorithms available
in the literature, we analyze their competitive ratios and
present the results as follows. Assume that jobs assigned to a
server is countable.

Theorem 5. For any P, βo f f , βon, the online algorithms CSR
and RCSR have competitive ratio of 2 − α and e/ (e − 1 + α).
2 − α and e/ (e − 1 + α) are the best competitive ratios for
deterministic and randomized algorithms for SCP, under last-
empty-server-first job-dispatching strategy, respectively.

Proof: Refer to Appendix D.
Remarks: (i) When α = 1, both two algorithms achieve

the optimal server operation cost. This matches the intuition
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Figure 3: Comparison of the worst-case competitive ratios
(according to Theorem 5) and the empirical competitive ratios
observed in simulations using real-world traces. The full-size
look-ahead window size ∆ = 6 units of time. More simulation
details are in Section V.

that servers only need to look ∆ amount of time ahead to
make optimal off-or-idle decision upon job departures. This
immediately gives a fundamental insight that future workload
information beyond the critical interval ∆ (corresponding to
α = 1) will not improve dynamic provisioning performance.
(ii) The competitive ratios presented in the above theorem are
for the worst case. We have carried out simulations using
real-world traces and found the empirical ratios are much
better, as shown in Fig. 3. (iii) To achieve better competitive
ratios, the theorem says that it is necessary to change the
job-dispatching strategy, since otherwise no deterministic or
randomized algorithms do better than the algorithms CSR and
RCSR. (iv) Our analysis assumes the workload information
in the look-ahead window is accurate. We evaluate the two
online algorithms in simulations using real-world traces with
prediction errors, and observe they are fairly robust to the
errors. More details are provided in Section V.

Note that our algorithms are closely related to the DE-
LAYEDOFF algorithm in [29], despite the fact that they
seek to optimize different objective functions (total energy
consumption in our study v.s. Energy-Response time Product
(ERP) in [29]). The main algorithmic difference is that we
make use of future information to improve performance, and
use randomization to improve the competitive ratio. The main
analytic difference is that we consider worst-case performance,
whereas [29] considers expected performance in a stochastic
setting and a large-system asymptotic regime.

C. Adapting the Algorithms to Work with Discrete-Time Fluid
Workload Model

Adapting our off-line and online algorithms to work with
the discrete-time fluid workload model involves two simple
modifications. Recall in the discrete-time fluid model, time is
divided into equal-length slots. Jobs arriving in one slot get
served in the same slot. Workload can be split among running
servers at arbitrary granularity like a fluid.

For the job-dispatching entity in all the algorithms, at the
end of each slot when all servers are considered to be empty,
it pushes all the server IDs back into the stack (order doesn’t
matter). Then at the beginning of each slot, it pops just-enough
server IDs from the stack in a Last-In/First-Out manner to
satisfy the current workload. In this way, the job-dispatching

entity essentially packs the workload to as few servers as
possible, following the last-empty-server-first strategy.

Each individual server starts to serve upon receiving a
job, and starts to solve the (off-line or online) discrete ski-
rental problem upon the job leaving. It is not difficult to
verify the modified algorithms still retain their corresponding
performance guarantees. Specifically:

Corollary 6. The modified deterministic and randomized
online algorithms for discrete-time fluid workload have com-
petitive ratios of 2−α and eθ/ (eθ − 1 + α), respectively, where
θ is the difference between the length of break-even interval
and look-ahead window and eθ = (1 + 1/θ)θ ↑ e as θ → ∞.

D. Extending to Case Where Servers Have Setup Time.

Until now, we have ignored the time Ts required for a
server to turn on. The competitive ratio will be unbounded
unless there is a bound on the number of jobs that can arrive
during Ts. We now describe a centralized algorithm EXT that
provides a bounded CR in the case where a(τ) ≤ (1+γ)a(t) for
all τ ∈ [t, t + Ts]. We expect γ to be small [30]. In this model,
servers can be in three states: ON, BOOT, OFF. Only servers
in state ON can serve jobs, but servers in states ON and BOOT
both consume power P per unit time. An OFF server “turns
on” when it enters state BOOT; Ts later it will become ON.
A server in any state can immediately be turned OFF.

Algorithm EXT for Cases with Setup Time:
Each server:
• Behaves as for CSR or RCSR, but when its timer expires,

it does not turn off but sends a message M to manager.
Manager:

Keeps track of the set X (of size x) of “active” servers,
i.e., those that have not sent M since being allocated a job. It
responds to two types of events as follows:
• Job arrival: If X contains an idle server, the job is sent

to a server in X using least-idle. Otherwise it is sent to
another ON server. Additional servers will be turned on
so that the total number of ON and BOOT servers is
bx(1 + γ)c + 1.

• Message M from server: All but dx(1 + γ)e + 1 servers
will be turned OFF. BOOT servers are turned off first,
in decreasing order of how recently they were turned on.
No active servers are turned off.

The following result, proven in Appendix E, establishes the
validity and performance guarantees of EXT.

Corollary 7. If there are da (0) (1 + γ)e + 1 ON servers at
time 0, then under EXT, the number of ON servers at time t
is at least a (t) . Let amin = mint∈[0,T ] a(t). The competitive
ratio of EXT on instances with discrete arrival instants is
(2 − α) (1 + γ) + 2/amin if servers use CSR, or e

e−1+α
(1 + γ) +

2/amin if servers use RCSR. These are bounded above by
(2 − α) (1 + γ) + 2γ and e

e−1+α
(1 + γ) + 2γ.

Remarks: (i) The competitive ratio of EXT is linearly
proportional to γ. (ii) Since the minimal workload amin in
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large data centers is normally much larger than that in small
ones, whence EXT is usually more beneficial for large data
center. (iii) In EXT, we adopt over-provisioning to combat
the problem that servers need setup time Ts, however, future
workload may not be known; it would be interesting to know if
there exist other approaches to handle this problem. EXT can
not achieve competitive ratio of 1 even if α = 1. Therefore, it
is also good to know how to better utilize future information.

V. Experiments

We implement the proposed off-line and online algorithms
and carry out simulations using real-world traces to evaluate
their performance. Our aims are threefold. First, to evaluate
the performance of the algorithms in a typical setting. Second,
to study the impacts of workload prediction error and work-
load characteristics on the algorithms’ performance. Third, to
compare our algorithms to two recently proposed solutions
LCP(w) in [22] and DELAYEDOFF in [29].

A. Settings

Workload trace: The traces we use in experiments are a set
of I/O traces taken from 6 RAID volumes at MSR Cambridge
[31]. The traced period was one week from February 22 to 29,
2007. We estimate the average number of jobs over disjoint
10 minute intervals. The data trace has a peak-to-mean ratio
(PMR) of 4.63. The jobs are “request-response” type and thus
the workload is better described by a discrete-time fluid model,
with the slot length being 10 minutes and the load in each slot
being the average number of jobs.

