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Abstract—We consider the scenario where a sender streams a
flow at a fixed rate to a receiver across a multi-hop network, pos-
sibly using multiple paths. Data transmission over a link incurs a
cost and a delay, both of which are traffic-dependent. We study
the problem of minimizing network transmission cost subject
to a maximum delay constraint and a throughput requirement.
The problem is important for leveraging edge-cloud computing
platforms to support computationally intensive IoT applications,
which are sensitive to three critical performance metrics, i.e., cost,
maximum delay, and throughput. Our problem jointly considers
the three metrics, while existing ones only account for one or two
of them. We first show that our problem is uniquely challenging,
as (i) it is NP-complete even to find a feasible solution satisfying
all constraints, and (ii) directly extending existing solutions to our
problem results in problem-dependent maximum delay violations
that can be unbounded. We then design both an approximation
algorithm and an efficient heuristic. For any feasible instance,
our approximation algorithm will achieve a cost no worse than
the optimal, while violating the maximum delay constraint and
the throughput requirement only by constant ratios. Meanwhile,
our heuristic will construct feasible solutions for a large portion
(over 60% empirically) of feasible instances, strictly satisfying
the maximum delay constraint and the throughput requirement.
We further characterize a condition under which the cost of
our heuristic must be within a problem-dependent-ratio gap
to the optimal. We simulate representative edge computing
platforms, and observe that (i) when sacrificing 3% throughput,
our approximation algorithm reduces 32% cost as compared to a
greedy baseline, and satisfies the maximum delay constraint for
56% simulated instances; (ii) our heuristic solves 62% of feasible
instances, and reduces 24% cost as compared to the baseline
while strictly satisfying all constraints.

I. INTRODUCTION

We consider a multi-path network communication scenario
where a sender streams a flow at a fixed rate to a receiver
across a multi-hop network. Transmission over a link incurs
a cost (e.g., energy consumption) and a delay (or latency
equivalently), both of which are modeled as arbitrary non-
negative, non-decreasing, differentiable, and convex functions
of the link aggregate transmission rate. We study the multi-
path routing problem that minimizes the network transmission
cost subject to a maximum delay constraint and a through-
put requirement. The maximum delay denotes the maximum
Sender-to-Receiver (S2R) delay, or equivalently the delay of
the slowest S2R path carrying traffic.

As a natural extension of the single-path routing for stream-
ing a large volume of traffic while avoiding link traffic con-
gestion, multi-path routing is known to be a basic paradigm of
networking that can provide strictly better Quality of Service

(QoS) than single-path routing [1], [2]. Our study is moti-
vated by recent skyrocketing interests on leveraging the edge-
cloud computing platform to support real-time computation-
ally intensive IoT applications [3], [4], e.g., real-time object
recognition on cellphones [5]. As in the discussions below,
these IoT applications are sensitive to the three fundamental
networking performance metrics including throughput, delay,
and cost. The proximate computing on edge devices benefits
QoS of IoT, including saving bandwidth, lowering response
time, and reducing cost.

First, many IoT applications are bandwidth-hungry, posing
certain throughput requirements. For example, in the intel-
ligent driving scenario, a large volume of data is collected
from various in-vehicle and on-board sensors to evaluate the
driver’s real-time driving performance, and must be processed
in a timely manner to maintain the efficient and safe driving.
As estimated in [21], by 2020, each autonomous vehicle may
generate data at the rate of 20− 40 MB/second.

Second, real-time IoT applications are delay-sensitive. Con-
sider the time-critical IoT control system in [22]. It leverages
information from interaction between different operators, to
perform remote control of robotic operations and collaborative
robots in closed-loop control systems. The communication
latency in this case shall be no more than 1 ms [22]. Another
example is from [5]. Ran et al. [5] develop an Android IoT
application of real-time object detection. In order to meet real-
time latency requirements, the image processing rate is 9 FPS
if we offload the application to a nearby server for processing,
where the communication latency accounts for over 90% of
the total latency.

In addition to throughput and delay, it is also critical to
consider the cost for providing high-quality IoT services.
For example, the massive IoT workloads in the edge/cloud
lead to an enormous amount of energy consumption. The
world’s Information-Communication-Technologies ecosystem
uses about 1500 TWh of electricity annually, equal to the
combined electric generation of Japan and Germany [23]. It is
very important to manage the cost of an edge-cloud computing
system efficiently [24], as the electricity bill cost [25] is a
significant part of its expenses. Here we remark that we can
relate the processing cost (i.e., cost defined on a node) to
the networking cost (i.e., cost defined on a link), by first
replicating the node and then adding a link (with a traffic-
dependent cost function) between the two replicated nodes.

Existing results. We study a multi-path routing problem,



TABLE I
COMPARISON OF OUR WORK AND RELATED STUDIES IN THE LITERATURE.

Many, e.g., [6], [7] [8]–[10] [11]–[20] Our Problem

Metrics
Aggregate S2R Cost 7 3 7 3

Maximum S2R Delay 7 7 3 3
Throughput 3 3 3 3

Hardness Convex Program Convex Program NP-hard NP-hard

with an objective of minimizing network transmission cost
subject to both a maximum delay constraint and a throughput
requirement. We compare our study with existing ones in
Tab. I. First, many studies (e.g., [6], [7]) optimize throughput;
and there are also studies (e.g., [8]–[10]) minimizing cost
under throughput requirements. Their problems can be formu-
lated as convex programs without considering the maximum
delay constraint, and can be solved optimally in polynomial
time. Next, several studies consider both maximum delay
and throughput. Specifically, [11]–[18] minimize maximum
delay under throughput requirements, and [19], [20] maximize
throughput under maximum delay constraints (note that [15]–
[20] consider a traffic-independent link delay model where
each link has a constant delay, which is a special case of
the traffic-dependent link delay model considered in our study
and [11]–[14]). As maximum delay is non-convex, problems
in those maximum-delay-aware studies are all NP-hard, hence
cannot be solved optimally in polynomial time unless P = NP.

