
DeepOPF: Deep Neural Network for DC Optimal Power Flow

Xiang Pan, Tianyu Zhao, and Minghua Chen
Department of Information Engineering, The Chinese University of Hong Kong

Abstract—We develop DeepOPF as a Deep Neural Network
(DNN) based approach for solving direct current optimal power
flow (DC-OPF) problems. DeepOPF is inspired by the observa-
tion that solving DC-OPF for a given power network is equivalent
to characterizing a high-dimensional mapping between the load
inputs and the dispatch and transmission decisions. We construct
and train a DNN model to learn such mapping, then we apply
it to obtain optimized operating decisions upon arbitrary load
inputs. We adopt uniform sampling to address the over-fitting
problem common in generic DNN approaches. We leverage on a
useful structure in DC-OPF to significantly reduce the mapping
dimension, subsequently cutting down the size of our DNN
model and the amount of training data/time needed. We also
design a post-processing procedure to ensure the feasibility of
the obtained solution. Simulation results of IEEE test cases show
that DeepOPF always generates feasible solutions with negligible
optimality loss, while speeding up the computing time by two
orders of magnitude as compared to conventional approaches
implemented in a state-of-the-art solver.

I. INTRODUCTION

As the most widely-used and mature model in deep learn-
ing, Deep Neural Network (DNN) [1] demonstrates superb
performance in complex engineering tasks. The capability of
approximating continuous mappings and the desirable scala-
bility make DNN a favorable choice in the arsenal of solving
large-scale optimization and decision problems. In this paper,
we apply deep learning to power systems and develop a DNN
approach for solving the essential optimal power flow (OPF)
problem in power system operation.

The OPF problem, first posed by Carpentier in 1962 in [2],
is to minimize an objective function, such as the cost of
power generation, subject to all physical, operational, and
technical constraints, by optimizing the dispatch and trans-
mission decisions. These constraints include Kirchhoff’s laws,
operating limits of generators, voltage levels, and loading
limits of transmission lines [3]. The OPF problem is central to
power system operations as it underpins various applications
including economic dispatch, unit commitment, stability and
reliability assessment, and demand response. While OPF with
a full AC power flow formulation (AC-OPF) is most accurate,
it is a non-convex problem and its complexity obscure practi-
cability. Meanwhile, based on linearized power flows, DC-OPF
is a convex problem admitting a wide variety of applications,
including electricity market clearing and power transmission
management. See e.g., [4], [5] for a survey.

Our DNN approach is inspired by the following obser-
vations on the characteristics of OPF and its application in
practice.
• Given a power network, solving the OPF problem is

equivalent to depicting a high-dimensional mapping be-

tween load inputs and optimized dispatch and transmis-
sion decisions.

• In practice, the OPF problem is usually solved repeatedly
for the same power network, e.g., every five minutes
by CAISO, with different load inputs at different time
epochs.

As such, it is conceivable to leverage the universal approxima-
tion capability of deep feed-forward neural networks [6], [7]
to learn such mapping for a given power network, and then
apply the mapping to obtain operating decisions upon giving
load inputs (e.g., once every five minutes).

In this paper, we develop DeepOPF as a DNN approach
for solving DC-OPF problems, which integrates the struc-
ture of the DC-OPF problem into the design of the DNN
model and the loss function. The framework also includes a
pre-processing procedure to calibrate the inputs to improve
DNN training efficiency and a post-processing procedure to
ensure the feasibility of the solutions obtained from the DNN
model. As compared to conventional approaches based on
interior-point methods [8], DeepOPF excels in (i) reducing
computing time and (ii) scaling well with the problem size.
These salient features are particularly appealing for solving the
(large-scale) security-constrained DC-OPF problem, which is
central to secure power system operation with contingency
in consideration. Note that the complexity of constructing
and training a DNN model is minor if amortized over the
many DC-OPF instances (e.g., one per every five minutes)
that can be solved using the same model. Simulation results of
IEEE test cases show that DeepOPF always generates feasible
solutions with negligible optimality loss, while speeding up the
computing time by two orders of magnitude as compared to
conventional approaches. As the initial work on applying the
deep neural network to solving OPF problems, we focus on the
simple setting of DC-OPF to illustrate the idea and highlight
the potential. The DeepOPF approach is applicable to more
general settings, including the large-scale security-constrained
OPF [9] and non-convex AC-OPF problems, which we leave
for future studies.