In the experiments, we run algorithm LCP(w) [22] by
directly using the above discrete-time trace, since LCP(w)
was originally designed to work under a discrete-time setting.
Meanwhile, CSR, RCSR, and DELAYEDOFF [29] were pri-
mally designed to work under a continuous-time setting. To
evaluate their performance by using the above discrete-time
trace, we run these algorithms by feeding jobs continuously
to the algorithms, where the job-arrivals in a slot are assumed
to uniformly spread out the slot. By this setting, we would like
to demonstrate that algorithms CSR/RCSR/DELAYEDOFF do
not require to know the number of job-arrivals a priori to
operate. We use last-empty-server-first for RCSR.

Cost benchmark: Current data centers usually do not use
dynamic provisioning. The cost incurred by static provisioning
is usually considered as benchmark to evaluate new algorithms
[22], [16]. Static provisioning runs a constant number of
servers to serve the workload. In order to satisfy the time-
varying demand during a period, data centers usually overly
provision and keep more running servers than what is needed
to satisfy the peak load. In our experiment, we assume that
the data center has the complete workload information ahead
of time and provisions exactly to satisfy the peak load. Using
such benchmark gives us a conservative estimate of the cost
saving from our algorithms.

Sever operation cost: The server operation cost is deter-
mined by unit-time energy cost P and on-off costs βon and βo f f .

In the experiment, we assume that a server consumes one unit
energy for per unit time, i.e., P = 1,∀x. We set βo f f +βon = 6,
i.e., the cost of turning a server off and on once is equal to
that of running it for six units of time [22]. Under this setting,
the critical interval is ∆ =

(
βo f f + βon

)
/P = 6 units of time.

B. Performance of the Proposed Online Algorithms

We have characterized in Theorem 5 the competitive ratios
of CSR and RCSR as the look-ahead window size, i.e., α∆,
increases. The resulting competitive ratios, i.e., 2 − α and
e/ (e − 1 + α), already appealing, are for the worst case. In
practice, the actual performance can be even better.

In our first experiment, we study the performance of CSR
and RCSR using real-world traces. The results are shown in
Fig. 4b. The cost reduction curves are obtained by comparing
the cost incurred by the off-line algorithm, CSR, RCSR, the
LCP(w) algorithm [22] and the DELAYEDOFF algorithm [29]
to the cost benchmark. The vertical axis indicates the cost
reduction and the horizontal axis indicates the size of look-
ahead window varying from 0 to 10 units of time.

For this workload, CSR, RCSR, LCP(w) and DELAYED-
OFF achieve substantial cost reduction as compared to the
benchmark. In particular, the cost reductions of CSR and
RCSR are beyond 66% even when no future workload infor-
mation is available. LCP(w) starts to perform when the look-
ahead window size is one. This is because we run LCP(w)
under a discrete-time setting and the workload information for
the current slot is only available after all jobs in this slot have
arrived. Meanwhile, CSR, RCSR, and DELAYEDOFF are
running under a continuous-time setting, where jobs arriving
at any moment are served immediately.

The cost reductions of CSR and RCSR grow linearly as the
look-ahead window increases, and reaching optimal when the
look-ahead window size reaches ∆. These observations match
what Theorem 5 predicts. Meanwhile, LCP(w) has not yet
reach the optimal performance when the look-ahead window
size reaches the critical value ∆. DELAYEDOFF has the same
performance for all look-ahead window sizes since it does not
exploit future workload information.

C. Impact of Prediction Error

Previous experiments show that CSR, RCSR and LCP(w)
have better performance if accurate future workload is avail-
able. However, there are always prediction errors in practice.
Therefore, it is important to evaluate the performance of the
algorithms in the present of prediction error.

To achieve this goal, we evaluate CSR and RCSR with
look-ahead window size of 2 and 4 units of time. Zero-mean
Gaussian prediction error is added to each unit-time workload
in the look-ahead window, with its standard deviation grows
from 0 to 50% of the corresponding actual workload. In
practice, prediction error tends to be small [32]; thus we are
essentially stress-testing the algorithms.

We average 100 runs for each algorithm and show the results
in Fig. 4c, where the vertical axis represents the cost reduction
as compared to the benchmark.



9

0 50 100 150
0

0.5

1

Time(hour)

W
or

kl
oa

d

(a) MSR data trace for one week

0 5 10
66

68

70

look−ahead window size

%
C

os
t r

ed
uc

tio
n

 

 

Opt
CSR
RCSR
LCP
Delayedoff

(b) Impact of future information

0 10 20 30 40 50

67

68

69

70

71

Prediction error(%)

%
C

os
t r

ed
uc

tio
n

 

 

Opt CSR RCSR LCP
Window Size:2

Window Size:4

(c) Impact of prediction error

2 4 6 8 10
40

60

80

Peak to mean ratio

%
C

os
t r

ed
uc

tio
n

 

 

Opt
CSR
RCSR
LCP
Delayedoff

(d) Impact of PMR

Figure 4: Real-world workload trace and the performance of algorithms under different settings. The critical interval ∆ is 6
units of time. We discuss the performance of algorithms CSR, RCSR, LCP(w) and DELAYEDOFF in Section V-E.

On one hand, we observe all algorithms are fairly robust
to prediction errors. On the other hand, all algorithms achieve
better performance with look-ahead window size 4 than size
2. This indicates more future workload information, even
inaccurate, is still useful in boosting the performance.

D. Impact of Peak-to-Mean Ratio (PMR)
Intuitively, comparing to static provisioning, dynamic pro-

visioning can save more power when the data center trace
has large PMR. Our experiments confirm this intuition which
is also observed in other works [22], [16]. Similar to [22],
we generate the workload from the MSR traces by scaling
a (t) as a (t) = Kaγ (t), and adjusting γ and K to keep the
mean constant. We run the off-line algorithm, CSR, RCSR,
LCP(w) and DELAYEDOFF using workloads with different
PMRs ranging from 2 to 10, with look-ahead window size of
one unit time. The results are shown in Fig. 4d.

As seen, energy saving increases form about 40% at
PRM=2, which is common in large data centers, to large
values for the higher PMRs that is common in small to medium
sized data centers. Similar results are observed for different
look-ahead window sizes.

E. Discussion

Note that CSR and RCSR have competitive ratios 2−α and
e/ (e − 1 + α), which improve as future information is avail-
able. This is in contrast to LCP(w), whose best known compet-
itive ratio is 3 and, regardless of how much future information
is available, there are instances with performance arbitrarily
close to the ratio. Fig. 4b shows that CSR/RCSR perform
slightly better than LCP(w), partially because they need not
work in discrete time. These performance gains of CSR/RCSR
over LCP(w) and DELAYEDOFF shown in Fig. 4b, when
multiplying the large amount of energy consumed by the
data centers every year, correspond to non-negligible energy
cost saving. Moreover, the sleep management in CSR/RCSR
are decentralized, which makes them very much easier to
implement; while the LCP(w) is inherently centralized, since
it requires the solution of a convex program at each time.