This paper takes the first step towards solving the multi-path
routing problem that simultaneously considers three critical
metrics of cost, maximum delay, and throughput. Solving our
problem is uniquely challenging, as it is impossible even to
find a feasible solution satisfying all constraints in polynomial
time, unless P = NP (see Thm. 1). In comparison, existing
studies only account for one or two of the three metrics (see
Tab. I). Although existing maximum-delay-aware problems
in [11]–[20] are all NP-hard, just obtaining feasible solutions
are straightforward and can be done in polynomial time.
Hence those existing studies can design efficient algorithms
to achieve near-optimal feasible solutions meeting constraints.

There are some studies, e.g., [24], [26], [27], which jointly
consider cost, delay, and throughput. However, they look at
the average S2R delay instead of the maximum S2R delay.
Note that maximum delay fundamentally differs from average
delay: (i) maximum delay is non-convex, while average delay
is convex [14], thus the maximum delay optimization is much
more challenging than the average delay optimization; (ii)
by the definition of maximum delay, it is clear that the
solution with known maximum delay performance implies
bounded S2R delay for all traffic, while the solution even with
the minimal average delay performance suffers from a fatal
limitation where certain traffic can experience an arbitrarily
large S2R delay [14]. Therefore, in order to provide a low-
delay routing service for all traffic, it is necessary to examine
the maximum delay instead of the average delay.

Contributions. In this paper we design efficient algorithms
to solve our multi-path routing problem. We summarize
the theoretical performance guarantees of our algorithms in

Tab. II, and make the following specific contributions:
B We prove that it is NP-complete even to find a feasible so-

lution strictly satisfying all constraints, as our problem requires
to jointly consider the three critical performance metrics, i.e.,
cost, maximum delay, and throughput. Thus it is fundamentally
challenging to efficiently construct an approximate solution in
polynomial time with bounded violations of constraints.
B For four well-known algorithms that only account for two

of the three metrics, we prove that for any feasible instance,
their achieved costs must be within problem-dependent-ratio
gaps as compared to the optimal, after relaxing the maximum
delay constraint also by problem-dependent ratios. However,
those ratios can be unbounded in certain instances.
B By jointly considering the three metrics, we design a

polynomial-time approximation algorithm. Theoretically, it is
the first to achieve a cost no worse than the optimal after
relaxing the maximum delay constraint and the throughput
requirement by constant ratios, for all feasible instances. Em-
pirically when sacrificing 3% throughput, it reduces 32% cost
as compared to a greedy baseline and satisfies the maximum
delay constraint for 56% simulated instances.
B We develop an efficient heuristic, which can solve a large

portion of feasible instances, strictly satisfying the maximum
delay constraint and the throughput requirement. We further
characterize a condition under which the cost of our heuristic
must be within a problem-dependent-ratio gap to the optimal.
Empirically, our heuristic solves 62% of feasible instances, and
reduces 24% cost than the baseline, meeting all constraints.

II. PROBLEM DEFINITION

We consider a multi-hop network modeled as a directed
graph G , (V,E) where V is the set of nodes and E is the
set of links. Data transmission over a link e ∈ E incurs both
a delay modeled as a function de(xe) and a cost modeled as
a function ce(xe), where xe is the aggregate link traffic rate.
We consider a fundamental network communication scenario
where a sender s ∈ V streams a flow at a rate of R > 0 to a
receiver t ∈ V \{s}, possibly using multiple paths.

Due to practical concerns, we assume that both de(xe) and
ce(xe) are arbitrary functions of xe ≥ 0 that are non-negative,
non-decreasing, differentiable, and convex. We also assume
that ce(xe) is positive if xe > 0. Representative examples are
presented in, but not restricted to, the following.
Delay function example. In many cases where the traffic to
be streamed is large but the networking resources are limited,
the queuing delay dominates the networking delay. Assuming



TABLE II
SUMMARY OF THEORETICAL PERFORMANCE GUARANTEES OF OUR PROPOSED ALGORITHMS.

Proposed Solution fDSO fCSO fDNE fCNE Algorithm 1 Algorithm 2∗

Proof to its Performance Bound Thm. 2 Thm. 2 Thm. 3 Thm. 3 Thm. 4 Thm. 5 and Thm. 6
Approximation

Ratio Aggregate S2R Cost µ · ν 1 µ · ν · αD αC 1 µ · ν∗∗

Relaxation
Ratio

Maximum S2R Delay γD µ · ν · γC αD µ · ν · αC 1/ε 1∗

Throughput 1 1 1 1 1− ε 1∗

Note: µ and ν are defined in Lem. 6. γD and γC are defined in Lem. 4, Appendix. αD and αC are defined in Lem. 5, Appendix. We remark that µ, ν,
αD , αC , γD , and γC are all problem-dependent, but ε is independent to problem instances and can be any constant in the range of (0, 1).

∗: Algorithm 2 solves a large portion of feasible instances, while all the other algorithms can solve every feasible instance.
∗∗: The approximation ratio of Algorithm 2 holds only under our derived condition presented in Thm. 6.

M/M/1 queue together with a FIFO server, according to
queuing theory, the link delay can be estimated as follows [28]

d(x) =

{
1

v−x , if v > x;

+∞, otherwise,
(1)

where v is the link capacity and x is the assigned traffic. More
complex delay functions have been proposed to account for the
delay when x ≥ v [29]. Overall, it is reasonable to assume
non-negative, non-decreasing, differentiable, and convex delay
functions.
Cost function example. Here we take the power consumption
as an example. Yu et al. [27] propose to use a linear model to
calculate the power consumption c(x) of an edge device with
allocated workloads x as follows

c(x) =
(
qidle +

(
qpeak − qidle

)
· x/v

)
, (2)

where qidle (resp. qpeak) is the idle power (resp. peak power).
Alternatives are also proposed, e.g., a quadratic function [24].
Overall, they meet our assumptions on cost functions.