II. RELATED WORK

Due to the space limitation, we focus on the most related
works in this section; a more comprehensive discussion is
presented in our technical report [10]. Existing research mainly
focuses on two categories of methods for solving the OPF
problem. One is the methods based on numerical iteration
algorithms. The OPF problem to be solved can be first approxi-
mated as an optimization problem like quadratic programming
[11], or linear programming [12], and the numerical iteration

solvers like interior-point methods [13], were applied to ob-
tain the optimal solutions. However, the time complexity of
these numerical-iteration based algorithms may be substantial.
Usually the computation time increases when the scale of
transmission power system becomes large.

The other category is learning-based methods. Some work
focused on finding an alternative approach to solve the OPF
problem [14], yet these methods may not always generate
feasible solutions. Other work investigated how to integrate
the learning techniques into the conventional algorithm to
speed up the process of solving OPF problems by for instance
proper initialization. However, the resulting heuristic schemes
are still iteration based and may still incur a significant amount
of running time for large-scale instances. Apart from that,
[7] presented an approach to solve the constrained finite-
time optimal control problem based on deep learning, which
mainly focuses on achieves high accuracy with fewer memory
requirements. Despite such similarity, however, this paper
mainly focuses on how to solve the OPF problem faster by
levering the deep learning technique.

III. DC-OPF PROBLEM

In the DC-OPF problem, there are two types of variables,
i.e., the generator outputs and the power phase angle of
transmission lines. The problem is to minimize the total
generation cost subject to the generator operation limits, the
power balance equation, and the transmission line capacity
constraints [15] as follows:

min

Ngen∑
i=1

Ci (PGi)

s.t.

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, 2, ..., Nbus
B · θ = PG −PD
1
xij

(θi − θj) ≤ Pmax
ij , i, j = 1, 2, ..., Nbus

(1)

where Nbus is the number of buses and Ngen is the number
of generators. PGi is the power output of the generator in the
ith bus. Pmin

Gi and Pmax
Gi are the output limits of generators in

the ith bus, respectively. If there is no generator in the ithe
bus, Pmin

Gi and Pmax
Gi are set to be 0. B is an Nbus × Nbus

admittance matrix. If the ithe bus and the jthe bus are
adjacent buses, then the corresponding element in matrix B
is the reciprocal of the line reactance xij , Otherwise the
corresponding element is 0. PG is the bus power generation
vector and PD is the bus consumption vector. θ is the phase
angles vector. θi and θj are the phase angles at the ith bus
and the jth bus, respectively. 1

xij
(θi − θj) represents the bus

power injection from the jth bus and the ith bus. Pmax
ij is the

transmission limit from the ith bus to the j bus. Ci (PGi) is
individual cost function for the generator in the ith bus. The
cost function is derived from a heat rate curve, which gives the
generator electric power output as a function of the thermal
energy input rate times the fuel cost per thermal energy unit.
It is commonly modeled as a quadratic function [16]:

Ci (PGi) = λ21iPGi + λ2iPGi + λ3i, (2)

where λ1i, λ2i, and λ3i are the model parameters. The
parameters of the cost function can be obtained from measured
data of the heat rate curve [15].

IV. DEEPOPF FOR SOLVING DC-OPF
A. Overview of DeepOPF

The flowchart of the proposed framework is depicted in
Fig. 1. First, we collect the training data and perform pre-
processing. Specifically, we apply a uniform sampling method
to generate the load PD. We then obtain optimal solution PG

and θ for the corresponding DC-OPF problems as the ground-
truth, by using a state-of-the-art solver [17]. After that, the
training data will be normalized during the pre-possessing.
The details are in Sec. IV-B. Note that uniform sampling can
address the over-fitting issue in generic DNN approaches.

