Simple and Effective Dynamic Provisioning for
Power-Proportional Data Centers

Tan Lu and Minghua Chen
Department of Information Engineering, The Chinese University of Hong Kong

Abstract—Energy consumption represents a significant cost in
data center operation. A large fraction of the energy, however, is
used to power idle servers when the workload is low. Dynamic
provisioning techniques aim at saving this portion of the energy,
by turning off unnecessary servers. In this paper, we explore how
much gain knowing future workload information can bring to
dynamic provisioning. In particular, we develop online dynamic
provisioning solutions with and without future workload informa-
tion available. We first reveal an elegant structure of the off-line
dynamic provisioning problem, which allows us to characterize
the optimal solution in a “divide-and-conquer” manner. We
then exploit this insight to design two online algorithms with
competitive ratios 2 — ¢ and ¢/ (e — 1 + a), respectively, where
0 < @ < 1 is the normalized size of a look-ahead window in
which future workload information is available. A fundamental
observation is that future workload information beyond the full-
size look-ahead window (corresponding to « = 1) will not improve
dynamic provisioning performance. Our algorithms are decentral-
ized and easy to implement. We demonstrate their effectiveness
in simulations using real-world traces.

1. INTRODUCTION

As Internet services, such as search and social network-
ing, become more widespread in recent years, the energy
consumption of data centers has been skyrocketing. In 2005,
data centers worldwide consumed an estimated 152 billion
kilowatt-hours (kWh) of energy [1]. Power consumption at
such level was enough to power half of Italy [2]. Nowadays,
the data center energy cost is growing 12% annually [3].

To reduce the power consumption of data centers, it is
critical to save the energy consumed by servers [4], [5]. Real-
world statistics suggests that ample saving is possible in server
energy consumption [6], [7], [8], [4]. These statistics reveal
that a large portion of the energy consumed by servers goes
into powering nearly-idle servers, and it can be best saved by
turning off servers during the off-peak periods.

One promising technique exploiting the above insights is
dynamic provisioning, which turns on a minimum number of
servers to meet the current demand and dispatches the load
among the running servers to meet Service Level Agreements
(SLA). The objective is to make the data center “power-
proportional”, i.e., use power only in proportion to the load.

There have been a substantial amount of efforts in devel-
oping such technique, initiated by the pioneering works [6],
[7] a decade ago. Among them, one line of works [4], [8]
examine the practical feasibility and advantage of dynamic
provisioning using real-world traces. Another line of works
[6], [9], [8] focus on developing algorithms with performance
guarantee. See [10] for a recent survey.

The effectiveness of these exciting schemes, however, usu-
ally rely on being able to predict future workload to certain
extent, e.g., using model fitting to forecast future workload
from historical data [8]. This naturally leads to the following
fundamental questions:

« Can we design solutions that require zero future workload
information, called online solutions, yet still achieve
close-to-optimal performance?

« Can we characterize the benefit of knowing future work-
load in dynamic provisioning?

Recently, Lin et al. [9] propose an algorithm that requires
almost-zero future workload information and achieves a com-
petitive ratio of 3, i.e., the energy consumption is at most 3
times the minimum (computed with perfect future knowledge).
In simulations, they further show the algorithm can exploit
available future workload information to improve the perfor-
mance. These results are very encouraging, indicating that a
complete answer to the questions is possible.

In this paper, we further explore answers to the questions,
and make the following contributions:

« Under the setting that a running server consumes a fixed
amount of energy per unit time!, we reveal an elegant
structure of the dynamic provisioning problem that allows
us to solve it in a “divide-and-conquer” manner.