Although in this example, DELAYEDOFF performs close
to the optimal, there are very natural cases in which it can
be almost a factor of two more expensive than CSR/RCSR.
The value of ∆ is approximately one hour [22], and it is
common for workloads to have a periodic structure with period
one hour. In this case, it is possible that DELAYEDOFF

always turns machines off just before they are needed again.
If the workload can be predicted an hour into the future, then
CSR/RCSR can guarantee optimal performance in this case.
DELAYEDOFF also does not exploit randomness to improve
performance like RCSR does.

VI. Concluding Remarks
Dynamic provisioning is an effective technique for reducing

server energy consumption in data centers, by turning off

unnecessary servers to save energy. In this paper, we design
online dynamic provisioning algorithms with zero or partial
future workload information available.

We reveal an elegant “divide-and-conquer” structure of the
off-line dynamic provisioning problem, under the cost model
that a running server consumes a fixed amount of energy
per unit time. Exploiting such structure, we show its optimal
solution can be achieved by the data center adopting a simple
last-empty-server-first job-dispatching strategy and each server
independently solving a classic ski-rental problem.

We build upon this architectural insight to design two new
decentralized online algorithms. One is deterministic with
competitive ratio 2 − α, where 0 ≤ α ≤ 1 is the fraction
of the full-size look-ahead window in which future workload
information is available. The size of the full-size look-ahead
window is determined by the wear-and-tear cost and the unit-
time energy cost of running a single server. The other is
randomized with competitive ratio e/ (e − 1 + α). The ratios
2 − α and e/ (e − 1 + α) are the best competitive ratios for
any deterministic and randomized online algorithms under
last-empty-server-first job-dispatching strategy. Note that the
problem we study in this paper is similar to that studied in
[22]. The difference is that we optimize a linear cost function
over integer variables, while Lin et al. in [22] minimize a
convex cost function over continuous variables (by relaxing
the integer constraints). This paper and [22] obtain different
online algorithms with different competitive ratios for the two
different formulations, respectively.

Our results lead to a fundamental observation that under the
cost model that a running server consumes a fixed amount of
energy per unit time, future workload information beyond the
the full-size look-ahead window will not improve the dynamic
provisioning performance.

In addition, we also propose online algorithms for the case
that servers need setup time Ts but the load satisfies a(τ) ≤ (1+

γ)a(t) for all τ ∈ [t, t + Ts]. These algorithms have competitive
ratios (2 − α) (1 + γ) + 2γ and e

e−1+α
(1 + γ) + 2γ .
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Our algorithms are simple and easy to implement. Simu-
lations using real-world traces show that our algorithms can
achieve close-to-optimal energy-saving performance, and are
robust to future-workload prediction errors.

These results suggest that it is possible to reduce server
energy consumption significantly with zero or only partial
future workload information.

This work can be extended in many important directions.
In the elephant model considered here, each server could
only serve one job at a time. Cloud data centres typically
run multiple VMs on each physical machine. One particular
motivation is to pack together jobs with complementary re-
source requirements, such as placing a CPU-intensive and a
memory-intensive VM on the same server. In this scenario,
minimizing the total power cost is a dynamic bin-packing
problem which is NP-hard. (It contains classic bin packing as
a special case.). The analysis of dynamic bin-packing problem
is entirely different and it would be interesting to look at
it in the future. Even in the simplest case that each server
can host an arbitrary combination of m VMs, the problem is
significantly different; it is no longer the case that the optimal
performance can be obtained by a non-clairvoyant algorithm
without VM migration, and indeed such algorithms are at best
m- competitive. A related extension would be to consider the
fact that VMs may have time-varying resource requirements.

Another important direction would be to extend these results
to the case of heterogeneous servers or multiple geographically
separated data centers [33], [34], [35]. It would be useful to
extend the insight from this paper to heterogeneous cases.
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Appendix

The claims made in the previous sections will now be
proven from A to E.

A. Proof of Theorem 1

In order to prove theorem 1, we introduce three lemmas.
The first establishes that Pon and Po f f are well defined.

Lemma 8. The optimal us and ds have both left and right
limits.

Proof: The interval between two discontinuities in the
optimal ds (or optimal us) is at least ∆, and so the set
of discontinuities has no accumulation points. Since it is
piecewise constant, this is sufficient for it to have both left
and right limits at all points.

Lemma 9. Let m = max {ā (τ) : τ ∈ (Ts,Te)}. If Ts − Te >
∆ and m < min(ā(Ts), ā(Te)) then a necessary condition for
x (t) to achieve optimal cost of P (ā, X,Y,Ts,Te) is that x (t) ≤
m,∀t ∈ (Ts,Te).

Proof: Let xi (t) be any optimal solution to the above
optimization problem P (ā,X,Y,Ts,Te) and xi (t) does not
satisfy xi (t) ≤ m,∀t ∈ (Ts,Te). In order to prove the necessary
condition, we divide xi (t) into two cases.

(a) If xi (t) ≥ m + 1,∀t ∈ (Ts,Te) then let x (t) = m,∀t ∈
(Ts,Te). Then xi (t) will consume at least (Te − Ts) P more
power for each extra running servers than x (t) during (Ts,Te).
On the other hand, x (t) causes at most βon + βo f f more wear-
and-tear cost than xi (t) for turning off/on each server. Because
(Te − Ts) > ∆, xi (t) actually costs more than x (t), which is a
contradiction with that xi (t) is an optimal solution.

(b) Otherwise, if xi (t) does not satisfy case (a), then there
must exist time τ in (Ts,Te) such that xi (τ) = m. Let
x (t) = min [m, xi (t)] ,∀t ∈ (Ts,Te). Then x (t) satisfies all the
constraints of P (ā,X,Y,Ts,Te). Moreover, x (t) does not incur
more on-off cost or operating cost than xi (t), which means
x (t) is an optimal solution.

Lemma 10. Let x̄∗ (t) be an optimal solution to
P [ā, ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆], where ā (t) is defined
in section III. Then x̄∗ (t) = 0,∀t ∈ (T,T + 2∆) ∪ (−2∆, 0),
x̄∗ (T ) = ā (T ) = a (T ) and x̄∗ (0) = ā (0) = a (0). Moreover,
x̄∗ (t) , t ∈ [0,T ] is an optimal solution to SCP problem.

Proof: Applying lemma 9, we have that x̄∗ (t) = 0,∀t ∈
(−2∆, 0).

