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Abstract—We develop DeepOPF as a Deep Neural Network
(DNN) approach for solving security-constrained direct current
optimal power flow (SC-DCOPF) problems, which are critical for
reliable and cost-effective power system operation. DeepOPF is
inspired by the observation that solving SC-DCOPF problems
for a given power network is equivalent to depicting a high-
dimensional mapping from the load inputs to the generation
and phase angle outputs. We first train a DNN to learn the
mapping and predict the generations from the load inputs. We
then directly reconstruct the phase angles from the generations
and loads by using the power flow equations. Such a predict-
and-reconstruct approach reduces the dimension of the mapping
to learn, subsequently cutting down the size of the DNN and
the amount of training data needed. We further derive a
condition for tuning the size of the DNN according to the desired
approximation accuracy of the load-generation mapping. We
develop a post-processing procedure based on `1-projection to
ensure the feasibility of the obtained solution, which can be of
independent interest. Simulation results for IEEE test cases show
that DeepOPF generates feasible solutions with less than 0.2%
optimality loss, while speeding up the computation time by up to
two orders of magnitude as compared to a state-of-the-art solver.

Index Terms—Deep learning, Deep neural network, Optimal
power flow.

NOMENCLATURE

Variable Definition
N Set of buses, N , |N |
E Set of branch
G Set of generators
D Set of load
C Set of contingency cases
PG Power generation injection vector, [PGi , i ∈ N ]
Pmin
G Minimum generator output vector, [Pmin

Gi
, i ∈ N ]

Pmax
G Maximum generator output vector, [Pmax

Gi
, i ∈ N ]

PD Power load vector, [PDi , i ∈ N ]
Θc Voltage angle vector under the c-th contingency
θc,i Voltage angle under the c-th contingency for bus i
Bc Admittance matrix under the c-th contingency
xij,c Line reactance from bus i to j under the c-th contingency
Pmax
Tij,c Line transmission limit from bus i to j under the c-th

contingency
Nhid The number of hidden layers in the neural network

We use | · | to denote the size of a set. PGi = Pmin
Gi

= Pmax
Gi

=

0,∀i /∈ G, and PDi = 0, ∀i /∈ D.
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I. INTRODUCTION

The “deep learning revolution” largely enlightened by the
October 2012 ImageNet victory [1] has transformed various
industries in human society, including artificial intelligence,
health care, online advertising, transportation, and robotics. As
the most widely-used and mature model in deep learning, Deep
Neural Network (DNN) [2] demonstrates superb performance
in complex engineering tasks such as recommendation [3],
bio-informatics [4], mastering difficult game like Go [5],
and human pose estimation [6]. The capability of approximat-
ing continuous mappings and the desirable scalability make
DNN a favorable choice in the arsenal of solving large-scale
optimization and decision problems in engineering systems.
In this paper, we apply DNN to power systems for solving
the essential security-constrained direct current optimal power
flow (SC-DCOPF) problem in power system operation.

The OPF problem, first posed by Carpentier in 1962 in [7],
is to minimize an objective function, such as the cost of
power generation, subject to all physical, operational, and
technical constraints, by optimizing the dispatch and trans-
mission decisions. These constraints include Kirchhoff’s laws,
operating limits of generators, voltage levels, and loading
limits of transmission lines [8]. The OPF problem is central to
power system operations as it underpins various applications
including economic dispatch, unit commitment, stability and
reliability assessment, and demand response. While OPF with
a full AC power flow formulation (AC-OPF) is most accurate,
it is a non-convex problem and its complexity obscures practi-
cability. Meanwhile, based on linearized power flows, DC-OPF
is a convex problem admitting a wide variety of applications,
including electricity market clearing and power transmission
management. See e.g., [9], [10] for a survey.

The SC-DCOPF problem, a variant of DC-OPF, is critical
for reliable power system operation against contingencies
caused by equipment failure [11]. It considers not only con-
straints under normal operation, but also additional steady-
state security constraints for each possible contingency1 [13].
Meanwhile, solving SC-DCOPF incurs excessive computa-

1There are two types of SC-DCOPF problems, namely the preventive
SC-DCOPF problem and the corrective SC-DCOPF problem. Both of them
are critical in practice. We focus on the preventive SC-DCOPF problem in
this paper, in which the system operating decisions stay unchanged once
determined and they need to satisfy both the pre- and post- contingency
constraints. Usually, only line contingencies are considered in the preventive
SC-DCOPF problem [12]. Our DeepOPF approach is also useful for the
corrective SC-DCOPF problem, where the system operator only has a short
time to adjust the operating points after the occurrence of a contingency. By
DeepOPF, the system operator can obtain new operating points in a fraction
of the time used by conventional solvers.