« We show that, interestingly, the optimal solution can be
attained by the data center adopting a simple last-empty-
server-first job-dispatching strategy and each server in-
dependently solving a classic ski-rental problem. We
build upon this architectural insight to design two online
algorithms. The first one, named CSR, is a deterministic
algorithm with competitive ratio 2 — @, where 0 < a < 1
is the normalized size of a look-ahead window in which
future workload information is available. The second
one, named RCSR, is a randomized algorithm with
competitive ratio e/ (e — 1 + a). Compared to the solution
LCP(w) with competitive ratio 3, our algorithms have
better competitive ratios and have guaranteed perfor-
mance improvement when future information is available
(corresponding to increasing «).

o Our results lead to a fundamental observation that future
workload information beyond the full-size look-ahead
window (corresponding to a« = 1) will not improve
dynamic provisioning performance. The window size

In [5], we extend our algorithms and results to the setting where we only
assume that an idle server consumes a fixed amount of energy per unit time.

corresponding to @ = 1 is determined by the wear-and-
tear cost and the unit-time cost of running one server.

o Our algorithms are simple and easy to implement. We
demonstrate the effectiveness of our algorithms in sim-
ulations using real-world traces. We also compare their
performance with state-of-the-art solutions.

Due to space limitation, all proofs are in [5].

II. ProBLEM FORMULATION
A. Settings and Models

We consider a data center consisting of a set of homoge-
neous servers. Each server has a unit service capacity and
can only serve one unit workload per unit time. Each server,
when it is on, consumes P energy per unit time. We define
Bon and B,y as the cost of turning a server on and off,
respectively. Such wear-and-tear cost, including the amortized
service interruption and hard-disk failure[11], is comparable
to the energy cost of running a server for several hours [9].

We consider the following two types of workload:

« “mice” type of workload, such as “request-response” web
serving. Each job of this type has a small transaction
size and short duration. Many existing works [6], [7], [9]
model such workload by a discrete-time fluid model. In
the model, time is chopped into equal-length slots. Jobs
arriving in one slot get served in the same slot. Workload
can be split arbitrarily among running servers like fluid.

« “elephant” type of workload, such as virtual machine
hosting in cloud computing. We model such workload by
a continuous-time brick model. In this model, time is con-
tinuous. Jobs arrive and depart at arbitrary time, and no
two job arrival/departure events happen simultaneously.
We assume one server can only serve one job?.

In the following, we present our results for the “elephant”
type of workload. We show our algorithms and results are
also applicable to “mice” type of workload [5].

Let x(#) and a(f) be the number of “on” servers (serving
or idle) and jobs at time ¢, respectively. Under our workload
model, a(f) at most increases or decreases by one at any ¢.

Let P,,(t1, 1) and P,sf(t,12) be the total cost of turning on
and off servers in the time window [7;,;], respectively. It is
clear that P,,(t1,1) and P,s(t1,t,) are linearly proportional
to the number of turning-on/-off times in [¢, 1;], respectively.

B. Problem Formulation

We formulate the SCP (server cost problem) of minimizing
server the operation cost in a data center in [0, 7] as follows:

T

SCP: min Pfx(t) dt + Poy(0,T) + Poy(0.T) (1)
0

st x(t) > a(t), Vi € [0, T,)

x(0) = a(0), x(T) = a(T), 3

var x(t) € Z*,t€[0,T], 4)

2Qther than the obvious reason that the service capacity can only fit one
job, there could also be SLA in cloud computing that requires the job does
not share the physical server with other jobs due to security concerns.

where Z* denotes the set of non-negative integers. The objec-
tive is to minimize the sum of server run-time cost and on-off
cost. Constraints in (2) say the service capacity must satisfy
the demand. Constraints in (3) are the boundary conditions.
There are infinite number of integer variables x(¢), t €
[0,T], in the problem SCP, which make it challenging to
solve. Moreover, in practice we have to solve the problem
without knowing the workload a(?), t € [0, T] ahead of time.

III. OpTIMAL SOLUTION AND OFFLINE ALGORITHM

We study the off-line version of the server cost minimization
problem SCP, where the workload a(¢) in [0, T] is given. We
first identify an elegant structure of its optimal solution, which
allows us to solve the problem in a “divide-and-conquer”
manner. We then derive a simple and decentralized algorithm,
upon which we build our online algorithms.