We denote P as the set of paths from s to t. A solution f of
our problem is a network flow from s to t and defined as the
assigned flow rates over P , i.e., f , {xp : xp ≥ 0,∀p ∈ P},
where xp is the assigned flow rate on the path p. We define
xe as the aggregate flow rate of the link e ∈ E, and we have

xe ,
∑

p∈P:e∈p
xp.

The delay of the path p under flow f is defined as

dp(f) ,
∑

e∈E:e∈p
de(xe),

which is the sum of link delay for all links belonging to p.
Similarly, we can define the cost of the path p, i.e., cp(f), as
the sum of link cost for all links belonging to p.

The total delay of f is defined by

T (f) ,
∑
p∈P

dp(f) · xp =
∑
e∈E

de(xe) · xe. (3)

The total cost C(f) of f is defined in a way similar to (3) but
with respect to the link cost.

Different from the total delay, the maximum delay of f is

M(f) , max
p∈P:xp>0

dp(f), (4)

which is the delay of the slowest path that is assigned a positive
rate. We can define the maximum cost N (f) in a way similar
to (4) but with respect to the link cost.

Given a feasible problem instance, we define T ∗ (resp.M∗)
as the minimal total delay (resp. minimal maximum delay) that
can be achieved by any network flow solution supporting a rate
of R, regardless of the achieved cost. Similarly, we define C∗
(resp. N ∗) as the minimal total cost (resp. minimal maximum
cost) under a rate of R, regardless of the experienced delay.

We define the total flow rate sent by f from s to t, or
equivalently the throughput of f , as

|f | ,
∑
p∈P

xp =
∑

e∈Out(s)

xe =
∑

e∈In(t)

xe,

where Out(v) , {(v, u) ∈ E : ∀u ∈ V \{v}} is the set of
outgoing links of v ∈ V , and similarly In(v) , {(u, v) ∈ E :
∀u ∈ V \{v}} is the set of incoming links of v ∈ V . We define
the average delay A(f) of f as A(f) = T (f)/|f |.

We study the maximum-Delay-constrained Throughput-
guaranteed Cost minimization problem (DTC) below:

(DTC) : obj. min
f∈F

C(f) (5a)

s.t. M(f) ≤ D, ∀ f ∈ F, (5b)
|f | = R, ∀ f ∈ F, (5c)

where F is the set of all feasible network flows from s to t.
The objective in (5a) minimizes the total cost. The constraint
in (5b) is the maximum delay constraint restricting that the
S2R delay of all traffic no larger than a constant D ≥ 0. The
constraint in (5c) is the throughput requirement.

We note that Correa et al. [12] study a maximum delay
minimization problem, i.e., minM(f) subject to |f | = R.
Their problem only considers maximum delay and throughput
but not cost. It is proven to be NP-hard [12]. Now by adapting
its NP-hardness proof, in the following we give a theorem to
present the computational complexity of DTC.

Theorem 1: For DTC, deciding whether there is a feasible
solution strictly satisfying all the constraints is NP-complete.

Proof: It is a straightforward adaptation of the proof
of [12, Thm. 3.3], and is skipped due to page limit.

III. EXTENDING EXISTING SOLUTIONS TO OUR PROBLEM

For existing maximum-delay-aware studies (see Tab. I),
we note that (i) studies [15]–[20] assume that each link



has a constant delay, which is a special case of our traffic-
dependent link delay model. It is unclear how to generalize
their technique of time-expanded networks to our problem;
(ii) studies [11]–[14] model link delay as traffic-dependent
functions, the same as our model. They focus on studying two
kinds of well-known network flow solutions, i.e., the system-
optimal flow and the Nash-equilibrium flow. In this section,
we prove that the delay-/cost- system-optimal flow and the
delay-/cost- Nash-equilibrium flow are all approximate solu-
tions to DTC, providing problem-dependent approximation
ratios after relaxing the maximum delay constraint also by
problem-dependent ratios. We remark that these ratios can be
unbounded in certain instances.

First we briefly define these well-know network flow solu-
tions (detailed definitions are referred to [12]).

Delay-/cost- system-optimal flow. The delay-system-optimal
flow is a single-unicast flow, minimizing total delay subject to
a throughput requirement. Similarly, the cost-system-optimal
flow minimizes total cost subject to a throughput requirement.

With our models on delay functions and cost functions,
both system-optimal flows can be achieved in polynomial
time [12]. We denote the delay-system-optimal flow by fDSO,
and denote the cost-system-optimal flow by fCSO. According
to the study [12], theoretically there is a performance gap of
γD (resp. γC) comparing M(fDSO) (resp. N (fCSO)) to M∗
(resp. N ∗). Both γD and γC depend on problem instances.
We introduce them in Lem. 4, Appendix.

Delay-/cost- Nash-equilibrium flow. A single-unicast flow
f subject to a throughput requirement R is a delay-Nash-
equilibrium flow, if and only if |f | = R, and for any pair
of paths p1 ∈ P and p2 ∈ P with xp1 > 0, it must hold
that dp1(f) ≤ dp2(f). Similarly, we can define a cost-Nash-
equilibrium flow in terms of cp(f) instead of dp(f).

According to [12], the delay-Nash-equilibrium flow can be
achieved in polynomial time with our delay function assump-
tions, and we denote it by fDNE. Similar result holds for the
cost-Nash-equilibrium flow, which is denoted by fCNE. Similar
to the system-optimal flows, theoretically there is a problem-
dependent performance gap of αD comparingM(fDNE) (resp.
T (fDNE)) toM∗ (resp. T ∗), and a problem-dependent perfor-
mance gap of αC comparing N (fCNE) (resp. C(fCNE)) to N ∗
(resp. C∗) [12]. We introduce αD and αC in Lem. 5, Appendix.