2

tional complexity, limiting its applicability in large-scale
power networks [14].

To this end, we propose a machine learning approach for
directly solving the SC-DCOPF problem. Our approach is
based on the following observations.
• Given a power network, solving the SC-DCOPF problem

is equivalent to depicting a high-dimensional mapping
between load inputs and generations and voltages outputs.

• In practice, the SC-DCOPF problem is usually solved re-
peatedly for the same network, e.g., every 5 minutes [11],
with different load inputs at different time epochs.

As such, it is conceivable to leverage the universal approxi-
mation capability of deep feed-forward neural networks [15]–
[19], to learn the input-to-output mapping for a given power
network, and then apply the mapping to obtain operating de-
cisions upon giving load inputs (e.g., once every 5 minutes).2

Specifically, we develop DeepOPF as a DNN based solu-
tion for the SC-DCOPF problem. As compared to conventional
approaches based on interior-point methods [20], DeepOPF
excels in (i) reducing computing time and (ii) scaling well
with the problem size. These salient features are particularly
appealing for solving large-scale SC-DCOPF problems. Note
that the complexity of constructing and training a DNN model
is minor if amortized over many problem instances (e.g., one
per every 5 minutes) that can be solved using the same model.
We summarize our contributions as follows.

First, after reviewing the SC-DCOPF problem in Sec. III,
we prospose DeepOPF as a DNN framework for solving the
SC-DCOPF problem in Sec. IV. In DeepOPF, we first train
a DNN to learn the load-generation mapping and predict the
generations from the load inputs. We then directly reconstruct
the phase angles from the generations and loads by using
the (linearized) power flow equations. Such a predict-and-
reconstruct two-step procedure reduces the dimension of the
mapping to learn, subsequently cutting down the size of our
DNN and the amount of training data/time needed. We also
design a post-processing procedure based on `1-projection to
ensure the feasibility of the final solution, which can be of
independent interest.

Then in Sec. V, we derive a condition suggesting that the
approximation accuracy of the neural network in DeepOPF
decreases exponentially in the number of layers and polyno-
mially in the number of neurons per layer. This allows us to
tune the size of the neural network in DeepOPF according to
the desired performance. We also analyze the computational
complexity of DeepOPF.

Finally, we carry out simulations and summarize the results
in Sec. VI. Simulation results of IEEE test cases show that
DeepOPF generates feasible solutions with less than 0.2%
optimality loss. As compared to a state-of-the-art solver,
DeepOPF speeds up the computation time by up to two orders

2Given a power network, as discussed in Sec. V, the mapping between the
load input and the optimal solution of the SC-DCOPF problem is continuous
and piece-wise linear. Existing works [15]–[19] show that the feed-forward
neural networks can approximate real-valued continuous functions arbitrary
well as the neural network size goes to infinity. Thus one can expect that
a well-trained DNN would generate a close-to-optimal solution for the SC-
DCOPF problem.

of magnitude under the typical load condition and by up to
one order of magnitude under the congested load condition.
The results also suggest a trade-off between the prediction
accuracy and running time of DeepOPF.

Due to the space limitation, all proofs are in the supple-
mentary material.

II. RELATED WORK

Existing studies on solving SC-OPF focus on four lines of
approaches. The first is on iteration-based algorithms. The
SC-OPF problem is first approximated as an optimization
problem, e.g., quadratic programming [21] or linear program-
ming [22]. Then iteration-based algorithms, e.g., the interior-
point method [20], [23], are applied to solve the approximated
problems. The time complexity of iteration-based algorithms,
however, can be substantial for large-scale power systems, lim-
iting its applicability in practice. This is due to the significant
number of constraints introduced by the consideration of a
large number of contingencies. See, e.g., [13] for a survey on
the iteration-based algorithms for solving SC-OPF problems.

The second approach is based on computational intelligence,
e.g., evolutionary programming [24]–[26]. For instance, the
authors of [24] propose a particle swarm optimization method
for solving SC-OPF problems, in which they apply the particle
swarm optimization (PSO) algorithm with reconstruction oper-
ators (PSO-RO) to find the solutions and designed an external
penalty to ensure the feasibility of the obtained solution.
Two limitations of this approach are the lack of performance
guarantee and high computational complexity [27].