A. Critical Times and Critical Segments
We define a critical interval which we will use later as
Bon + Bors
P

Given a(t) in [0, T], we identify a set of critical times {Tf }
and construct the critical segments as follows.

A2 (5)

i

Critical Segment Construction Procedure:

First, traversing a(f), we identify all the jobs ar-
rival/departure epochs in [0,7T]. The first critical time is
T7 =0. T{ can be a job-arrival epoch or job-departure epoch,
or no job departs/arrives the system at 77. If no job departs
or arrives at Ty, T{ is considered as a job-arrival epoch. Next

we find 77, inductively, given that 77 is known.

o If T is a job-arrival epoch, e.g., the first critical time,
then 77, is the first job-departure epoch after 77. One
example is the epoch 75 in Fig. 1.

o If TY is a job-departure epoch, we first try to find the first
arrival epoch 7 after 77 so that a(r) = a (Tf) If no such
T exists, we set T, | to be the next job departure epoch.
One example is the 75 in Fig. 1. Otherwise, we check
further:

- ifa() = a(Tf)— 1,Vt e (Tf,‘r), then we set 77, = 7.
One example is the epoch T in Fig. 1.
— ifa(® <a(T¢)-1,3re(T¢,7) and - T¢ < A, then
we set T, = 7.
~ ifa(® <a(T¢)-1,3re(T¢,7) and 7= T¢ > A, then
T¢,, is the first job-departure epoch after 77.
Upon reaching time epoch 7', we find all, say M, critical times.
We define the critical segments as the period between two

consecutive critical times, i.e., [Tf Tiil]’ 1<i<M-1.

Examples of these four types of segments are shown in Fig.
1. We observe that workload expresses interesting properties
in these critical segments.

Proposition 1. The workload a(t) in any critical segment

[Tf, Tl.”ﬂ] must be one of the following four types:

o Type-I: workload is non-decreasing in [Tl‘ , Tf“].

Type-IV Type-II1
1

..............

H - . t
Tg=0 Ts T§ T TS Tg Te=T
Figure 1: Illustration of critical times and critical segments. T
to 75 are critical times, and they form six critical segments.

a(t) is of Type-I in [T¢, Ts|, Type-Il in |T5,T5|, Type-III in

|7¢.7¢]. and Type-IV in [7%,T5].

o Type-II: workload is step-decreasing in [Tf TZ.CH]. That is,
a(t)=a(T) -1,V e (TE, T, .
o Type-Ill: workload is of “U-shape” in [Ti", Tf+1] That is,

a (T.C

i+1

)=a(T¢) and a () = a(T¢) - 1,1 € (T¢, T¢,,).

o Type-1V: workload is of “canyon-shape” in [Tf,TfH].
That is, a(T5,,) = a(T¢), a(® < a(T¢) -1 and not
always identical, YVt € (Ti”,TfH). Moreover, we have
T, - T < A

B. Structure of Optimal Solution

Let x*(¢), t € [0, T], be an optimal solution to the problem
SCP, and the corresponding minimum server operation cost
be P*. We have the following observation.

Lemma 2. x*(t) must meet a(t) at every critical time, i.e.,
X (1) =a(T) 12i< M.

Lemma 2 not only presents a necessary condition for a
solution x(f) to be optimal, but also suggests a “divide-and-
conquer” way to solve the problem SCP optimally.

Consider a sub-problem of minimizing the server operation
cost in a critical segment [Tf, Ty, 1] with boundary condition
x(1¢) = a(T¢). x(T5,) = a(T¢,). 1 <i < M- 1. This sub-
problem is similar to the problem SCP, except that the time
period is [Tf, Ty, 1] other than [0, T']. Let its optimal value be
P, 1 <i< M- 1. We have the following observation.