Now we define the following two constants µ and ν, by
comparing link delay functions with link cost functions.

Lemma 1: Comparing the link cost function ce(x) with
the link delay function de(x), we define µ and ν to be the
minimum number that meets the following constraints:

ce(x) ≤ µ · de(x), de(x) ≤ ν · ce(x) : ∀e ∈ E,∀x ∈ (0, R].

The following theorems characterize the performance gaps
comparing the system-optimal flows or the Nash-equilibrium
flows to the optimal solution of DTC.

Theorem 2: Suppose fOPT is the optimal solution of DTC.
Then fDSO must exist, and it holds that

C(fDSO) ≤ µ · ν · C(fOPT), |fDSO| = R, M(fDSO) ≤ γD ·D.

Algorithm 1 Proposed Approximation Algorithm
1: procedure
2: f = ATC(G,R,D, s, t)
3: xdelete = ε ·R
4: while xdelete > 0 do
5: Find the slowest flow-carrying path pl of f
6: if xpl > xdelete then
7: xpl = xpl − xdelete, xdelete = 0
8: else
9: xdelete = xdelete − xpl , xpl = 0

10: return the remaining flow f

fCSO must exist, too, and it holds that

C(fCSO) ≤ C(fOPT), |fCSO| = R, M(fCSO) ≤ γC · µ · ν ·D.

Proof: Refer to Appendix.
Theorem 3: Suppose fOPT is the optimal solution of DTC.

Then fDNE must exist, and it holds that

C(fDNE) ≤ µ·ν·αD·C(fOPT), |fDNE| = R, M(fDNE) ≤ αD·D.

fCNE must exist, too, and it holds that

C(fCNE) ≤ αC ·C(fOPT), |fCNE| = R, M(fCNE) ≤ µ·ν·αC ·D.

Proof: Refer to Appendix.
The above theorems suggest that the costs of the system-

optimal flows and the Nash-equilibrium flows are within
problem-dependent-ratio gaps to the optimal, after relaxing the
maximum delay constraint by problem-dependent ratios. As
discussed in [12], [14], there exist certain feasible instances
where the system-optimal flows and the Nash-equilibrium
flows violate the maximum delay constraint by arbitrarily large
ratios, i.e., γD, γC , αD, αC can be unbounded.

IV. AN APPROXIMATION ALGORITHM

In this section we develop a polynomial-time approximation
algorithm for DTC. By jointly considering cost, maximum
delay, and throughput, for any feasible instance of DTC, it
achieves a cost no worse than the optimal, after relaxing both
the maximum delay constraint and the throughput requirement
by constant ratios independent to problem instances.

For DTC, the maximum delay constraint is non-convex and
hence makes the problem challenging to be solved. Now we
replace the non-convex maximum delay by the convex average
delay, and solve the Average-delay-constrained Throughput-
guaranteed Cost minimization problem (ATC) instead:

(ATC) : obj. min
f∈F

C(f) (6a)

s.t. T (f) ≤ D ·R, ∀ f ∈ F, (6b)
|f | = R, ∀ f ∈ F. (6c)

We use an algorithm with a similar structure to [14,
Algorithm 1] to solve DTC approximately in polynomial
time (see Algorithm 1). We first obtain a path-based optimal
flow solution of ATC by solving problem (6) with an edge-
based flow formulation and then do flow decomposition. Next



we delete flow rate of ε · R iteratively from its slowest
flow-carrying paths. The remaining flow in the end is an
approximate solution to DTC, which is proven in our Thm. 4.
Algorithm 1 has a polynomial time complexity, because (i)
problem (6) can be formulated as a convex program that has a
polynomial size, using the edge-based flow formulation (i.e.,
using variables xe), (ii) it takes a polynomial time to do flow
decomposition [30], (iii) flow decomposition outputs at most
|E| flow-carrying paths [30], hence leading to O(|E|) number
of iterations to delete flow rate, and (iv) it takes O(|E|) time to
update delays of the remaining utilized paths after deleting rate
from the current slowest flow-carrying path in each iteration.

Lemma 2: In Algorithm 1, suppose fA is the optimal
solution of ATC (the flow f in Line 2), and fB is the solution
returned in the end (the flow f in Line 10). We must have

T (fB) + ε ·R · M(fB) ≤ T (fA).

Proof: It is similar to the proof of [14, Lem. 1], and is
skipped due to page limit.

With Lem. 2, we can prove the performance guarantee of
out Algorithm 1 in the following theorem.

Theorem 4: Suppose fOPT is the optimal solution of DTC.
Then Algorithm 1 with an arbitrary ε ∈ (0, 1) must return a
flow f , with the following held

C(f) ≤ C(fOPT), |f | ≥ (1− ε) ·R, M(f) ≤ D/ε.

Proof: It is clear that |fOPT| = R and M(fOPT) ≤ D.
Now let us consider the following inequality

T (fOPT) ≤ M(fOPT) · |fOPT| ≤ D ·R.

Then we know that fOPT is also a feasible solution of ATC.
Hence our Algorithm 1 must return a flow solution.

Because fA is optimal to ATC, we have C(fA) ≤ C(fOPT).
Due to the non-decreasing property of link cost function,
considering f = fB is the flow after we delete rate from
fA, we have C(f) ≤ C(fA), implying that C(f) ≤ C(fOPT).

As for the maximum delay performance of f , we have

M(f)
(a)

≤ T (fA)− T (fB)
ε ·R

≤ T (fA)
ε ·R

(b)

≤ R ·D
ε ·R

=
D

ε
,

where inequality (a) comes from Lem. 2, inequality (b) holds
because fA is a feasible solution of ATC.