The third is on learning-based methods. There have been
researches applying machine learning to various tasks in the
power system, e.g., power system state estimation (PSSE) [28];
see [29] for a comprehensive survey. On solving OPF prob-
lems, existing studies mainly focus on integrating the learn-
ing techniques into conventional algorithms to facilitate the
solving process [30], [31]. For instance, [30] applies a neural
network to learn the system security boundaries as an explicit
function to be used in the OPF formulation.

Recently, there is a line of research on determining the
active/inactive constraints set to reduce the size of power
system optimization problems, e.g., unit commitment and OPF
problems, to accelerate the solving process [32]–[34]. The idea
of this category of approaches is to reduce the scale of the
problem without losing optimality. The speedup comes from
the problem size reduction as any solvers can solve the reduced
problem faster than solving the original problem directly.
There is no optimality loss for this category of approach if the
inactive/active constraints are identified correctly. Meanwhile,
our DeepOPF approach develops a DNN-based solver for the
OPF problem. It relies on having a large number of training
data to train a DNN to predict generations from the input
loads. The approach designs one solver for every interested
OPF formulation. The advantage lies in that the DNN solvers
can be much faster than conventional solvers. The optimality
loss can be adjusted by constructing and training a larger DNN.
The speedup comes from the new framework for designing
OPF solvers. The disadvantage is two-fold. First, the approach
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Fig. 1: Overview of the predict-and-reconstruct framework.

would always incur optimality loss, due to the approximation
errors of DNN. Second, one will need to design and train
different solvers for different power networks and prepare a
large amount of training data. In practice, these can be done
offline.

We note that two approaches are orthogonal to each other
and can be combined to achieve a speedup better than those by
individual approaches. Specifically, given an OPF formulation,
one can first identify and remove the inactive constraints to
obtain a reduced problem (assuming no optimality loss). Then
one can apply the pre-trained DNN solver for the reduced
problem to obtain the solution. This way, the overall speedup
performance is the product of that achieved by reducing prob-
lem size and that achieved by the DNN solver, better than those
achievable by individual approaches. Both approaches may
generate infeasible solutions. In such cases, one may apply the
`1-projection based post-processing procedure, in Sec. IV-F,
to obtain a feasible solution with less computational time than
re-solving the original (quadratic) SC-DCOPF problem.

It is also conceivable to apply the K nearest neighbor
(KNN) scheme to generate an approximate solution of the
OPF problems given the load input. It is well understood
that, as compared to the neural-network based approach, the
KNN scheme incurs less training-time complexity but higher
running-time complexity. This is due to that one has to identify
the K nearest neighbors of the input, which is expensive for
large-dimension problems.

To our best knowledge, DeepOPF is the first to develop
a DNN-based solver for directly solving OPF problems. It
learns the mapping from the load inputs to the generation
and voltage outputs and directly obtains solutions for the SC-
DCOPF problem with feasibility guarantees. As compared
to our previous study in [35], this paper studies the more
challenging SC-DCOPF problem and characterizes a condition
for tuning the size of the DNN according to the desired approx-
imation accuracy of the load-generation mapping. The predict-
and-reconstruct DNN framework for solving OPF problems
outlined in [35] (and this paper) applies to the AC-OPF setting
as well. It has received growing interests with initial results
reported in [36], [37], which demonstrate the speedup potential
and highlight the challenges of ensuring solution feasibility.

III. SECURITY-CONSTRAINED DCOPF PROBLEM

We focus on the widely-studied (N − 1) SC-DCOPF
problem considering contingencies due to the outage of any
single transmission line. The objective is to minimize the total
generation cost subject to the generator operation limits, the
power balance equations, and the transmission line capacity

constraints under all contingencies [38]. Assumed that the
power network remains connected upon contingency, the SC-
DCOPF problem is formulated as follows3:

min
Θc,PG

∑
i∈G

gi (PGi) (1)

s.t. Pmin
Gi ≤ PGi ≤ Pmax

Gi , i ∈ G, (2)
Bc ·Θc = PG − PD, c ∈ C, (3)
1

xij,c
(θi,c − θj,c) ≤ Pmax

Tij,c, (i, j) ∈ E , c ∈ C. (4)

Here c = 0 denotes the case without any contingencies. Pmax
Tij,c

is the transmission limit for the branch connecting buses i and
j. Bc is the admittance matrix for the c-th contingency, which
is an N ×N matrix with entries

Bij,c =


0, if (i, j) /∈ E , i 6= j;

− 1
xij,c

, if (i, j) ∈ E ;
N∑

k=1,k 6=i

1

xij,c
, if i = j.