M
Lemma 3. > P; is a lower bound of the optimal server

=1
operation cofvt of the problem SCP, i.e.,
M
P> ZP;. (6)
i=1

Eqn. (6) establishes a lower bound of P*, and as we
will see soon, it is achievable. Suggested by Lemma 3,
it suffices to solve individual sub-problems for all critical
segments in [0, 7], and combine the corresponding solutions
to form an optimal solution to the overall problem SCP.

Optimal Solution Construction Procedure:

We visit all the critical segments in [0, T'] sequentially, and
construct an x(f), ¢ € [0, T]. For a critical segment [Tf T |,
1 <i<M-1, we check the a(?) in it:

¢
Te=0 Ts Tg Ti=T

3

Figure 2: An example of a critical segment [0, 7]. We define
intervals 61 =T5 = T3, 6o =T5 =Ty, and 65 = T; — T5.

1) the a(¢) is of Type-I or Type-II: we simply set x(¢) = a(?),
for all £ €[T¢,T%, .
2) the a(?) is of Type-III:
o if A>T7 — T, then we set x(r) = a(Ti“),Vt €
7575 |
« otherwise, we set x(T7) = a(T}), x(T5,,) = a(T%,),
and x (1) = a(T¢) - 1,V € (T¢, T¢,)).

3) the a(r) is of Type-IV: we set x(1) = a(T¢),Vt €
T¢T¢, |-

i i+1

The following theorem shows that the lower bound of P*
in (6) is achieved by using the above procedure.

Theorem 4. The Optimal Solution Construction Procedure
terminates in finite time, and the resulting x(t), t € [0,T], is
an optimal solution to the problem SCP.

C. A Case Study and Insights

In the following, we go through the construction of x(¢) for
a workload shown in Fig. 2, to bring out the intuition.

During the critical segment [0, 7] with the workload shown
in Fig. 2, the system starts and ends with 2 jobs and 2 running
servers. Let the servers with their jobs leaving at time 0 and
T5 be S1 and S2, respectively.

At time 0, a job leaves. The procedure compares A and 7. If
A > T, then it sets x(f) = 2 and keeps all two servers running
for all ¢ € [0, T']; otherwise, it decomposes the interval [0, T']
into three small ones [Tf s Tzc 1, [TZC s T§], and [T3” s Tj], as shown
in Fig. 2. The first small critical segment [T7, T5] has a Type-
IT workload, thus the procedure sets x(¢) = 1 for ¢ € [T{,T5].
The second small segment [T, T5] has a Type-IIl workload;
thus for all r € [T5,T5], the procedure maintains x(r) = 1 if
A > ¢ and sets x(t) = 0 otherwise. The last small segment
[T5, T;] has a Type-I workload, thus the procedure set x(f) = 1
for r € [T5,T;) and x(T}) = 2.

These actions reveal two important observations, upon
which we build our off-line algorithm.

« Newly arrived jobs should be assigned to servers in the

reverse order of their last-empty-epochs.
« Upon being assigned an empty period, a server only needs
to independently make locally energy-optimal decision.

The intuition behind the first observation is that job-

dispatching should try to make every server empty as long

as possible so that the server-on-off option, if explored, can
save abundant energy. The second observation allows us to
decouple the decisions of individual servers.

D. Offline Algorithm Achieving the Optimal Solution

Exploiting the two observations made in the previous case-
study subsection, we design a off-line algorithm that gives an
optimal x*(f). While existing centralized off-line algorithms
(e.g., the one in [9]) for solving an alternative formulation
can also be modified to solve the problem SCP, our algorithm
is unique in that it utilizes a new structure of the problem SCP
to allow simple and decentralized implementation.

Decentralized Off-line Algorithm:

By a central job-dispatching entity: it implements a last-
empty-server-first strategy. In particular, it maintains a stack
(i.e., a Last-In/First-Out queue) storing the IDs for all idle or
off servers. Before time 0, the stack contains IDs for all the
servers that are not serving.