Next, we prove x̄∗ (0) = ā (0) = a (0). Assume instead that
x̄∗ (0) > ā (0). Let µ = inf{t > 0 : ā(t) , ā(0)} be the first
discontinuity in ā. If ā(µ) = ā(0) then let

x̂ (t) =

ā (0) ∀t ∈
[
0, µ

]
x̄∗ (t) otherwise

Otherwise, let

x̂ (t) =

ā (0) ∀t ∈
[
0, µ)

x̄∗ (t) otherwise.
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Since x̄∗ (t) = 0,∀t ∈ (−2∆, 0), x̂ (t) incurs a lower running
cost, and no higher switching cost. This contracts the assump-
tion that x̄∗ (t) is an optimal solution and so x̄∗(0) ≤ ā(0).
Since x̄∗(0) ≥ ā(0) for feasibility, we have x̄∗ (0) = ā (0). By
the definition of ā (t), we have x̄∗ (0) = ā (0) = a (0).

Similarly, x̄∗ (t) = 0,∀t ∈ (T,T + 2∆) and x̄∗ (T ) = ā (T ) =

a (T ).
Since x̄∗ (t) = 0,∀t ∈ (T,T + 2∆)∪(−2∆, 0), x̄∗ (T ) = ā (T ) =

a (T ) and x̄∗ (0) = ā (0) = a (0). Suppose that x̄∗ (t) , t ∈ [0,T ]
is not an optimal solution to SCP. Let x∗ (t) denote an optimal
solution to SCP. Then we let

x̂ (t) =

x∗ (t) ∀t ∈ [0,T ]
x̄∗ (t) otherwise.

Then x̂ (t) incurs less cost than x̄∗ (t) in [0,T ] and they have
the same cost in the rest periods. This contracts the optimality
of x̄∗ (t) for P [ā, ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆]. Therefore
x̄∗ (t) , t ∈ [0,T ] is an optimal solution to SCP.
Next, we are going to prove theorem 1.

Proof: For any µ ∈ [0,T ], we must have that µ is in some
interval (τ, τ′) such that ā (τ) ≥ ā (µ) + 1, ā (τ′) ≥ ā (µ) + 1 and
ā (t) ≤ ā (µ) ,∀t ∈ (τ, τ′). We divide the situation in two cases.

Case I: τ′ − τ > ∆

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = ā (µ) = a (µ).

On the other hand, according to lemma (9), x̄∗ (t) ≤
a (µ) ,∀t ∈ (τ, τ′) because x̄∗ (t) is an optimal solution
to P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆]. Therefore, we
must have x̄∗ (µ) = ā (µ) = a (µ). This means in Case I our
Optimal Solution Construction Procedure gives an optimal
solution.

Case II: τ′ − τ ≤ ∆

In this case, since τ′−τ ≤ ∆, we must have that τ, τ′ ∈ [0,T ].
Therefore, there must exist two intervals

(
τ1, τ

′
1

)
and

(
τ2, τ

′
2

)
which have following properties:

(1)
(
τ1, τ

′
1

)
⊇ (τ, τ′), ā (τ1) ≥ ā (µ) + 1, ā

(
τ′1

)
≥ ā (µ) + 1

and τ′1 − τ1 ≤ ∆. Moreover, for any interval
(
υ1, υ

1
1

)
⊇(

τ1, τ
′
1

)
with ā (υ1) ≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1 and ā

(
υ′1

)
≥

min
[
ā (τ1) , ā

(
τ′1

)]
+ 1, we must have υ′1 − υ1 > ∆.

(2)
(
τ2, τ

′
2

)
⊇

(
τ1, τ

′
1

)
, ā (τ2) ≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1,

ā
(
τ′2

)
≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1, τ′2 − τ2 > ∆ and a (t) ≤

min
[
ā (τ1) , ā

(
τ′1

)]
,∀t ∈

(
τ2, τ

′
2

)
.

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = min

[
ā (τ1) , ā

(
τ′1

)]
.

On the other hand, according to lemma (9), x̄∗ (t) ≤
min

[
ā (τ1) , ā

(
τ′1

)]
,∀t ∈

(
τ2, τ

′
2

)
because x̄∗ (t) is an optimal

solution to P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆]. Then
x̄∗ (t) ≥ min

[
ā (τ1) , ā

(
τ′1

)]
, ∀t ∈

(
τ1, τ

′
1

)
, because turning a

server off and on later incurs no less cost than just letting
it be idle during

(
τ1, τ

′
1

)
since τ′1 − τ1 ≤ ∆. Therefore

x̄∗ (µ) = min
[
ā (τ1) , ā

(
τ′1

)]
. This means in Case II our Op-

timal Solution Construction Procedure also gives an optimal
solution.

Thus the x (t) constructed by the Optimal Solution
Construction Procedure is an optimal solution to

P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆], and the result
follows by lemma 10.

B. Proof of Theorem 2

First we are going to prove that the offline algorithm solves
P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆]. Lemma 10 then
implies the offline algorithm also solves SCP. First, we are
going to prove following lemma.

Lemma 11. Under last-empty-server-first job dispatching, if a
server becomes empty at τ1 and it will receive the first job after
τ1 at τ′1, then ā (τ1) = ā

(
τ′1

)
and ā (t) < ā (τ1) ,∀t ∈

(
τ1, τ

′
1

)
.

Proof: Let S be the ID of the server becoming empty at
τ1. Since τ′1 is the first time that S is popped after τ1, the
number of server IDs below S on the stack does not change
during

(
τ1, τ

′
1

)
. At any time, the number of jobs in the system

is equal to the number of server’s IDs that are not in the stack
of the job-dispatching entity. Therefore ā (τ1) = ā

(
τ′1

)
and

ā (t) < ā (τ1) ,∀t ∈
(
τ1, τ

′
1

)
.

Lemma 12. For any idle server at time µ, let τ be the most
recent time before µ that the server became idle. Then ā (τ) >
ā (µ).

Proof: Let τ′ be the first time after µ that the server
receives a job. By lemma 11, we have ā (t) < ā (τ) ,∀t ∈ (τ, τ′).
Thus ā (τ) > ā (µ).

Now, we are going to prove theorem 2. The proof is similar
to the proof of theorem 1. Let xo (t) Denote the number of
servers run by the offline algorithm at t.

Proof: For any µ ∈ [0,T ], we must have that µ is in some
interval (τ, τ′) such that ā (τ) ≥ ā (µ) + 1, ā (τ′) ≥ ā (µ) + 1 and
ā (t) ≤ ā (µ) ,∀t ∈ (τ, τ′). We divide the situation in two cases.

Case I: τ′ − τ > ∆

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = ā (µ) = a (µ).