The first set of constraints in the formulation describe the
generation limits. The second set of constraints are the power
flow equations with contingencies taken into account. The
third set of constraints capture the line transmission capacity
for both pre-contingency and post-contingency cases. In the
objective, gi (PGi) is the cost function for the generator at the
i-th bus, commonly modeled as a quadratic function [40]:

gi (PGi) = λ1iP
2
Gi + λ2iPGi + λ3i, (5)

where λ1i, λ2i, and λ3i are the model parameters and can
be obtained from measured data of the heat rate curve [41].
We note that the SC-DCOPF problem is a strictly convex
(quadratic) problem and thus has a unique optimal solution.
While the SC-DCOPF problem is important for reliable power
system operation, solving it for large-scale power networks
incurs excessive running time, limiting its practicability [14].
In the next section, we propose a neural network approach to
solve the SC-DCOPF problem in a fraction of the time used
by existing solvers.

IV. DEEPOPF FOR SOLVING SC-DCOPF

A. A Neural-Network Approach for Solving OPF Problems

We outline a general predict-and-reconstruct framework for
solving OPF in Fig. 1. Specifically, we exploit the depen-
dency induced by the equality constraints among the decision
variables in the OPF formulation. Given the load inputs, the
learning model (e.g., DNN) is applied to predict only a set
of independent variables. The remaining variables are then
determined by leveraging the (power balance) equality con-
straints. This way, we not only reduce the number of variables
to predict but also guarantee that the obtained solution always
satisfies the equality constraints, which is usually difficult for

3We note that there is another formulation involving only generations as
the phase angels can be uniquely determined by the generations and loads;
see e.g., [38]. We focus on the standard formulation and both formulations
incur the same order of running time complexity [39].
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generic learning based approaches. In this paper, we follow
this general approach to develop DeepOPF for solving the
SC-DCOPF problem.

B. Overview of DeepOPF

The framework of DeepOPF is shown in Fig. 2, which
is divided into a training stage and an inference stage. We
first train a DNN to learn the load-generation mapping and
predict the generations from the load inputs. We then directly
compute the voltages from the generations and loads by using
the (linearized) power flow equations.

We discuss the process of constructing and training the
DNN model in the following subsections. In particular, we
discuss the preparation of the training in Sec. IV-C, the
variable prediction and reconstruction in Sec. IV-D, and the
design and training of DNN in Sec. IV-E.

In the inference stage, we directly apply DeepOPF to solve
the SC-DCOPF problem with given load inputs. DeepOPF
may generate infeasible solutions due to the error in approxi-
mating the mapping. We describe a post-processing procedure
based on `1-projection to ensure the feasibility of the obtained
solutions in Sec. IV-F.

C. Load Sampling and Pre-processing

We sample the loads within [(1 − x) · PDi, (1 + x) · PDi]
uniformly at random, where PDi is the default power load
at the i-th bus and x is the percentage of sampling range,
e.g., 10%. It is then fed into the traditional quadratic program-
ming solver [42] to generate the optimal solutions. Uniform
sampling is applied to avoid the over-fitting issue which is
common in generic DNN approaches4. After that, the training
data is normalized (using the statistical mean and standard
variation) to improve training efficiency.

D. Generation Prediction and Phase Angle Reconstruction

We express PGi as follows, for i ∈ G,

PGi = αi ·
(
Pmax
Gi − Pmin

Gi

)
+ Pmin

Gi , (6)

where αi ∈ [0, 1] is a scaling factor. It is clear that αi
and PGi

have a one-to-one correspondence. Thus the scaling
factors used in the training phase can be directly computed
from the generated data. Meanwhile, instead of predicting the
generations with diverse value ranges, we predict the scaling
factor αi ∈ [0, 1] and recover PGi by using (6)). This simplifies
the DNN output layer design to be discussed later. Note that
the generation of the slack bus is obtained by subtracting
generations of other buses from the total load.