« Upon a job arrival: the entity pops a server ID from the
top of the stack, and assigns the job to the corresponding
server (if the server is off, the entity turns it on).

« Upon a job departure: a server just turns idle, the entity
pushes the server ID into the stack.

By each server:

« Upon receiving a job: it serves the job immediately.

« Upon a job leaving this server and it becomes empty: let
the current time be ¢;. The server searches for the earliest
time t, € (1,11 + A] so that a(t;) = a(ty). If no such 1,
exists, the server turns itself off. Otherwise, it stays idle.

The following theorem justifies the optimality of the off-line
algorithm. The proof can be found in [5].

Theorem 5. The proposed off-line algorithm achieves the
optimal server operation cost of the problem SCP.

There are two important observations. First, the job-
dispatching strategy only depends on the past job arrivals and
departures. Consequently, the strategy assigns a job to the
same server no matter it knows future job arrival/departure or
not; it also acts independently to servers’ off-or-idle decisions.
Second, each individual server is actually solving a classic ski-
rental problem [12] — whether to “rent”, i.e., keep idle, or to
“buy”, i.e., turn off now and on later, but with their “days-
of-skiing” (corresponding to servers’ empty periods) jointly
determined by the job-dispatching strategy.

Next, we extend our proposed off-line algorithm to its online
versions with performance guarantee.

IV. ONLINE DyNAMIC PROVISIONING WITH AND WITHOUT FUTURE
‘WORKLOAD INFORMATION

We construct two online algorithms by combining (i) the
same last-empty-server-first job-dispatching strategy as the
one in our proposed off-line algorithm, and (ii) an off-or-idle
decision module running on each server to solve online ski-
rental problems. The following lemma presents an important

observation on the last-empty-server-first job-dispatching strat-
egy.

Lemma 6. For the same a(t),t € [0, T], under the last-empty-
server-first job-dispatching strategy, each server will get the
same job at the same time and the job will leave the server
at the same time for both off-line and online situations.

As a result, in the online case, each server still faces the
same set of off-or-idle problems as compared to the off-line
case. This is the key to derive the competitive ratios of our
online algorithms later on. Each server, not knowing the empty
periods ahead of time, however, needs to decide whether to
stay idle or be off (and if so when) in an online fashion. One
natural approach is to adopt classic algorithms for the online
ski-rental problem.

A. Dynamic Provisioning without Future Information

For the online ski-rental problem, the break-even algorithm
in [12] and the randomized algorithm in [13] have com-
petitive ratios 2 and e/ (e — 1), respectively. The ratios have
been proved to be optimal for deterministic and randomized
algorithms, respectively. Directly adopting these algorithms
in the off-or-idle decision module leads to two online so-
lutions for the problem SCP with competitive ratios 2 and
e/ (e — 1) =~ 1.58. The resulting solutions are decentralized and
easy to implement: a central entity runs the last-empty-server-
first job-dispatching strategy, and each server independently
runs an online ski-rental algorithm. The competitive ratios of
the two resulting solutions improve the best known ratio 3
achieved by the algorithm in [9].

B. Dynamic Provisioning with Future Information

In the data center dynamic provisioning problem, one key
observation many existing solutions exploited is that the
workload expressed highly regular patterns. Thus the workload
information in a small look-ahead window can be accurately
estimated by machine learning or model fitting based on
historical data [8]. Can we exploit such future knowledge, if
available, in designing online algorithms? If so, how much
gain can we get? To answer these questions, we propose new
future-aware online solutions with performance guarantee.