And it holds that |f | ≥ (1− ε) ·R, because that we delete
ε ·R rate from fA where |fA| = R to obtain f .

Based on Thm. 4, for every feasible instance of DTC,
Algorithm 1 must achieve a cost no worse than the optimal,
after relaxing the maximum delay constraint by a ratio of
(1/ε) and relaxing the throughput requirement by a ratio of
(1−ε). Here ε ∈ (0, 1) is an arbitrary user-defined number and
independent to instances. We emphasize again that although
Algorithm 1 obtains the optimal cost by violating constraints
by bounded ratios, it is valuable, as it is NP-complete even to
find a feasible solution meeting all constraints for DTC.

Algorithm 2 Proposed Heuristic Approach
1: procedure
2: Enumerate r ≥ 0 to figure out a r∗ such that |fr∗ | ≥ R
3: f = fr∗ , xdelete = |fr∗ | −R
4: while xdelete > 0 do
5: Find the path pc with the largest path cost among all

flow-carrying paths of f
6: if xpc > xdelete then
7: xpc = xpc − xdelete, xdelete = 0
8: else
9: xdelete = xdelete − xpc , xpc = 0

10: return the remaining flow f

V. AN EFFICIENT HEURISTIC APPROACH

We introduce multiple algorithms to solve DTC approxi-
mately in Sec. III and Sec. IV. However, theoretically they all
can violate the maximum delay constraint or the throughput
requirement. In this section, we design an efficient heuristic
approach for DTC. We prove that the solution of our heuristic
must be feasible, strictly satisfying all constraints.

We note that the non-convex maximum delay constraint is
the main challenge of solving DTC efficiently. In Sec. IV,
our Algorithm 1 deals with the challenge by replacing the
maximum delay by the average delay that is convex, and then
solving the average-delay-constrained counterpart of DTC.
Here we propose another way to handle the challenge, i.e.,
solving the following problem which can be casted as a convex
program instead of directly solving the DTC:

obj. min
f∈F

C(f) (7a)

s.t. |f | − T (f)/D ≥ r, ∀ f ∈ F, (7b)

where r ≥ 0 is a user-defined constant. We denote fr as
the optimal solution of above problem given an input r. We
introduce a critical observation of fr in the following lemma.

Lemma 3: Given any r ≥ 0, fr can be obtained in
polynomial time, with the following held

M(fr) ≤ D.

Proof: Refer to Appendix.
Lem. 3 suggests that the optimal solution of the problem

formulated in (7) can be figured out quickly, and must satisfy
the maximum delay constraint of DTC. Therefore, in order to
obtain feasible solutions of DTC meeting both the maximum
delay constraint and the throughput requirement, it is a natural
idea of enumerating r and solving the associated problem
formulated in (7) iteratively till we figure out a solution that
satisfies the throughput requirement. Following this idea, we
design a heuristic approach for DTC in Algorithm 2, and prove
that our heuristic solution must be feasible to DTC in Thm. 5.

Theorem 5: If Algorithm 2 obtains a network flow solution
f , the following must hold

|f | = R, M(f) ≤ D.



Proof: It is a direct result of our Lem. 3, together with
the details of Algorithm 2.

Next we characterize a sufficient condition under which
our heuristic solution must be approximate to DTC, with
theoretical performance guarantee.

Theorem 6: Suppose fOPT is the optimal solution of DTC.
If Algorithm 2 obtains a network flow solution f with f =
fr∗ , i.e., with |fr∗ | = R in Line 2 of Algorithm 2, then the
following must hold

C(f) ≤ µ · ν · C(fOPT).

Proof: Refer to Appendix.
Based on above theorems, our heuristic solution must be

feasible to DTC; moreover, it must be approximate to DTC
under our derived condition. However, our heuristic may not
figure out a flow solution for certain feasible instances of DTC,
because Algorithm 2 may not find a fr∗ with |fr∗ | ≥ R in
Line 2. As evaluated later in Sec. VI, empirically our heuristic
solves a large portion of all feasible instances. In comparison,
theoretically all of our proposed algorithms in Sec. III and
Sec. IV must obtain solutions for all feasible instances of DTC,
in spite of violating constraints by certain ratios.

Finally, we remark that for instances where Algorithm 2
cannot find a fr∗ with |fr∗ | ≥ R in Line 2, we can use the fr
enumerated by Algorithm 2 achieving the largest throughput
as a solution to DTC, meeting the maximum delay constraint
but violating the throughput requirement.

VI. PERFORMANCE EVALUATION

We evaluate our solutions by simulating edge computing
platforms where multiple edge computing nodes (i.e., devices
that can process IoT applications) are connected with access
point nodes (i.e., devices that can directly receive data from
IoT applications). We consider two platforms with represen-
tative network topologies (see Fig. 1). (i) One is a complete
binary tree with 15 nodes. It logically represents a hierarchical
edge computing structure. We assume the leaves are access
points, while all interior nodes are edge computing devices. (ii)
The other is a square grid with 36 nodes, 30 horizontal links,
and 30 vertical links. This topology represents a distributed
edge computing structure, and has been used in existing edge
computing studies, e.g., in [31]. We assume the four corner
nodes are access points, while all the remaining nodes are edge
computing devices. Both platforms are modeled as undirected
graphs, where each undirected link is treated as two directed
links that operate independently, a common way to model
an undirected graph by a directed one, e.g. in [14]. In each
platform, we assume a virtual sender s is connected with
every access point node, and a virtual receiver t is connected
with every edge computing node. Then a flow from s to t
represents a routing solution following which we can offload
and distribute IoT workloads from IoT devices to edge servers,
across access points and the associated platform.