Once we obtain PG, we directly compute the phase angles
by a useful property of the admittance matrices. We first obtain
an (N − 1)× (N − 1) matrix, B̃c by eliminating the row and
column corresponding to the slack bus from the admittance

4For load inputs of large dimensions, the uniform mechanism may not be
sufficient to guarantee enough good samples, especially near the boundary. In
those cases, Markov chain Monte Carlo (MCMC) methods can be applied
to sample according to a pre-specified probability distribution, to collect
sufficient samples near the boundary of the sampling space.

matrix Bc for the c-th contingency. It is well-understood that
B̃c is a full-rank matrix [41]. Then we compute an (N − 1)-
dimensional phase angle vector Θ̃c as

Θ̃c =
(
B̃c

)−1 (
P̃G − P̃D

)
, (7)

where P̃G and P̃D stand for the (N − 1)-dimensional genera-
tion and load vectors for buses excluding the slack bus under
each contingency, respectively. In the end, we output the N -
dimensional phase angle vector Θc by inserting a constant
phase angle for the slack bus into Θ̃c.

There are two advantages to this design. On one hand,
we use the property of the admittance matrix to reduce the
number of variables to predict by our neural network, cutting
down the size of our DNN model and the amount of training
data/time needed. On the other hand, the equality constraints
involving the generations and the phase angles can be satisfied
automatically, which can be difficult to handle in alternative
learning-based approaches.

E. The DNN Model

The core of DeepOPF is the DNN model, which is applied
to approximate the load-generation mapping, given a power
network. The DNN model is established based on the multi-
layer feed-forward neural network structure, which consists
of typical three-level network architecture: one input layer,
several hidden layers, and one output layer. More specifically,
the DNN model is defined as:

h0 = PD,

hi = σ (Wihi−1 + bi−1) ,∀ i = 1, ..., Nhid

α̂ = σ′ (wohhid + bo) ,

where h0 denotes the input vector of the network, hi is the
output vector of the i-th hidden layer and α̂ is the generated
scaling factor vector for the generators.

1) The architecture: The i-th hidden layer models the
interactions between features by introducing a connection
weight matrix Wi and a bias vector bi. The activation function
σ(·) further introduces non-linearity into the hidden layers.
We adopt the Rectified Linear Unit (ReLU) as the activation
function of the hidden layers, which helps to accelerate the
convergence and alleviate the vanishing gradient problem [1].
In addition, the Sigmoid function [2], σ′ (x) = 1

1+e−x , is
applied on the output layer to constrain the outputs within
(0, 1).

2) The loss function: After constructing the DNN model,
we need to design the corresponding loss function to guide
the training. Since there exists a one-to-one correspondence
between PG and Θc, it suffices to focus on the loss of PG,
which is defined as the sum of mean square error between the
obtained α̂i and the optimal scaling factors αi as follows:

LPG
=

1

|G|
∑
i∈G

(α̂i − αi)2. (8)

Meanwhile, we introduce a penalty term related to the
inequality constraint into the loss function. We first introduce
an Na×N matrix Ac for each contingency c, where Na is the
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Fig. 2: The flow chart of DeepOPF.

number of adjacent buses. Each row in Ac corresponds to an
adjacent bus pair. Given the k-th adjacent bus pair (ik, jk) ∈ E ,
k = 1, ..., Na, under the c-th contingency, let the power flow
from the ik-th bus to the jk-th bus. Thus, the elements, akik,c
and akjk,c, the corresponding entries of the matrix Ac, are
given as:

akik,c =
1

Pmax
Tikjk,c

· xikjk,c
and akjk,c =

−1
Pmax
Tikjk,c

· xikjk,c
.

(9)
Based on (7) and (9), the capacity constraints for the trans-
mission line in (4) can be expressed as:

− 1 ≤
(
AcΘ̂c

)
k
≤ 1, k = 1, ..., Na, c ∈ C, (10)

where (AcΘ̂c)k represents the k-th element of AcΘ̂c. Note
that Θ̂c is the phase angle vector generated based on (7) and
the discussion below it, and it is computed from PG and PD.
We can then calculate (AcΘ̂c)k. The penalty term capturing
the feasibility of the generated solutions is defined as:

Lpen =
1

Na

Na∑
k=1

max

((
AcΘ̂c

)2
k
− 1, 0

)
. (11)

In summary, the loss function consists of two parts: the
difference between the generated solution and the reference
solution and the penalty upon solutions violating the inequality
constraints. The total loss is a weighted sum of the two:

Ltotal = w1 · LPG
+ w2 · Lpen, (12)

where w1 and w2 are positive weighting factors for balancing
the influence of each term in the training phase.