Second, we study an equivalent formation of DC-OPF to use
a scaling factor vector α̂ ∈ [0, 1] to represent the active power
PG, normalizing the output value ranges which are known
to facilitate training efficiency. Furthermore, we leverage on
the fact that the admittance matrix (after removing the entries
corresponding to the slack bus) is full rank to represent θ
by PG. Thus, it suffices to learn only the mapping from load
inputs to the active powers instead of to both the active powers
and the phase angles as in generic DNN approaches. This way,
we can reduce the size of the DNN model and the amount of
training data/time needed. The details are in Sec. IV-C.

Third, we build a DNN model with Nhid hidden layers
with Nneu on each layer based on the scale of the power
system to solve the fitting problem of the scaling factor
vector α̂. We train the DNN model by applying the data-
driven stochastic gradient descent optimization algorithm to
minimize a carefully-chosen loss function designed for DC-
OPF problems. The details are in Sec. IV-D.

Fourth, we integrate post-processing into the DeepOPF
to guarantee the feasibility of the solutions obtained by the
DNN model. If the DNN model generates infeasible solutions,
DeepOPF will project the solution into the feasible region and
return a feasible solution. The details are in Sec. IV-E.

B. load sampling and pre-processing

As mentioned in Section I, we assume the load on each
bus varies within a specific range around the default value
independently. The load data is sampled within [(1 − x) ∗
Pd, (1 + x) ∗ Pd] (Pd is the default power load at individual
bus d and x is the percentage of sample range like 10%)
uniformly at random. It is then fed into the traditional DC-
OPF solver to generate optimal solutions. As the magnitude
for each dimension of the input and output may be different,
each dimension of training data will be normalized with the
standard variance and mean of the corresponding dimension.

C. Linear transformation and mapping dimension reduction

There are inequality constraints related to PGi, we first
reformulated them through linear scaling as:

PGi = αi ·
(
Pmax
Gi − Pmin

Gi

)
, αi ∈ [0, 1] , i = 1, ..., Ngen,

(3)

Fig. 1. The framework of DeepOPF.

where we recall that Ngen is the number of generators. Thus,
instead of predicting the generated power, we can predict the
scaling factor αi and obtain the value of PGi. There are two
advantages to this approach. First, the range of αi naturally
matches the output range of the DNN restricted by the sigmoid
function [1]. Thus, it automatically prevents the recovery of the
predictions from violating the inequality constraints. Second,
the prediction range becomes smaller, which makes it easier
for the DNN model to learn the mapping between the load
and PGi. It should be noted that one bus is set as the slack
bus and used for balancing the mismatch between the total
load and supply, thus the PGi of the slack bus is obtained by
subtracting the output of the other buses from the total load.

Since the phase angle, θi is the state variable depends on
the decision variable PGi, and there exists a linear relationship
between them (the second equality constraint in the DC-OPF
problem). Thus, after obtaining PGi, i = 1, ..., Ngen, we can
have bus power generation vector PG, and can compute θ
accordingly. Suppose we obtain the (Nbus− 1)× (Nbus− 1)

matrix, B̃ by eliminating corresponding row and column of
the n× n admittance matrix B to the slack bus whose phase
angle is usually set to zero. The following lemma states a
useful property of the admittance matrix B pretty well-known
in the literature; see e.g., [15], [18].

Lemma 1: The matrix B̃ is a full-rank matrix.
According to Lemma 1, we can express the phase angles of

all bus except the phase angle of the slack bus as follows:

θ̃ =
(
B̃
)−1 (

P̃G − P̃D

)
, (4)

where P̃G and P̃D stand for the (Nbus − 1)-dimension
output and load vectors for buses excluding the slack bus,
respectively. As the phase angle of the slack bus is fixed, the
DNN model does not need to predict it. There are mainly
two advantages of this transformation. On one hand, we use
the property of the admittance matrix to reduce the number of

variables to predict, which further reduces the size of our DNN
model and the amount of training data/time needed. On the
other hand, the linear transformation in (4) makes it convenient
to model error related to θ concerning P̂G in the loss function.

D. The DNN model

The core of DeepOPF is the DNN model applied to
approximate the mapping between the load and power output
of the generators. The DNN model is established based on
the multi-layer feed-forward neural network structure, which
is defined as:

h0 = P̃D,

hi = σ (Wihi−1 + bi−1) ,

α̂ = σ′ (wohL + bo) ,

where h0 denotes the input vector of the network, hi is the
output vector of the ith hidden layer, hL is the output vector,
and α̂ is the generated scaling factor vector for the generators.
Matrices Wi, biases vectors bi, and activation functions σ(·)
and σ′(·) are subject to the DNN design.