We are going to prove that there is no idle server in the
system at µ if we are running the proposed offline algorithm.
We will divide the situation in three sub-cases.

(1) τ = −2∆

In this sub-case, if there are idle servers at µ, then some idle
servers will receive jobs at τ′. According to lemma 11, there
must exist a time υ in [0, τ′) such that ā (ν) > ā (µ), which
contradicts that ā (t) ≤ ā (µ) ,∀t ∈ (−2∆, τ′).

(2) τ′ = T + 2∆

In this sub-case, if there are idle servers at µ, by lemmas
11 and 12, there must exist a time υ in (τ,T ) such that ā (ν) >
ā (µ), which contradicts that ā (t) ≤ ā (µ) ,∀t ∈ (τ,T + 2∆).

(3) (τ, τ′) ∈ [0,T ]
In this sub-case, if there are idle servers at µ, by lemmas

11 and 12, the idle server will receive a job after τ′. Thus the
idle period for the idle server is larger than τ′ − τ > ∆, which
contradicts the fact that in our offline algorithm no server is
longer than ∆.

The three sub-cases shows that in Case I there is no
idle server at µ, which means xo (µ) = x (µ). There-
fore, the offline algorithm gives an optimal solution to
P [ā (t) , ā (−2∆) , ā (T + 2∆) ,−2∆,T + 2∆].
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Case II: τ′ − τ ≤ ∆

In this case, since τ′−τ ≤ ∆, we must have that τ, τ′ ∈ [0,T ].
Therefore, there must exist two intervals

(
τ1, τ

′
1

)
and

(
τ2, τ

′
2

)
which have following properties:

(1)
(
τ1, τ

′
1

)
⊇ (τ, τ′) , ā (τ1) ≥ ā (µ) + 1, ā

(
τ′1

)
≥ ā (µ) + 1

and τ′1 − τ1 ≤ ∆. Moreover, for any interval
(
υ1, υ

1
1

)
⊇(

τ1, τ
′
1

)
with ā (υ1) ≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1 and ā

(
υ′1

)
≥

min
[
ā (τ1) , ā

(
τ′1

)]
+ 1, we must have υ′1 − υ1 > ∆.

(2)
(
τ2, τ

′
2

)
⊇

(
τ1, τ

′
1

)
, ā (τ2) ≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1,

ā
(
τ′2

)
≥ min

[
ā (τ1) , ā

(
τ′1

)]
+ 1, τ′2 − τ2 > ∆ and a (t) ≤

min
[
ā (τ1) , ā

(
τ′1

)]
,∀t ∈

(
τ2, τ

′
2

)
.

In this case, according to our Optimal Solution Construction
Procedure, we will set x (µ) = min

[
ā (τ1) , ā

(
τ′1

)]
.

Similarly to Case I, we can also divide the situation into
three sub-cases: (1) τ2 = −2∆. (2) τ′2 = T + 2∆. (3)

(
τ2, τ

′
2

)
∈

[0,T ]. In each sub-case, we can adopt the approach we used in
Case I to show that xo (t) = min

[
ā (τ1) , ā

(
τ′1

)]
,∀t ∈ (τ2, τ1).

By lemma 11, the offline algorithm will not turn off a server
during

(
τ1, τ

′
1

)
. Therefore xo (µ) = min

[
ā (τ1) , ā

(
τ′1

)]
= x (µ).

In the two cases, we proved that xo (t) is equal to x (t) con-
structed by Optimal Solution Construction Procedure. There-
fore, the proposed offline algorithm solves SCP optimally.

C. Least idle vs last empty

In order to prove that least-idle is at least as good as last-
empty, we are going to prove two facts: (i) the number of
physical switches in least-idle is no more than last-empty, and
(ii) the number of "on" servers at any given time under least-
idle is also no more than that of last-empty.

Let L(s, t) be a time-varying permutation of servers such that
any arrival to or departure from server s at time t under last-
empty arrives to or departs from L(s, t) under least-idle. (Note
this is a random variable depending on the random variables Z
chosen at times prior to t.) Multiple such permutations exist;
we impose the continuity condition so that L(s, t) only changes
at job arrival times. Specifically, if L(s1, t1) = L(s2, t2) for
s1 , s2 and t1 < t2 then there is an arrival to either s1 or s2
under last-empty in the interval [t1,t2], and least-idle assigns
the job to a different server.

Partition the interval [0,T ) as follows. Let Ds be the set
of points of discontinuity of L(s, ·). We claim that, with
probability 1, there are no accumulation points in Ds. To see
this, note that an accumulation point would only occur if there
were an interval of length ε such that there were an infinite
number of (i.i.d.) random timeouts Z generated, each of which
is less than ε. We can then partition [0,T ) into intervals of
the form [as(i), as(i + 1)), where as(·) ∈ Ds. According to the
continuity condition of L (s, t), all the points as(·) in Ds are
job arrival points.

We can think of L(s, ·) as defining a “logical” server that
serves the same jobs under least-idle as s does under last-
empty. By hypothesis, it also generates the same sequence of
Z sleep timeouts under least-idle as s does under last-empty.
There are two ways that logical server L (s, ·) can turn on are:
(i) the mapping L (s, ·) remains constant and the server L(s, t)
turns on. (ii) the mapping L (s, ·) changes from a server that

is off to a server that is on. Consequently, the only times that
logical server L(s, ·) turns on or off and server s does not are
in the case (ii). These switches do not correspond to a physical
server turning on or off, and so do not incur a switching cost.
Hence the total switching cost under least-idle is at most that
under last-empty.

It remains to show that xL(s,t)(t) under least-idle is at most
xs(t) under last-empty. The only cause for L(s, ·) to turn on is
a new arrival, after which both s and L(s, t) must be on. The
only times that s turns off that L(s, ·) does not are during idle
periods when L(s, ·) has already turned off “for free” due to a
discontinuity in L(s, ·).

D. Proof of Theorem 5

In order to prove theorem 5, we use Lemma 3 and two other
technical lemmas. First, let us introduce some notation.

Let τ j,s be the time in [0,T ] that job j arrives at server s, and
τ j,e be the time that j leaves the system. Let τ†j,s = inf{t > τ j,e :
a job arrives to sat time t}; if there are finitely many arrivals
in [0,T ] then τ†j,s = τ j+1,s. We also consider time T as a virtual
job arrival point to the server.

Lemma 13. The deterministic online ski-rental algorithm used
by the online algorithm CSR has competitive ratio 2 − α.