3) The training process: The training processing can be
regarded as minimizing the average loss for the given training
data by tuning the parameters of the DNN model as follows:

min
Wi,bi

1

NT

NT∑
k=1

Ltotal,k (13)

where we recall that Wi and bi, i = 1, ..., Nhid represent the
connection weight matrix and vector for layer i. NT is the

amount of training data and Ltotal,k is the loss of the k-th
item in the training.

We apply the stochastic gradient descent (SGD) method
with momentum [43] to solve the problem in (13), which is
effective for the large-scale dataset and can economize on the
computational cost at every iteration by choosing a subset of
summation functions at every step.

F. Post-Processing

After obtaining a solution including the generations and
phase angles, we check its feasibility by examining if it
violates the generation limits and the line transmission limits.
We output the solution if it passes the feasibility test. Other-
wise, we solve the following `1-projection problem with linear
constraints to obtain a feasible solution, 5

min ‖P̂G − U‖1 s.t. U satisfies (2)-(4), (14)

where P̂G is the solution predicted by DNN. We remark that
such an `1-projection problem is indeed an LP and can be
solved by off-the-shell solvers.

V. PERFORMANCE ANALYSIS OF DEEPOPF

A. Approximation Error of the Load-to-Generation Mapping

Given a power network, the SC-DCOPF problem is a
quadratic programming problem with linear constraints. We
denote the mapping between the load input PD and the optimal
generation PG as f∗(·). Following the common practice in
the deep-learning analysis (e.g., [44]–[46]) and without loss
of generality, we focus on the case of one-dimensional output
in the following analysis, i.e., f∗(·) is a scalar.6 Assumed the

5It is common for machine learning approaches to generate infeasible
solutions. The proposed post-processing procedure can then be applied to
recover a feasible solution. The simulation results in Sec. VI show that
DeepOPF with post-processing achieves decent speedup performance.

6To extend the results for mappings with one-dimensional output to
mappings with multi-dimensional outputs, one can view the latter as multiple
mappings each with one-dimensional output, apply the results for one-
dimensional output multiple times, and combine them to get the one for
multi-dimension output.
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load input domain is compact, which usually holds in practice,
f∗(·) has certain properties.

Lemma 1. The function f∗(·) is piece-wise linear and
Lipschitz-continuous. That is, there exists a constant Λ > 0,
such that for any x1, x2 in the domain of f∗(·),

|f∗(x2)− f∗(x1)| ≤ Λ · ‖x1 − x2‖2.

Define f(·) as the mapping between PD and the generation
obtained by DeepOPF by using a neural network with depth
Nhid and maximum number of neurons per layer M . We focus
on the case of one-dimensional output. As f(·) is generated
from a neural network with ReLU activation functions, it is
also piece-wise linear [47].

By exploiting the piece-wise linearity and the Lipschitz
continuity, we analyze the approximation error between f∗(·)
and f(·).

Theorem 2. Let H be the class of all possible f∗(·) with
a Lipschitz constant Λ > 0. Let K be the class of all f(·)
generated by a neural network with depth Nhid and at most M
neurons per layer.

max
f∗∈H

min
f∈K

max
x∈S
|f∗ (x)− f (x)| ≥ Λ · d

4 · (2M)Nhid
, (15)

where d is the diameter of the load input domain S.

The theorem characterizes a lower bound on the worst-case
error of using neural networks to approximate load-generation
mappings in SC-DCOPF problems. The bound is linear in
d, which captures the size of the load input domain, and
Λ, which captures the “curveness” of the mapping to learn.
Meanwhile, interestingly, the bound decreases exponentially
in the number of layers while polynomially in the number of
neurons per layer. This suggests the benefits of using “deep”
neural networks in mapping approximation, similar to the
observations in [44]–[46]7.

A useful corollary suggested by Theorem 2 is the following.

Corollary 3. The following gives a condition on the neural
network parameters, such that it is ever possible to approx-
imate the most difficult load-to-generation mapping with a
Lipschitz constant Λ, up to an error of ε > 0.

(2M)Nhid ≥ Λ · d

4 · ε
, (16)

where d is the diameter of the input domain S .

The condition in (16) gives a necessary “size” of the neural
network to achieve preferred approximation accuracy. If (16)
is not satisfied, then there may exist a difficult mapping, even
the smallest possible approximation error exceeds ε.