We model the availability of future workload information
as follows. For any t, the workload a(t) for in the look-ahead
window [t,¢ + @A] is known, where « € [0, 1] is a constant
and @A represents the size of the look-ahead window. Due to
the last-empty-server-first job-dispatching strategy, the server
knows that it will receive a job in the window [7,¢ + @A] if
there exists a T € [t,7 + a@A] so that a(t) > a(f), and no job
otherwise. We first present a deterministic online algorithm
named CSR (Collective Server-Rentals).

Future-Aware Online Algorithm CSR:

By a central job-dispatching entity: it implements the
last-empty-server-first job-dispatching strategy, i.e., the one
described in the off-line algorithm.

By each server:

« Upon receiving a job: it serves the job immediately.

« Upon a job leaving this server and it becomes empty: the
server waits for (1 — @) A amount of time,
— if it receives a job during the period, it serves the job
immediately;
— otherwise, it looks into the look-ahead window of
size aA. It turns itself off, if it will receive no job
during the window. Otherwise, it stays idle.

Next, we present a randomized online algorithm named
RCSR (Randomized Collective Server-Rentals) as follow.

Future-Aware Online Algorithm RCSR:

By a central job-dispatching entity: it implements the last-
empty-server-first job-dispatching strategy.

By each server:

« Upon receiving a job: it serves the job immediately.

« Upon a job leaving this server and it turns empty: the
server waits for Z amount of time, where Z is generated
according to the following probability distribution

1

e 1-a)A .)
f2(2) = e e, if0<z<(d-a)A;
0, otherwise.

PZ=0)=Z5

— if it receives a job during the period, it servers the
job immediately;

— otherwise, it looks into the look-ahead window of
size aA. It turns itself off, if it will receive no job
during the window. Otherwise, it stays idle.

The algorithms are decentralized, making them easy to
implement and scale. Observing no such future-aware on-
line algorithms available in the literature, we analyze their
competitive ratios and present the results as follows.

Theorem 7. For any positive P, B,ss, and fB,,, the online
algorithms CSR and RCSR have competitive ratios of 2 — «
and e/ (e — 1 +).

Remark: Theorem 7 reveals a fundamental observation
that future workload information beyond the full-size look-
ahead window (corresponding to @ = 1) will not improve
dynamic provisioning performance. This is because there exist
algorithms, e.g., CSR and RCSR, that can make optimal
decision to minimize power consumption when the future
workload in the full-size look-ahead window is available.

V. EXPERIMENTS
A. Settings

Workload trace: The real-world traces we use in experi-
ments are a set of I/O traces taken from 6 RAID volumes at
MSR Cambridge [14]. The traced period was one week from
February 22 to 29, 2007. The jobs are “request-response”
type and we use a discrete-time fluid model to describe the
workload, with the slot length being 10 minutes and the load
being the average number of jobs in each slot.

In the technical report [5], we show that our proposed
algorithms also work with the discrete-time fluid workload

model after simple modification; hence, we apply the modified
algorithms to the above real-world traces.

Cost benchmark: Current data centers usually do not use
dynamic provisioning. The cost incurred by static provisioning
is usually considered as benchmark to evaluate new algorithms
[9], [4]. Static provisioning runs a constant number of servers
to serve the workload. In our experiment, we assume that the
data center has the complete workload information ahead of
time and provisions just to satisfy the peak load. Using such
benchmark gives us an estimate of the maximum cost saving.

Sever operation cost: The server operation cost is deter-
mined by unit-time energy cost P and on-off costs 3,, and
Bosr- In the experiment, we assume that a server consumes
one unit energy for per unit time, i.e., P = 1. Similar to [9],
we set B,7r + Bon = 6. Under this setting, the critical interval
is A= (ﬁoff +ﬁo,,) /P = 6 units of time.

B. Performance of CSR and RCSR

We have characterized in Theorem 7 the competitive ratios
of CSR and RCSR as the look-ahead window size, i.e., @A,
increases. The resulting competitive ratios, i.e., 2 — @ and
e/ (e — 1+ a), although quite appealing, are for the worst-
case scenarios. In practice, the actual performance can be even
better than what the ratios suggest.