Proof: As we already proved in Lemma 3, for both online
and off-line cases, a server faces the same set of jobs. From
now on, we focus on one server, s. The server should decide to
turn itself off or stay idle between τ j,e and τ†j,s. In order to find
the competitive ratio, we compare the costs Pon

j and Po f f
j of

the online and off-line ski-rental algorithms respectively in(
τ j,s, τ

†

j,s

]
. This does not include the cost to turn on at τ j,s, but

does include the cost to turn on at τ†j,s (or immediately after
if τ†j,s is an accumulation point). The costs of the online and
off-line ski-rental algorithms depend on the length of the time
between τ j,e and τ†j,s. Let T j,B = τ j,e − τ j,s denote the length of
the busy period in

(
τ j,s, τ

†

j,s

]
and T j,E = τ†j,s − τ j,e denote the

length of the empty period in
(
τ j,s, τ

†

j,s

]
. Then

Po f f
j =

PbT j,B + PT j,E i f T j,E ≤ ∆

PbT j,B +
(
βon + βo f f

)
i f T j,E > ∆

(8)

and the online ski-rental algorithm in CSR gives

Pon
j =

PbT j,B + PT j,E i f T j,E ≤ ∆

PbT j,B +
(
βon + βo f f

)
+ P (1 − α) ∆ i f T j,E > ∆

(9)

Hence, T j,E ≤ ∆ implies Pon
j /P

o f f
j = 1, and since P∆ =(

βon + βo f f

)
, T j,E > ∆ implies

Pon
j

Po f f
j

≤

(
βon + βo f f

)
+ P (1 − α) ∆(

βon + βo f f

) = 2 − α.

In either case, Pon
j /P

o f f
j ≤ 2 − α for any T j,E . Summing over

j and s gives the result.
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Lemma 14. The randomized online ski-rental algorithm used
by the online algorithm RCSR with last-empty-server-first
strategy has competitive ratio e/ (e − 1 + α).

Proof: In the proof, we again focus on one server. We
will use the notation used to prove Lemma 13. This time it is
sufficient to compare the average cost Pon

j of the randomized
online ski-rental algorithm in

(
τ j,s, τ

†

j,s

]
with off-line optimal

cost in (8). Under the randomized online ski-rental algorithm,
when T < α∆, we have

E
(
Pon

j

)
= PbT j,B + PT j,E ;

when α∆ ≤ T j,E ≤ ∆, we have

E
(
Pon

j

)
= PbT j,B +

T j,E−α∆w

0

(
Pz + βon + βo f f

)
fZ (z) dz

+P
(1−α)∆w

T j,E−α∆

T j,E fZ (z) dz;

and when T j,E > ∆, we have

E
(
Pon

j

)
= PbT j,B +

(1−α)∆w

0

(
Pz + βon + βo f f

)
fZ (z) dz.

We get the above expected cost for α∆ ≤ T j,E ≤ ∆ as
follows: If the number Z generated by the server is less than
T j,E − α∆, then the server will wait for time Z, consuming
energy PZ. It looks into the look-ahead window of size
α∆ and finds it won’t receive any job during the window
because Z < T j,E − α∆. Therefore, it turns itself off and costs(
βon + βo f f

)
. On the other hand, if Z ≥ T j,E − α∆, the server

will not turn itself off and consume PT j,E to stay idle. We
can get the expected cost for T j,E < α∆ and T j,E > ∆ in the
same way. According to the distribution of Z in RCSR, we can
calculate E

(
P j,on

)
and the ratio between E

(
P j,on

)
and P j,o f f :

E
(
Pon

j

)
Po f f

j

=

1, T j,E < α∆
e

e−1+α
T j,E ≥ α∆

From this expression, for all j, we can conclude that
E

(
Pon

j

)
/Po f f

j ≤ e
e−1+α

for any T j,E . Summing over j and s
gives the result.

Now we are ready to prove theorem 5.
Recall that the optimal cost of the data center can be

achieved by each server running an off-line ski-rental algo-
rithm independently. On the other hand, in Lemmas 13 and 14,
we proved that the cost of deterministic and randomized online
ski-rental algorithm we applied are at most 2 − α and e

e−1+α

times the cost of off-line ski-rental algorithm for one server.
Therefore, the cost of our online algorithm CSR is at most 2−α
times the cost of off-line algorithm for data center. Moreover, if
we adopt last-empty-server-first job-dispatching strategy in the
randomized algorithm RCSR, it can achieve competitive ratio

e
e−1+α

. By Lemma 4, RCSR with least-idle performs at least
as well as if it adopted last-empty-server-first job-dispatching
strategy. Therefore, RCSR has competitive ratio e

e−1+α
.

Next, we want to prove that CSR has the best competitive
ratio for deterministic online algorithms. First, we prove that

the best competitive ratio of a deterministic algorithm for a
single ski-rental problem is 2−α. Assume that the deterministic
online algorithm peeks into the look-ahead window and then
decide to turn off or stay idle time θ∆ after becoming empty at
t1. For θ < 1 − α, if the server receives its next job right after
t1 + (θ + α) ∆, then the online algorithm will turn off itself at
t1 + θ∆, and consume energy P (θ + 1) ∆. On the other hand,
the offline optimal is (α + θ) P∆, whence the competitive ratio
is at least θ+1

θ+α
> 2 − α. For θ > 1 − α, if the server receives

its next job right after t1 + (θ + α) ∆, then the online algorithm
will turn off itself at t1 + θ∆, and consume P (θ + 1) ∆ power.
On the other hand, the offline optimal is P∆. The competitive
ratio at least is 1 + θ > 2−α. Hence, only when θ = 1−α can
the deterministic algorithm have the competitive ratio 2 − α.
Therefore, the best competitive ratio of deterministic algorithm
for a single ski-rental problem is 2−α. However, a server will
receive a sequence of jobs in data center. And after finishing
each job, the server faces a ski-rental problem. Hence, each
server actually faces a repeated ski-rental problem. As for
repeated ski-rental problem we have following lemma.

Lemma 15. The best competitive ratio of a deterministic
algorithm for the repeated ski-rental problem faced by each
server is 2 − α.

Proof: We will prove lemma 15 by induction. Assume
that deterministic algorithm A1 achieves the best competitive
ratio for repeated ski-rental problem. Let θi∆ be the length of
idle time before the server peeks into the look-ahead in the
ith ski-rental problem. Since the best deterministic algorithm
for single ski-rental problem must peek into the look-ahead
window after staying idle for (1 − α) ∆, A1 must have θ1 =

1 − α.
Suppose θi = 1−α for i = 1, 2, ...k. Therefore, the cost of A1

is up to 2−α times the off-line optimal for the first k ski-rental
problems. We will prove that A1 must have θk+1 = 1 − α. If
θk+1 < 1−α or θ1+k > 1−α, we can use the same approach we
used to prove the best competitive ratio for single ski-rental
is 2 − α to show that in the (k + 1)th ski-rental problem A1
consumes more than 2 − α times the off-line optimal in worst
case for this phase. If the worst case of this phase occurs after
the worst case of the previous phases, this would result in an
overall competitive ratio exceeding 2−α. Therefore, we must
have θk+1 = 1−α if the competitive ratio is to be at most 2−α.
Since the scheme with θk = 1 − α for all k has competitive
ratio exactly 2 − α, it follows that the best competitive ratio
of deterministic algorithm for repeated ski-rental algorithm is
2 − α.