7While our observations are similar to those in [44]–[46], there is distinct
difference in the results and the proof techniques as we explore the piece-wise
linearity of the function unique to our setting.

B. Computational Complexity

Recall that N is the number of buses. The number of
optimization variables in SC-DCOPF, including the genera-
tions and the phase angles of all the lines under all possible
contingencies, and the constraints is O

(
N3
)
.

The computational complexity of interior point methods
for solving SC-DCOPF as a convex quadratic problem is
O
((
N3
)4)

= O
(
N12

)
, measured as the number of elemen-

tary operations assuming that each elementary operation takes
a fixed amount of time to perform [20].

The computational complexity of DeepOPF consists of
three parts. The first is the complexity of predicting the
generations using the DNN, which is O

(
NhidM

2
)

where M
is the maximum number of neurons in each layer and Nhid

is the number of hidden layers in DNN. See Appendix E
of the supplementary materials for details of the analysis. To
achieve satisfactory performance in terms of optmality loss and
speed-up, we set M to be O (N) and Nhid to be 3. As such,
the complexity for predicting the generations by our DNN is
O
(
N2
)
.

The second is the complexity of computing the phase angles
from the generations by directly solving (linearized) power
flow equations and checking the feasibility of the results. The
process involves solving O

(
N2
)

sets of linear equations, one
set for each contingency, and checking the transmission line
limit constraints. The total complexity is O

(
N5
)
.

The third is the complexity of `1-projection, if the post-
processing procedure is involved to ensure feasibility of the
obtained solutions. The `1-projection is a linear programming
problem and can be solved in O

((
N3
)2.5)

= O
(
N7.5

)
amount of time by using algorithms based on fast matrix
multiplication.

Overall, the total computational complexity of DeepOPF
is O

(
N5
)

if the post-processing procedure is not involved,
for example, when the power system is operated in the light-
load regime. Otherwise, it is O

(
N7.5

)
. In both cases, the

complexity is substantially lower than that of solving the
original SC-DCOPF problem directly by the conventional
interior point method, which is O

(
N12

)
.

Our simulation results in Sec. VI corroborate the above ob-
servations. For both typical and congested settings, DeepOPF
obtains quality solutions for SC-DCOPF problems in a fraction
of the time used by a state-of-the-art solver with less than 0.2%
optimality loss. We also note that the `1-projection in the post-
processing procedure is an LP and can be solved efficiently
by off-the-shelf solvers.

C. Trade-off between Accuracy and Complexity

The results in Theorem 2 and Proposition 6 suggest a trade-
off between accuracy and complexity. In particular, we can
tune the number of hidden layers Nhid and the maximum num-
ber of neurons per layer M to trade between the approximation
accuracy and computational complexity of the DNN approach.
It appears desirable to design multi-layer neural networks in
DeepOPF as increasing Nhid may reduce the approximation
error exponentially, but only increase the complexity linearly.
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Fig. 3: The detail architecture of DNN model for IEEE Case30.

TABLE I: Parameters for test cases.

Case N |G| |D| |E| Nhid Neurons per hidden layer
IEEE

Case30 30 2 21 41 3 32/16/8

IEEE
Case57 57 4 42 80 3 32/16/8

IEEE
Case118 118 19 99 186 3 128/64/32

IEEE
Case300 300 57 199 411 3 256/128/64

* A bus is considered a load bus if its default active power consumption is
positive.

VI. NUMERICAL EXPERIMENTS

A. Experiment Setup

1) Simulation environment: The experiments are conducted
in CentOS 7.6 on the quad-core (i7-3770@3.40G Hz) CPU
workstation and 16GB RAM.

2) Test case: We consider four IEEE standard cases
in the Power Grid Lib [48] (version 19.05): the IEEE
Case- /30/57/118/300 test systems, representing small-scale,
medium-scale, and large-scale power networks, respectively.
Their illustrations are in [49], [50] and their parameters are
shown in Table I. For each case, we consider the typical
operating conditions [48], where the active power loads are
within the normal region and the branch limits are not binding
during both the pre-/post- contingency cases. Note the power
flow balance constraints are active so the SC-DCOPF under the
typical operating conditions are still a constrained optimization
problem. We illustrate the detailed architecture of our DNN
model for the IEEE Case30 in Fig. 3.