In our first experiment, we study the performance of CSR
and RCSR. The results are shown in Fig. 3b. The vertical axis
indicates the cost reduction and the horizontal axis indicates
the size of look-ahead window. The cost reduction curves are
obtained by comparing the power cost incurred by the off-
line algorithm, CSR, RCSR, the LCP(w) algorithm [9] and
the DELAYEDOFF algorithm [15] to the cost benchmark.

As seen, for this set of workload, all four online algo-
rithms achieve substantial cost reduction as compared to the
benchmark. In particular, CSR and RCSR achieve 66% saving
even without future workload information. LCP(w) has to have
(or estimate) one unit time of future workload to execute,
and thus it starts to perform when the look-ahead window
size is one. The cost reductions of CSR and RCSR grow as
the look-ahead window increases, and reaching optimal when
the look-ahead window size reaches A. These observations
match what Theorem 7 predicts. Meanwhile, LCP(w) has not
yet reached the optimal performance. DELAYEDOFF has the
same performance for all look-ahead window sizes since it
does not exploit future workload information.

C. Impact of Prediction Error

Previous experiments show that CSR, RCSR and LCP(w)
have better performance if accurate future workload is avail-
able. However, there are always prediction errors in practice.
Therefore, it is important to evaluate the performance of
the algorithms in the present of prediction error through
experiment. Theoretical analysis on the impact of prediction
error is an interesting topic for future investigation.

In particular, we evaluate CSR and RCSR with look-ahead
window size of 2 and 4 units of time. Zero-mean Gaussian
prediction error is added to each unit-time workload in the
look-ahead window, with its standard deviation grows from

15 71

=l = ~Opt

3 g7 ACSR

<0.5 @ 69 +RCSR

S
B 68y eLCP

= 8 67k » Delayedoff|
267 PR

G0 50 150 0 10

S 71 _Look-ahead vindow size:4 S 80

2 g * S

§7 - A”“A""A'"Q---A..A.. - é —Opt

269 260 ~CSR

B GO e AR A B RCSR

8 67 Look-ahead window size:2] 8 -~LCP

K3 [~Opt2CSR+RCSR+LCP| X 40) Delayedoff

. 100 5
Time(hour) Look-ahead window size

(a) MSR data trace for one week (b) Impact of future information

50

N

4 6 8 10
Peak to mean ratio

(d) Impact of PMR

10 20 30 40
Prediction error(%)
(c) Impact of prediction error

Figure 3: Real-world workload trace and the performance of algorithms under different settings. The critical interval A is 6
units of time. We discuss the performance of algorithms CSR, RCSR, LCP(w) and DELAYEDOFF in Section V-E.

0 to 50% of the corresponding actual workload. In practice,
prediction error tends to be small [16]; thus we are stress-
testing the algorithms. We average 100 runs for each algorithm
and show the results in Fig. 3c.

On one hand, we observe all algorithms are fairly robust
to prediction errors. On the other hand, all algorithms achieve
better performance with look-ahead window size 4 than size
2. This indicates more future workload information, even
inaccurate, is still useful in boosting the performance.

D. Impact of Peak-to-Mean Ratio (PMR)

Intuitively, dynamic provisioning can save more power
when the data center trace has large PMR. Our experiments
confirm this intuition which is also observed in other works
[9], [4]. Similar to [9], we generate the workload from the
MSR traces by scaling a(f) as a_(t) = Ka” (t), and adjusting
v and K to keep the mean constant. We run the off-line
algorithm, CSR, RCSR, LCP(w) and DELAYEDOFF using
workloads with different PMRs ranging from 2 to 10, with
look-ahead window size of one unit time. The results are
shown in Fig. 3d. As seen, energy saving increases from about
40% at PRM=2, which is common in large data centers, to
large values for the higher PMRs that is common in small to
medium sized data centers. Similar results are observed for
different look-ahead window sizes.