1) The architecture: In the DNN model, h0 represents the
normalized load data, which is the inputs of the network. After
that, features are learned from the input vector h0 by several
fully connected hidden layers. The ith hidden layer models
the interactions between features by introducing a connection
weight matrix Wi and a bias vector bi. Activation function
σ(·) further introduces non-linearity into the hidden layers. In
our DNN model, we adopt the widely-used Rectified Linear
Unit (ReLU) as the activation function of the hidden layers.
At last, the Sigmoid function σ′ (x) = 1

1+e−x is applied as
activation function of the output layer to project the outputs of
the network to (0, 1). For different power networks (as IEEE
test cases), we tailor the DNN model by educated guesses
and iterative tuning, which is by far the common practice
in generic DNN approaches in various engineering domains.

Details of designing the corresponding DNN can be found in
our technical report [10].

2) The loss function: For each item in the training data set,
the loss function consists of two parts: the difference between
the generated solution and the reference solution obtained from
solvers and the value of the penalty function upon solutions
being infeasible. Since there exists a linear correspondence
between PG and θ, there is no need to introduce the loss
term of the phase angles. The difference between the generated
solution and the actual solution of PGi is expressed by the sum
of mean square error between each element in the generated
scaling factors α̂i and the actual scaling factors αi in optimal
solutions:

LPG =
1

Ngen

Ngen∑
i=1

(α̂i − αi)
2
, (5)

where Nbus represents the number of generators. For the
inequality constraints related to the transmission on each line,
we can represent these constraints by PG as following:

−1 ≤ 1

Pmax
ij · xij

· (θi − θj) ≤ 1, , i, j = 1, 2, ..., Nbus. (6)

We first introduce an na×n matrix A, where na is the number
of adjacent buses. Each row in A corresponds to an adjacent
bus pair. Given any the adjacent bus pair (i, j), we assume
the power flow is from the ith bus to the jth bus. Thus, the
elements, ai and aj , are the corresponding entries of the matrix
A defined as:

ai =
1

Pmax
ij · xij

and aj = − 1

Pmax
ij · xij

. (7)

Based on (4) and (7), (6) can be expressed as:

− 1 ≤
(
Aθ̂
)
k
≤ 1, k = 1, ..., na, (8)

where
(
Aθ̂
)
k

represents the kth element of Aθ̂. Thus, the

phase angle vector θ̂ is obtained through PG and θ̄. We
can then calculate the penalty value for

(
Aθ̂
)
k
, and add the

average penalty value into the loss function for training. The
penalty term capturing the feasibility of the generated solutions
can be expressed as:

Lpen =
1

na

na∑
k=1

p
((

Aθ̂
)
k

)
, (9)

where na is the number of the adjacent buses, p(·) is the
penalty function defined as p (x) = x2 − 1, and

(
Aθ̂
)
k

represents the kth element in the vector Aθ̂ (θ̂ is the generated
phase angle vector by (4)). The total loss can be expressed as
the weighted summation of the two parts:

Ltotal = w1 · LPG + w2 · Lpen, (10)

where w1 and w2 are positive weighting factors, which are
used to balance the influence of each term in the training
phase. As the objective of the designed loss function is to find

the relatively accurate PG, the first term is with the highest
priority in the loss function as it has much more influence
on the recovery of the PG. The other loss term, which is
with respect to the penalty related to the transmission line, is
regarded with lower priority in the training process.

3) The training process: In general, the training processing
can be regarded as minimizing the average value of loss
function with the given training data by tuning the parameters
of the DNN model as follows:

min
Wi,bi

1

Ntrain

Ntrain∑
k=1

Ltotal,k (11)

Ntrain is the amount of training data and Ltotal,k is the loss
of the kth item in the training.

We apply the widely-used optimization technique in the
deep learning, stochastic gradient descent (SGD) [1], in the
training stage, which is effective for the large-scale dataset and
can economize on the computational cost at every iteration by
choosing a subset of summation functions at every step.