We consider Equation (1) as the link delay function and
Equation (2) as the link cost function. For each e ∈ E, we
randomly select its capacity from {10, 20, 30, 40, 50}Mbps,

a1,1 a1,2a1

a8

a2

Tree Graph Grid Graph
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a2,1 a2,2 a2,6

a6,1 a6,2 a6,6a9
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a14 a15

Fig. 1. Simulated edge computing platforms.

similar to [31]. Following [27], the peak power cost qpeak
e

is randomly chosen from {100, 200, 300, 400, 500}Watts, and
the idle power cost is set as qidle

e = qpeak
e /2. We set D as

D = 200ms. Our test environment is an Intel Core i5 2.40GHz
processor with 8GB memory. Convex programs are solved by
CVX [32], and all other experiments are implemented in C++.

We compare our solutions with a baseline. We hope that the
baseline can quickly obtain feasible solutions for every feasible
instance of DTC in simulations, satisfying the maximum delay
constraint and the throughput requirement. This is already
theoretically challenging based on Thm. 1. We consider a
conceivable greedy approach to obtain throughput-guaranteed
maximum-delay-minimal flow solutions. It allocates a small
fraction of the throughput R, i.e., δ ·R, to the fastest S2R path
iteratively, til all R is satisfied. We set δ = 1%. The baseline
provides a rough approximation to the minimal maximum
delay M∗ subject to a throughput requirement R. We compare
M∗ against D to find out if the simulated instance is feasible.

Simulation results of fDSO, fCSO, fDNE, and fCNE. We
first compare the baseline with solutions fDSO, fCSO, fDNE,
and fCNE. We consider four scenarios where the throughput
requirement R is either 20 or 40, and the edge computing
platform is either tree or grid. Fig. 2 shows the cost and
maximum delay averaged over 1000 simulations.

According to Fig. 2, the first observation is that the baseline
performs almost the same as fDNE. Second, it is expected
that the costs of the baseline, fDSO, and fDNE are much
worse (30% worse in the tree, and 20% worse in the grid)
than those of fCSO and fCNE, since no cost optimization is
involved in the baseline, fDSO, and fDNE. Similarly, since no
delay optimization is involved in fCSO and fCNE, among 1000
simulations of each experimental scenario, there exist problem
instances where fCSO and fCNE will assign a flow rate xe that
exceeds ve for certain link e ∈ E, leading to an infinitely large
delay according to the queuing delay function (1).

Simulation results of Algorithm 1. We now evaluate
Algorithm 1 by respectively running 1000 simulations on two
experimental scenarios, one using the tree given R = 40
while the other using the grid given R = 20. Fig. 3 presents
simulation results of Algorithm 1 with a very small ε (1%,
3%, and 5% respectively) as well as the baseline approach.

According to Fig. 3(a), on average Algorithm 1 reduces cost
substantially (over 20% for the tree, and over 30% for the grid)
than the baseline; and according to Fig. 3(b), Algorithm 1
violates the maximum delay constraint by a ratio that is way



(a) Total cost in the tree. (b) Maximum delay in the tree. (c) Total cost in the grid. (d) Maximum delay in the grid.

Fig. 2. Averaged simulation results of fDSO, fCSO, fDNE, and fCNE. The maximum delays of fCSO and fCNE are infinitely large as compared to D, since
they can assign a flow rate which exceeds ve for certain link e ∈ E, but the queuing delay function (1) does not allow assigned traffic to be larger than ve.

(a) Total cost results. (b) Maximum delay results.

Fig. 3. Averaged simulation results of the baseline, Algorithm 1 with ε = 1%,
with ε = 3%, and with ε = 5%, respectively.

TABLE III
RATIO OF SIMULATED INSTANCES WHERE ALGORITHM 1 STRICTLY

SATISFIES THE MAXIMUM DELAY CONSTRAINT.

Baseline Algo1, 1% Algo1, 3% Algo1, 5%
R = 40, Tree 100% 18% 22% 32%
R = 20, Grid 100% 50% 56% 58%

smaller than its theoretical counterpart (1/ε). In addition,
we observe that Algorithm 1 in fact meets the maximum
delay constraint for a large portion of simulated instances (see
Tab. III). Moreover, Algorithm 1 never assign a flow rate which
exceeds ve to a link e ∈ E in all simulated instances, which
is different from solutions fCSO and fCNE.

Simulation results of Algorithm 2. Now we evaluate our
heuristic Algorithm 2. First we look at the achieved throughput
of the optimal solution of problem (7) (the problem solved by
our heuristic) with respect to r, with the simulation results of
one instance given in Fig. 4(a). We observe that the achieved
throughput is increasing with r when r is small/medium, but
is non-monotonic with r when r is large. We leave it as a
future direction of characterizing conditions under which the
achieved throughput is monotonic with the input r.

Next we evaluate the cost of Algorithm 2, as compared to
that of the baseline and of Algorithm 1 (ε = 3%). For the
enumeration (Line 2) of Algorithm 2, we increase r from 0
with a step of 1, and set r∗ to be the first r which achieves
a throughput no smaller than the requirement R. We simulate
1000 instances on the tree (resp. grid) assuming R = 40 (resp.
R = 20), with the results illustrated in Fig. 4(b). We observe

(a) The throughput achieved by the
optimal solution of problem (7), with
r that is an input of problem (7).

(b) Comparing the cost of Algo-
rithm 2 respectively with that of the
baseline and of our Algorithm 1.

Fig. 4. Simulation results of our heuristic Algorithm 2.

TABLE IV
ESTIMATION OF THE PORTION OF FEASIBLE INSTANCES THAT CAN BE

SOLVED BY OUR HEURISTIC ALGORITHM 2.