When a (t) ≤ 1, the problem SCP we study in this paper
becomes a repeated ski-rental problem. Therefore, the best
competitive ratio for a deterministic online algorithm is 2−α,
which is achieved by CSR.

Finally, we want to prove that RCSR has the best com-
petitive ratio for randomized online algorithms. Consider the
case that the server becomes empty at τ1 and it will receive
its next job at τ2. In order to find the best competitive ratio
for a randomized online algorithm, according to the proof of
Lemma 14, it is sufficient to find the minimal ratio of the
cost by a randomized online algorithm to that of the offline
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optimal in [τ1, τ2]. The competitive ratio cannot be lower
than the competitive ratio on an instance with a single empty
interval, and so we consider that case. We first divide time
period (τ1, τ2) into slots of equal length. As the length of the
slots goes to zero, we can get the best competitive ratio for a
continuous time randomized online algorithm.

Assume the critical interval ∆ contains exact b slots and
there are D slots in [τ1, τ2]. We focus on the case that the
look-ahead window has k ≤ b − 2 slots. (If k ≥ b − 1, the
online algorithm can achieve the offline optimum and the
competitive ratio is 1.) Let pi denote the probability that the
algorithm decides to turn off the server at slot i = 1, 2, . . . .
Let the competitive ratio be c. Regardless of the value of D,
the expected online cost must be at most the competitive ratio
times the off-line cost. Thus the minimum competitive ratio
satisfies

inf c (10)

s.t. D
∞∑

i=1

pi ≤ cD, ∀D ∈ [0, k], (11)

D−k∑
i=1

(b + i − 1) pi +

∞∑
i=D−k+1

Dpi ≤ Dc, ∀D ∈ (k, b](12)

D−k∑
i=1

(b + i − 1) pi +

∞∑
i=D−k+1

Dpi ≤ bc, ∀D ∈ (b,∞](13)

∞∑
i=1

pi = 1, 0 ≤ pi ≤ 1,∀i (14)

var c, pi, ∀i ∈ {1, 2, 3, . . .} (15)

We can apply the steps in [36] to show that the optimal
value c∗d of problem (10)–(15) is equal to the optimal value c̄∗

of following problem.

min c̄ (16)
s.t. 1 ≤ c̄, ∀D ∈ [0, k], (17)

D−k∑
i=1

(b + i − 1) p̄i +

b−k∑
i=D−k+1

Dp̄i ≤ Dc̄, ∀D ∈ (k, b)(18)

b−k∑
i=1

(b + i − 1) p̄i ≤ bc̄, ∀D ∈ [b,∞] (19)

b−k∑
i=1

p̄i = 1 0 ≤ pi ≤ 1,∀i (20)

var c̄, p̄i, ∀i ∈ {1, 2, . . . , b − k} (21)

Next, we prove that p̄∗1 is positive. If instead p̄∗1 = 0, let
j be the minimal i such that p̄∗i > 0. Then the constraints
(18)–(19) must hold as strict inequalities for D ≤ k + j − 1,
for the following reason. First consider the constraint for D =

k + j. Since we have j ≤ b − k − 1 (otherwise we obtain the
deterministic algorithm CSR, which is suboptimal), we have
D = k + j < b and the constraint for D = k + j, divided by D,
is

b + j − 1
k + j

p̄ j +

b−k∑
i= j+1

p̄i ≤ c̄

and when D ≤ k + j − 1, the constraints, divided by D, are

b−k∑
i= j

p̄i ≤ c̄.

Since k ≤ b−2, if the latter were active, then the former would
be violated.

We use the slackness of these constraints to show p̄∗1 > 0.
The coefficient of p̄∗1 is less than that of p̄∗j in the constraints
for D > k+ j−1. Therefore, we can decrease p̄∗j a little bit and
increase p̄∗1 a little bit such that all the constraints of (17)–(20)
have slackness, which means we can find a smaller c̄ which
satisfies all the constraints. This contradicts the optimality of
p̄∗ =

[
p̄∗1, p̄∗2, p̄∗3, · · · , p̄∗b−k

]
. Therefore, we must have p̄∗1 > 0.

Next, we again follow [36] to show that each of the
inequalities in (18), (19) is tight. Assume instead that the
constraint corresponding to some particular D ∈ (k, b] is
loose. Let D# be the largest such D. Consider case (i) that
D# < b. Note that p̄∗D#−k+1 > 0, since otherwise D# + 1
would also be slack. Then decrease p̄∗D#−k+1 and increase
p̄∗D#−k slightly. This does not affect constraints for smaller
D, but introduces slack into the constraints for all larger D.
Next, we could increase p̄∗D#−k and decrease p̄∗1, which doesn’t
affect constraints for larger D, but introduces slack for all
constraints with smaller D. Alternatively, in case (ii) that
D# = b, we can decrease p̄∗1 while increasing p̄∗b−k to introduce
slack into earlier constraints. In either case, the transformation
induces slack in all constraints, which allows c̄∗ to decrease,
contradicting the optimality of c̄∗. Therefore, all the constraints
for D ∈ (k, b] must be tight.

Since the total b−k constraints for all the D ∈ (k, b] is tight

and
b−k∑
i=1

p̄i = 1, we can solve the system of linear equations and

get the minimal competitive ratio and probability distribution:

c̄∗ =

1 − (
b − k − 1

b − k

)b−k−1 b − k − 1
b

−1

p̄∗b−k−i =
c̄∗

b − k

(
b − k − 1

b − k

)i

, 0 ≤ i < b − k − 1

p̄∗1 =

(
b − k − 1

b − k

)b−k−1 k + 1
b

c̄∗, k < b

Letting b go to infinity and keeping k/b = α, we have the
minimal competitive ratio c∗ for continuous time:

c∗ =
e

e − 1 + α

This means the optimal competitive ratio for continuous
time randomized online algorithm is c∗ = e

e−1+α
, as required.

Therefore, the best competitive ratio of randomized algorithm
for single ski-rental problem is e

e−1+α
. We have the following

lemma to prove that RCSR has the best competitive ratio for
randomized algorithms against oblivious adversary.

Lemma 16. The best competitive ratio of randomized algo-
rithm for the repeated ski-rental problem is e

e−1+α
.