E. Post-processing

The proposed approach may encounter a situation in which
the balanced amount of electricity exceeds the feasible capac-
ity range of the slack bus. To address this issue and ensure
the integrity of the algorithm, after the generated solution P̂G

is obtained, the approach needs to conduct post-processing to
guarantee the feasibility of the solution.

As discussed before, the constraints in the DC-OPF problem
are (closed) linear constraints. Thus, the post-processing can
be regarded as to project the initial generated solution into the
polyhedron that is the intersection of a finite number of closed
linear constraints, which can be formulated as follows:

min ‖P̂G − u‖2 s.t. u ∈ C1 ∩ C2... ∩ Cd, (12)

where the convex sets C1, C2, ..., Cd denote the constraints
in the DC-OPF problem. By solving the problem in (12),
we can find the feasible solution closest to the generated
solution P̂G. The reason that we want to find the feasible
one that is closest to the pseudo-optimal solution lies in
that, we want to provides the feasible one which has the
smallest variation from P̂G, and expecting the value of the cost
function is also close to the optimum. The above problem is
a convex quadratic programming problem and can be solved
by the fast dual proximal gradient algorithm proposed in [19],
with a convergence rate of the primal sequence being of the
order O (1/τ), where τ is the iteration steps. With the post-
processing, the proposed approach can guarantee the feasibility
of the generated solution. The numerical experiments on IEEE
test cases in Sec. V show that DeepOPF generates feasible
solutions for all DC-OPF instances; thus in practice, maybe
only few instances will involve the post-processing process.

F. Computational complexity

As mentioned before, the computational complexity of the
traditional iteration approach is related to the scale of the DC-
OPF problem. For example, the computational complexity of

TABLE I
PARAMETERS FOR STANDARD TEST CASES.

Case Nbus Ngen Nload Nbran Nhid Nneu lr

30 30 6 20 41 2 16 1e-3
7 57 7 42 80 4 32 1e-3

118 118 54 99 186 6 64 1e-3
300 300 69 199 411 6 128 1e-3

TABLE II
PERFORMANCE EVALUATION OF THE PROPOSED APPROACH ON IEEE

STANDARD TEST CASES.

Case
Feasibility

rate. (%)

Ave. cost ($/hr) Time (millisecond) Speedup

DeepOPF Ref. DeepOPF Ref.

30 100 589 588 0.19 21 ×110

57 100 42750 42667 0.22 27 ×122

118 100 133776 131311 0.29 44 ×151

300 100 706602 706338 0.37 50 ×135
* Feasibility rate represents the percentage of the feasible generated

solution before post-processing.
* Time is the average running time of all test instances, which includes

the computation time for the power generation and phase angle.

interior point method based approach for the convex quadratic
programming is O

(
L2n4

)
measured as the number of arith-

metic operations [20], where L is the number of input bits and
n is the number of variables.

For our proposed approach, the computational complexity
mainly consists of two parts: the calculation as the input
data passing through the DNN model and the post-processing.
For the post-processing, its computational complexity can be
negligible in practical usage as the DNN model barely generate
infeasible solutions. Thus, the computational complexity of
the proposed approach is approximately determined by the
calculation with respect to the DNN model. It can be evaluated
by the scale of the network [21].

Recall that the input and the output of the DNN model in
DeepOPF are Nin and Nout dimensions, respectively, and the
DNN model has Nhid hidden layers and each hidden layer
has Nn neurons. Once we finish training the DNN model,
the complexity of generating solutions by using DeepOPF is
characterized in the following proposition.

Proposition 1: The computational complexity (measured
as the number of arithmetic operations) to generate scaling
factors for P̂G to the DC-OPF problem by using DeepOPF
is given by

T = NinNn + (Nhid − 1)N2
n +NoutNn, (13)

which is O
(
NhidN

2
n
)
.

For example, as shown in Table I, for the parameters
associated with IEEE 300 case, T = 81920. As for the given
topology, the scale of the DNN model is fixed. It means the
computational complexity T is constant. After that, we can
obtain the phase angle through simple linear operations.