Mean Min 1st-Quartile Median 3rd-Quartile Max
Tree 72% 67% 71% 72% 73% 79%
Grid 62% 50% 58% 62% 65% 72%

that (i) both the baseline and Algorithm 2 obtain feasible
solutions for all simulated instances, meeting all constraints,
and Algorithm 2 reduces cost by 15% (resp. 24%) than the
baseline for instances of the tree (resp. instances of the grid);
(ii) Algorithm 1 reduces cost by 26% (resp. 32%) than the
baseline when sacrificing 3% throughput requirement, and
satisfies the maximum delay constraint for 22% (resp. 56%)
simulated instances of the tree (resp. of the grid).

Note that theoretically Algorithm 2 can only solve a portion
of feasible instances of DTC. The reason why it solves
all simulated instances in Fig. 4(b) is that R = 40 (resp.
R = 20) is not a large throughput requirement for the
tree platform (resp. grid platform) given D = 200. Hence,
we further estimate the portion of feasible instances solved
by Algorithm 2 with comprehensive simulations. Given a
platform subject to D = 200, we use simulation to figure
out (i) the maximum throughput achieved by feasible flows,
denoted by Rb, and (ii) the maximum throughput achieved by
solving the problem (7) after enumerating r, denoted by Rh.
We use Rh/Rb to estimate the portion of feasible instances
solved by Algorithm 2, and the results are given in Tab. IV



after running 1000 simulations on the tree platform and on the
grid platform respectively. As in the table, our heuristic can
solve a large portion of feasible instances of DTC.

VII. CONCLUSION AND FUTURE WORK

We consider the scenario where a sender streams a flow at
a fixed rate to a receiver across a multi-hop network, possibly
using multiple paths. Data transmission over a link incurs
a delay and a cost both of which are traffic-dependent. We
study the problem of minimizing network transmission cost
under constraints on the maximum delay and the throughput.
Our study is important for leveraging edge-cloud computing
platforms to support computationally intensive IoT applica-
tions. The need to jointly consider cost, maximum delay,
and throughput differentiates our problem from existing ones.
We prove it is NP-complete even to find a feasible solution,
and direct extensions of existing algorithms obtain solutions
that theoretically violate the maximum delay constraint by
problem-dependent ratios (can be unbounded in certain in-
stances). It is thus uniquely challenging to solve our problem.

We design both an approximation algorithm and an effi-
cient heuristic. Our approximation algorithm can solve every
feasible instance and will achieve a cost no worse than the
optimal, after relaxing both the maximum delay constraint and
the throughput requirement by constant ratios independent to
instances. Our heuristic approach can solve a large portion
of feasible instances, satisfying both the maximum delay con-
straint and the throughput requirement. We further characterize
a condition under which the cost of our heuristic must be
within a problem-dependent-ratio gap to the optimal.

We leave it as an important future direction of theoretically
characterizing conditions on instances under which our heuris-
tic is guaranteed to solve those instances.
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APPENDIX

Lemma 4: [12] With γD defined as the minimal positive
number satisfying the following constraint:

de(x) + x · d′e(x) ≤ γD · de(x),∀e ∈ E,∀x ∈ [0, R],

and γC defined similarly but with respect to ce(x) instead of
de(x), the following result holds theoretically:

M(fDSO) ≤ γD · M∗, N (fCSO) ≤ γC · N ∗

Moreover, the following holds for fDSO

dp1(fDSO)/d
p2(fDSO) ≤ γD, ∀p1, p2 ∈ P : xp1 > 0, xp2 > 0.

Similarly, the following holds for fCSO

cp1(fCSO)/c
p2(fCSO) ≤ γC , ∀p1, p2 ∈ P : xp1 > 0, xp2 > 0.

Lemma 5: [12] With αD defined bellow

αD =

(
1− sup

e∈E,0≤x≤R

{
x · (de(R)− de(x))

R · de(R)

})−1

,

and αC defined similarly but with respect to ce(x) instead of
de(x), the following results hold theoretically:

M(fDNE) ≤ αD · M∗, T (fDNE) ≤ αD · T ∗.
N (fCNE) ≤ αC · N ∗, C(fCNE) ≤ αC · C∗.

Lemma 6: With our definition of µ and ν, the following
holds theoretically for any single-unicast flow f

T (f) ≤ ν · C(f), C(f) ≤ µ · T (f).

Proof: It is a direct result of the following inequalities:

T (f) =
∑
e∈E

(de(xe) · xe) ≤ ν ·
∑
e∈E

(ce(xe) · xe) = ν · C(f).

C(f) =
∑
e∈E

(ce(xe) · xe) ≤ µ ·
∑
e∈E

(de(xe) · xe) = µ · T (f).

Proof of Thm. 2.
Proof: Since fOPT is a feasible solution to the problem of

finding the system-optimal flow, the existence of fOPT implies
the existence of fDSO and fCSO, where |fDSO| = |fCSO| = R.

As for the maximum delay of fDSO, we have

M(fDSO)
(a)

≤ γD · M∗ ≤ γD · M(fOPT) ≤ γD ·D,

where inequality (a) comes from Lem. 4.
As for the total cost of fDSO, we have

C(fDSO)
(a)

≤ µ · T (fDSO)
(b)

≤ µ · T (fOPT)
(c)

≤ µ · ν · C(fOPT),

where inequalities (a) and (c) comes from Lem. 6, and
inequality (b) holds due to that fDSO minimizes the total delay.

By the definition of fCSO, first it is straightforward that
C(fCSO) ≤ C(fOPT). As for its maximum delay, we have

M(fCSO) = dp
′
(fCSO) ≤ ν · cp

′
(fCSO)

(a)

≤ γC · ν · cp
∗
(fCSO)

≤ γC · ν · C(fCSO)/R ≤ γC · ν · C(fOPT)/R

≤ γC · ν · µ · T (fOPT)/R

≤ γC · ν · µ · M(fOPT) ≤ γC · ν · µ ·D,

where p′ is the flow-carrying path with the largest path delay
in fCSO and p∗ is the flow-carrying path with the smallest path
cost in fCSO. Inequality (a) comes from Lem. 4.