Proof: In the proof we will use the notation used in the
proof of lemma 13. Assume that the cost of online algorithm
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in the ith ski rental is Ci and the corresponding offline optimal
is C∗i . If the strategy of the oblivious adversary is to arbitrarily
choose a number which is greater than α∆ as the empty period
of each ski rental problem, then the online algorithm has no
information of the length of current empty period Ti,E even if
the online algorithm knows Ti−1,E , Ti−2,E ,...T1,E . We are going
to prove lemma 16 by induction.

It is clear that in the first ski rental we can not do better
than in single ski rental problem. Therefore, we have E (C1) ≤

e
e−1+α

C∗1.

Assume that E
(

k−1∑
i=1

Ci

)
≤ e

e−1+α

k−1∑
i=1

C∗i , we are going to prove

E
(

k∑
i=1

Ci

)
≤ e

e−1+α

k∑
i=1

C∗i .

Suppose online algorithm chooses fZk (zk |zk−1, zk−2...z1) as
the conditional probability distribution of Zk given the histor-
ical information. Then there always exists a T̄k,E such that

E (Ck) = E (E (Ck |Zk−1,Zk−2...Z1))

≥
e

e − 1 + α
C∗k

To see this, suppose there is no T̄k,E satisfying above
inequality, then for any Tk,E , we must have

E (E (Ck |Zk−1,Zk−2...Z1)) <
e

e − 1 + α
C∗k

Then in the single ski rental problem, we can also let the
distribution of random variable Z follow the unconditional
distribution fZk (zk) of Zk. In this way, we can get a better
competitive ratio than e

e−1+α
for single ski rental problem.

This is a contradiction. Therefore, such T̄k,E must exist. This
means the best ratio we can do in kth ski rental is e

e−1+α
. Since

E
(

k∑
i=1

Ci

)
= E

(
k−1∑
i=1

Ci

)
+ E (Ck) and

k∑
i=1

C∗i =
k−1∑
i=1

C∗i + C∗k , thus we

have

E

 k∑
i=1

Ci

 ≤ e
e − 1 + α

k∑
i=1

C∗i

as required. This means online algorithms can not do better
than e

e−1+α
even against oblivious adversary. Therefore, RCSR

has the best competitive ratio e
e−1+α

for randomized algorithms
against oblivious adversary. Since SCP has repeated ski rental
problem as a special case, e

e−1+α
is the optimal competitive

ratio for any randomized algorithm.

E. Proof of Corollary 7

In this section, we are going to prove corollary 7.
Proof: We prove the result for RCSR. Since we make no

use of the form of fX , the same proof holds for CSR (which
corresponds to RCSR with fx(x) = δ(x − ∆)).

We first establish validity. Note that x(t) is the number of
servers ON under RCSR, and that x increases by at most a
factor of 1 + γ in an interval of length Ts, since x(t) ≥ a(t)
at the start, and x(t) = a(t) at all times that x increases. Since
arrival instants are discrete, there are also no limit point in the
set of times tnN

n=0 at which x changes, and so we can apply
induction on n.

By induction, the number of ON and BOOT servers at each
time tn is either dx(tn)(1 + γ)e or dx(tn)(1 + γ)e + 1. The base
case, t0 = 0, is true by hypothesis. For subsequent tn it is true
by construction except that when M is sent, there may be only
bx(tn−1)(1 + γ)c + 1 ≥ dx(tn)(1 + γ)e servers ON or BOOTing.

We now show by induction that there are at least x(tn) ON
servers at each time tn. If x decreases at tn, this is true since
there were at least x(tn−1) > x(tn) servers ON before tn. Next
consider the case that x increases at tn.

Let τ = arg minτ∈[tn−Ts,tn] x(τ), with ties broken by taking the
smallest τ. We claim all BOOT servers at τ were BOOT at
tn − Ts. This is trivial if τ = tn − Ts. To see it in other cases,
suppose instead there is a BOOT server at τ that was turned
on at τ′ ∈ (tn − Ts, τ). Now x(τ′) > x(τ) by the minimality of
τ, and so dx(τ′)(1 + γ)e ≥ dx(τ)(1 + γ)e + 1, whence there are
more ON or BOOT servers at τ′ than at τ. However, since
EXT turns of the most recently turned on BOOT servers first,
existence at τ of a BOOT server turned on at τ′ means that
more servers are turned on during [τ′, τ] than are turned off,
which is a contradiction.

Since x (tn) ≤ x (τ) (1 + γ) and all the BOOT servers at τ will
become ON at tn, thus there will be at least x (τ)+bx (τ) γ%c+
1 ≥ x (tn) ON servers. This completes the induction.

Since x (t) ≥ a (t), we have proved the number of ON servers
is at least a (t) at time t in the extended algorithm, which
establishes the first claim of the theorem.

To prove the competitive ratios, note that the number of
total active servers in EXT is at most (1 + γ) x (t) + 2. The
total running energy cost of EXT is at most 2PT more than
(1 + γ) times the running cost of RCSR.

Now, we are going to analyze the switching cost. We
divide the x (t) down into periods during which x (t) is in-
creasing and periods in which it is decreasing. Moreover, a
decreasing/increasing period must be followed by a increas-
ing/decreasing period and the combination of all the periods
covers the interval of [0,T ]. In any increasing period, assume
that x (t) increase from A to A + k, the number of turning-on
in extended algorithm is

b(A + k) (1 + γ)c − dA (1 + γ)e ≤ k (1 + γ)

We will get similar result for decreasing period. Therefore,
the total switching cost of the extended algorithm is at most
(1 + γ) times that of RCSR.

When servers have setup time, the offline optimal cost
P∗S is changed. However, the optimal value of SCP is a
lower bound of P∗S . Hence, the total cost of RCSR is at
most e

e−1+α
P∗S . Moreover, the total cost of EXT is at most

2PT + e
e−1+α

(1 + γ) P∗S . The competitive ratio of EXT follows
from that amin is the minimal workload.

F. Experiment of Elephant Workload

In this section, we will evaluate CSR and RCSR with
“elephant” workload defined in Section II-A. Since we do not
have any real data center trace of this kind of workload, we
used computer to generate a synthetic workload shown in Fig.
5. In this “elephant” workload trace, the job arrival rate is
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Poisson process and the rate varies from an hour to another.
The service time of each job is exponentially distributed and
the mean is about 33 hour. Since we need use computer
to do simulation, we chop the total time in to small slots
with length of 6 seconds. The PMR of this trace is 1.7. The
simulation result is shown in Fig. 6. One observation from
Fig. 6 is that the CSR and RCSR energy-saving curves of
“elephant” workload are similar to that of “mice” workload.
Our algorithms can save more than 37% energy. And this
number is consistent with the result in Fig. 4d which indicates
that the energy saving is about 40% when PMR is 2.
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Figure 5: Synthetic “Elephant” Workload.
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Figure 6: Energy saving of our algorithms for “elephant”
workload.