V. NUMERICAL EXPERIMENTS

A. Experiment setup

1) Simulation environment: The experiments are conducted
in Ubuntu 18.04 on the six-core (i5-8500@3.00G Hz) CPU
workstation and 8GB RAM.

2) Test case: The proposed approach is tested with four
IEEE standard cases [22]: the IEEE 30-bus power system,
IEEE 57-bus power system, the IEEE 118-bus test system
and the IEEE 300-bus system, respectively, which includes
the small-scale, medium-scale and large-scale power system
network for the DC-OPF problem. The related parameters for
the test cases are shown in Table I.

3) Training data: In the training stage, the load data is
sampled within [90%, 110%] of the default load on each load
uniformly at random. After that, the solution for the DC-OPF
problem provided by the pypower [23] is regarded as ground-
truth. Pypower is based on the traditional interior point method
[17]. Taking the sampling range and different scale of the
cases, the corresponding amount of training data for different
cases is empirically determined in the simulation as follows:
10000 training data for IEEE Case30, 25000 training data for
IEEE Case57 and IEEE Case118, 50000 training data for IEEE
Case300. For each test case, the amount of test data is 10000.

4) The implementation of the DNN model: We design the
DNN model based on Pytorch platform. Besides, the epoch
is set to 200 and the batch size is 64. Based on the range
of each loss obtained from some preliminary experiments, the
value of weighting factors w1 and w2 are set to 1 and 0.00001
empirically. Meanwhile, other parameters like the number of
hidden layers, the number of neurons in each layer and the
learning rate for each test case are also shown in Table. I.

B. Performance evaluation

The simulation results of the proposed approach for test
cases are shown in Table II. We use the feasibility rate to rep-
resent the percentage of the feasible generated solution before
post-processing. We can see from the Table. II the percentage
of the feasible solution is 100% before post-processing, which
indicates the proposed neural network model can keep the
feasibility of the generated solution well without resorting to
the post-process step. As the load of each node are assumed
varying within a specific range, and the load for the training
data is sampled in this range uniformly at random, the DNN
model can find the mapping between the load in the specific
range and the corresponding solution for the DC-OPF problem.
It should be noted that the proposed neural network can
learn the mapping for any varying range as long as there are
enough sample data for training. Thus, the neural network
model barely generates the infeasible solution, which means
the proposed approach can mostly find a feasible solution
through mapping. Even if it obtains the infeasible solution,
the model can resort to the post-processing to adjust the
infeasible generated solution into the feasible one. In addition,
the difference between the cost with the generated solution
and that of the reference solution is shown in the Table. II.

10 12 25 26 31 46 49 54 59 61 65 66 69 80 87 89 100 103 111

Generator Index

0

100

200

300

400

500

600

700

A
c
ti
v
e
 P

o
w

e
r

G
e
n
e
ra

ti
o
n
 (

M
W

) DeepOPF

Ref.

Fig. 2. The comparisons of several large generated solutions and the optimal
solution for IEEE case-118.

The difference can be negligible, which means each dimension
of the generated solution has high accuracy when compared
to that of the optimal solution. To verify this, we show the
comparisons between the generated solution and the optimal
solution for several generators under IEEE case-118 with
the given total load in Fig. 2 as an example. For better
illustration, we show the comparisons of the generators with
large output. We can observe from Fig. 2 that for prediction of
the generators large output, the DeepOPF approach can not
only describe the relative relation between each dimension in
the optimal solution but also obtain prediction with a small
difference. Usually, the total cost is mainly determined by the
generators with larger output.

Apart from that, we can see that compared with the tradi-
tional DC-OPF solver, our DeepOPF approach can speed up
the computing time by two order of magnitude. As mentioned
before, given the topology of the power system, solving the
OPF problem means to find the mapping between the load
and decision variables of the generators. The proposed model
can achieve high prediction accuracy much faster than the
traditional iteration based solution. In addition, we provide
the training time consumption (sec./epoch) as follows: case30
(0.3), case57 (3.6), case118 (10.4) and case300 (19.0). Recall
that 200 epoches can achieve acceptable predicted solutions as
shown in the simulation. As the OPF problem has to be solved
frequently and repeatedly, the training time is negligible for
the long-term DC-OPF application.