Proof of Thm. 3.
Proof: According to [33, Lem. 2.6], non-decreasing, con-

tinuous functions must admit a feasible Nash-equilibrium flow.
Therefore, fDNE and fCNE exist, and |fDNE| = |fCNE| = R.

As for the maximum delay of fDNE, we have

M(fDNE) ≤ αD · M∗ ≤ αD · M(fOPT) ≤ αD ·D.

As for the total cost of fDNE, we have

C(fDNE)
(a)

≤ µ · T (fDNE)
(b)

≤ µ · αD · T ∗ = µ · αD · T (fDSO)

≤ µ · αD · T (fOPT)
(c)

≤ µ · ν · αD · C(fOPT),



where inequalities (a) and (c) comes from Lem. 6, and
inequality (b) holds due to Lem. 5.

As for the total cost of fCNE, we have

C(fCNE) ≤ αC · C∗ = αC · C(fCSO) ≤ αC · C(fOPT).

As for the maximum delay of fCNE, we have

M(fCNE) = dp
′
(fCNE) ≤ ν · cp

′
(fCNE)

(a)
= ν · C(fCNE)/R

≤ ν · αC · C(fCSO)

R
≤ µ · ν · αC · T (fOPT)

R
≤ µ · ν · αC · M(fOPT) ≤ µ · ν · αC ·D

where the path p′ is the flow-carrying path with the largest
path delay in the flow fCNE, and equality (a) comes from the
definition of a cost-Nash-equilibrium flow.

Proof of Lem. 3.
Proof: It is easy to verify that with variables {xe,∀e ∈

E}, problem (7) can be casted as a convex program with a
polynomial size. Hence fr can be obtained in polynomial time.

We proveM(fr) ≤ D by contradiction. SupposeM(fr) >
D, namely there exists a p′ ∈ P in fr such that

dp
′
(fr) =

∑
e:e∈p′

de

(∑
p̄:e∈p̄

xp̄

)
> D and xp

′
> 0. (8)

Note that problem (7) can be formulated as follows

min
∑
p∈P

[
xp ·

∑
e:e∈p

ce

(∑
p̄:e∈p̄

xp̄

)]
(9a)

∑
p∈P

xp − 1

D
·
∑
p∈P

[
xp ·

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄

)]
≥ r, (9b)

xp ≥ 0, ∀p ∈ P. (9c)

Different from the optimal solution fr of the problem (7)
(or the problem (9) equivalently), let’s consider another flow
f∗r where we delete all flow rate xp

′
from p′ in fr, namely

xp(f∗r ) = xp(fr) : ∀p ∈ P\{p′}; xp(f∗r ) = 0 : p = p′,

where xp(f) is the flow rate assigned on the path p in f .
Since fr is feasible to (9), we have∑

p∈P
xp(fr)−

1

D
·
∑
p∈P

[
xp(fr) ·

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

)]
≥ r,

implying that∑
p∈P

xp(fr) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

))
≥ D · r.

Hence it holds that∑
p∈P

xp(fr) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

))

=
∑

p∈P\{p′}

xp(fr) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

))

+ xp
′
(fr) ·

D − ∑
e:e∈p′

de

(∑
p̄:e∈p̄

xp̄(fr)

) ≥ D · r.
Considering the inequality (8), we have∑
p∈P\{p′}

xp(fr) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

))
> D · r.

Since the link delay function is non-decreasing, it holds that

de

 ∑
p̄∈P\{p′}:e∈p̄

xp̄(fr)

 ≤ de
 ∑

p̄∈P:e∈p̄
xp̄(fr)

 .

Therefore, we have∑
p∈P

xp(f∗r ) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(f∗r )

))

=
∑

p∈P\{p′}

xp(fr) ·

D − ∑
e:e∈p

de

 ∑
p̄∈P\{p′}:e∈p̄

xp̄(fr)


≥

∑
p∈P\{p′}

xp(fr) ·

(
D −

∑
e:e∈p

de

(∑
p̄:e∈p̄

xp̄(fr)

))
> D · r.

Hence, f∗r is a feasible solution of the problem (9).
Comparing f∗r with fr in terms of the objective, we have∑

p∈P

[
xp(fr) ·

∑
e:e∈p

ce

(∑
p̄:e∈p̄

xp̄(fr)

)]
(a)
>

∑
p∈P\{p′}

[
xp(fr) ·

∑
e:e∈p

ce

(∑
p̄:e∈p̄

xp̄(fr)

)]
(b)

≥
∑

p∈P\{p′}

xp(fr) · ∑
e:e∈p

ce

 ∑
p̄∈P\{p′}:e∈p̄

xp̄(fr)


=
∑
p∈P

[
xp(f∗r ) ·

∑
e:e∈p

ce

(∑
p̄:e∈p̄

xp̄(f∗r )

)]
,

where the inequality in (a) is true since xp
′
> 0 and the link

cost function ce(xe) is strictly positive for any xe > 0. The
inequality in (b) is true due to the non-decreasing property of
the link cost function. Now we see that the feasible solution f∗r
has a total cost smaller than that of fr, which is a contradiction
with the assumption that fr is the optimal solution of the
problem (9). Thus, it must hold that M(fr) ≤ D.

Proof of Thm. 6.
Proof: Under the condition of |fr∗ | = R, considering that

fDSO minimizes total delay as well as |fDSO| = R, we have

|fDSO| − T (fDSO)/D ≥ |fr∗ | − T (fr∗)/D ≥ r∗,

implying that fDSO is feasible to the problem formulated in (7)
with r = r∗. Therefore, we have C(fr∗) ≤ C(fDSO).

According to Thm. 2, it holds that C(fDSO) ≤ µ·ν ·C(fOPT).
We hence have C(fr∗) ≤ µ · ν · C(fOPT).
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