E. Comparison with LCP(w) and DELAYEDOFF

Compared to LCP(w) with competitive ratio 3 regardless of
whether future information is available, CSR and RCSR have
better competitive ratios (2 — « and e/ (e — 1 + @)) and have
improved performance when future information is available
(corresponding to « increasing to 1). Although better ratios
may not assure that CSR and RCSR have better performance
for all types of workload since the competitive ratio is a worst-
case metric, Fig. 3b shows that CSR and RCSR perform better
than LCP(w) for the data trace from MSR Cambridge. The
performance gains of CSR and RCSR over LCP(w) and DE-
LAYEDOFF shown in Fig. 3b may seem small. However, these
gains, when multiplying the huge amount of energy consumed
by the data centers worldwide every year, correspond to a
substantial amount of energy cost saving beyond the state-of-
the-art solutions. Moreover, since our algorithms’ competitive
ratios are much smaller than that of LCP(w), there exist cases
that CSR and RCSR perform substantially better than LCP(w).

Compared to DELAYEDOFF, CSR and RCSR have per-
formance guarantee in terms of competitive ratios and they

improve as future information is made available. In contrast,
DELAYEDOFF does not have a competitive ratio analysis and
does not explore future information to improve performance.

ACKNOWLEDGMENTS

We thank Minghong Lin and Lachlan Andrew for sharing
the code of their LCP algorithm, and Eno Thereska for sharing
the MSR Cambridge data center traces. This work is sup-
ported by a China 973 Program (Project No. 2012CB315904),
and Hong Kong General Research Fund grants (Project No.
411209, 411010, and 411011), and an Hong Kong Area of
Excellence Grant (Project No. AoE/E-02/08).

REFERENCES

[11 J. G. Koomey, “Worldwide electricity used in data centers,” Environ-
mental Research Letters, no. 3, 2008.

[2] 1. E. Agency, “World energy balances (2007 edition),” 2007.

[3] U.S. Environmental Protection Agency, “Epa report on server and data
center energy efficiency,” ENERGY STAR Program, 2007.

[4] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
“Napsac: design and implementation of a power-proportional web clus-
ter,” ACM SIGCOMM Computer Communication Review, 2011.

[5] T. Lu and M. Chen, “Simple and effective dynamic provisioning for
power-proportioinal data centers,” CUHK, Tech. Rep., 2011. [Online].
Available: http://arxiv.org/pdf/1112.0442v2.pdf

[6] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, “Managing
energy and server resources in hosting centers,” in Proc. ACM SOSP,
2001.

[7]1 E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, “Load balancing
and unbalancing for power and performance in cluster-based systems,”
in Workshop on Compilers and Operating Systems for Low Power, 2001.

[8] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in Proc. USENIX NSDI, 2008.

[9] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic right-sizing

for power-proportional data centers,” Proc. IEEE INFOCOM, 2011.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taxonomy and

survey of energy-efficient data centers and cloud computing systems,”

Univ. of Melbourne, Tech. Rep. CLOUDS-TR-2010-3, 2010.

H. Qian and D. Medhi, “Server operational cost optimization for cloud

computing service providers over a time horizon,” in USENIX Hot’ICE,

2011.

A. Karlin, M. Manasse, L. Rudolph, and D. Sleator, “Competitive snoopy

caching,” Algorithmica, 1988.

A. Karlin, M. Manasse, L. McGeoch, and S. Owicki, “Competitive

randomized algorithms for nonuniform problems,” Algorithmica, vol. 11,

no. 6, pp. 542-571, 1994.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:

Practical power management for enterprise storage,” ACM Transactions

on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch, “Optimality

analysis of energy-performance trade-off for server farm management,”

Performance Evaluation, 2010.

D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power

and performance management of virtualized computing environments

via lookahead control,” Cluster Computing, 2009.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