VI. CONCLUSION

Solving DC-OPF optimally and efficiently is crucial for
reliable and cost-effective power system operation. In this
paper, we develop DeepOPF to generate feasible solutions for
DC-OPF with negligible optimality loss. DeepOPF is inspired
by the observations that solving DC-OPF for a given power
network is equivalent to learning a high-dimensional mapping
between the load inputs and the dispatch and transmission
decisions. Simulation results show that DeepOPF scales well
in the problem size and speed up the computing time by
two orders of magnitude as compared to conventional of
using modern convex solvers. These observations suggest two
salient features particularly appealing for solving the large-
scale security-constrained DC-OPF problems and the non-

convex AC-OPF problems, which are both compelling future
directions.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning.
MIT Press Cambridge, 2016, vol. 1.

[2] J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin
de la Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431–447,
1962.

[3] D. E. Johnson, J. R. Johnson, J. L. Hilburn, and P. D. Scott, Electric
Circuit Analysis. Prentice Hall Englewood Cliffs, 1989, vol. 3.

[4] S. Frank, I. Steponavice, and S. Rebennack, “Optimal power flow: a
bibliographic survey i,” Energy Systems, vol. 3, no. 3, pp. 221–258, Sep
2012.

[5] ——, “Optimal power flow: a bibliographic survey ii,” Energy Systems,
vol. 3, no. 3, pp. 259–289, Sep 2012.

[6] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[7] B. Karg and S. Lucia, “Efficient representation and approximation
of model predictive control laws via deep learning,” arXiv preprint
arXiv:1806.10644, 2018.

[8] J. A. Momoh and J. Z. Zhu, “Improved interior point method for opf
problems,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp.
1114–1120, Aug 1999.

[9] L. Liu, A. Khodaei, W. Yin, and Z. Han, “A distribute parallel approach
for big data scale optimal power flow with security constraints,” in IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm), Oct 2013, pp. 774–778.

[10] X. Pan, T. Zhao, and M. Chen, “Deepopf: Deep neural network for dc
optimal power flow,” arXiv preprint arXiv:04479, 2019.

[11] J. A. Momoh, “A generalized quadratic-based model for optimal power
flow,” in Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, vol. 1, Cambridge, MA, USA, Nov 1989, pp. 261–271.

[12] S. H. Low, “Convex relaxation of optimal power flowpart i: Formulations
and equivalence,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 1, pp. 15–27, March 2014.

[13] A. A. Sousa and G. L. Torres, “Globally convergent optimal power flow
by trust-region interior-point methods,” in 2007 IEEE Lausanne Power
Tech, Lausanne, Switzerland, Jul 2007, pp. 1386–1391.

[14] Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical Learning
For DC Optimal Power Flow,” arXiv preprint arXiv:1801.07809, 2018.

[15] R. D. Christie, B. F. Wollenberg, and I. Wangensteen, “Transmission
management in the deregulated environment,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 170–195, Feb 2000.

[16] J. H. Park, Y. S. Kim, I. K. Eom, and K. Y. Lee, “Economic load dispatch
for piecewise quadratic cost function using hopfield neural network,”
IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 1030–1038,
Aug 1993.

[17] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas,
“On computational issues of market-based optimal power flow,” IEEE
Transactions on Power Systems, vol. 22, no. 3, pp. 1185–1193, Aug
2007.

[18] A. M. Kettner and M. Paolone, “On the properties of the power systems
nodal admittance matrix,” IEEE Transactions on Power Systems, vol. 33,
no. 1, pp. 1130–1131, Jan 2018.

[19] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for
convex minimization and applications,” Operations Research Letters,
vol. 42, no. 1, pp. 1–6, Jan 2014.

[20] Y. Ye and E. Tse, “An extension of karmarkar’s projective algorithm for
convex quadratic programming,” Mathematical Programming, vol. 44,
no. 1, pp. 157–179, May 1989.

[21] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” in Proceeding of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, June 2015, pp. 5353–
5360.

[22] “Power Systems Test Case Archive,” 2018, http://labs.ece.uw.edu/pstca/.
[23] “pypower,” 2018, https://pypi.org/project/PYPOWER/.