3) Data preparation: In the training stage, the load data
is sampled uniformly at random within [90%, 110%] of the
default value on each bus [48]. As the Power Grid Lib only has
linear cost functions for generators, we use the cost functions
from the test cases with same bus from MATPOWER [51]
(version 7.0) while all other parameters are taken from the
Power Grid Lib cases. Then we obtain the solution of the SC-
DCOPF problems by Gurobi [42] (version 8.1.1). We sample
50,000 training data and 5,000 test data for each test case.

4) The implementation of the DNN model: We design the
DNN model based on Pytorch platform and apply the stochas-
tic gradient descent (SGD) method with momentum [43] to
train the neural network. The epoch is set to 300 and the batch

size is 64. We set the weighting factors in the loss function
in (12) to be w1 = w2 = 1, based on empirical experience.
The remaining parameters are shown in Table I, including the
number of hidden layers and the number of neurons per layer.

5) Evaluation metrics: We compare the performance of
DeepOPF and the state-of-the-art Gurobi solver8 using the
following metrics, averaged over 5,000 test instances. The
first is the percentage of the feasible solution obtained by
both approaches. The second is the objective cost obtained
by both approaches. The third is the running time, i.e., the
average computation time for obtaining solutions for the 5,000
instances. The fourth is the speedup, i.e., the average of the
running-time ratios of the Gurobi solver to DeepOPF for all
the test instances. It captures the average gain in computation
time, of using DeepOPF over the Gurobi solver. We note that
the speedup is the average of ratios, and it is different from the
ratio of the average running times between the Gurobi solver
and DeepOPF.

B. Performance under the Typical Operating Condition

The simulation results for the test cases under the typical
operating conditions are shown in Table II and we have
several observations. First, as compared to the Gurobi solver,
DeepOPF speeds up the computing time by up to two orders
of magnitude. The speedup increases as the test cases get
larger, suggesting that DeepOPF is more efficient for large-
scale power networks. Second, DeepOPF without involving
the post-processing procedure always generates feasible so-
lutions for IEEE Case30, IEEE Case57, and IEEE Case118,
which justifies our design. We note that for IEEE Case300,
DeepOPF achieves 81.7% feasibility rate before the post-
processing procedure and overall 318 average speedup. Further
analysis shows the average speedup for the test instances with
feasible solutions generated by DNN (thus without involving
the post-processing procedure) is 385 with an average running
time of 15ms. For the remaining 18.3% test instances for
which DNN generates infeasible solutions, it is due to the
violation of 1 or 2 line capacity limit constraints. The `1-
projection based post-processing procedure is involved to
obtain feasible solutions, and the average running time of
DeepOPF with `1-projection is 378ms. Overall, the aver-
age DeepOPF running time for all the IEEECase300 test
instances is 81.4ms and the average speedup is 318. Third,
the cost difference between the DeepOPF solution and the
Gurobi solution is with less than 0.2% optimality loss (on
average). We show detailed statistics of the optimality loss
and the speedup for the IEEE Case118, in Appendix F of the
supplementary materials, to further demonstrate the effective-
ness of the DeepOPF. As compared to the optimal solution
obtained by the Gurobi solver, DeepOPF achieves an average
optimality loss less than 0.2% with the maximum around
1.2%. Meanwhile, DeepOPF achieves an average speedup of

8Gurobi implements the simplex algorithm for solving linear problems,
which has a polynomial-time complexity with high probability [52] and a
celebrated average-case running time performance. The Gurobi solver by
default uses multi-threading technique, which affects the computing time due
to the threads’ communication overhead. For fair comparison, we use the
single-threading setting in our simulations.



8

TABLE II: Performance comparison under typical operating conditions.

Test case # Contingencies # Variables Feasibility before
`1-projection (%)

Average cost ($/hr) Optimality
loss (%)

Running time (millisecond) SpeedupDeepOPF Ref. DeepOPF Ref.
IEEE Case30 38 1172 100 225.7 225.7 <0.1 0.72 17 ×24
IEEE Case57 79 4564 100 9022.9 9021.6 <0.1 0.76 102 ×133

IEEE Case118 177 21023 100 29197.9 29149.0 <0.2 2.48 698 ×281
IEEE Case300 318 95757 81.7 156601.8 156542.5 <0.1 81.4 5766 ×318

TABLE III: Performance under the typical, lightly-congested, and heavily-congested settings.

Scheme Variants
Typical Lightly-congested Heavily-congested

Feasibility rate
(%)

Optimality gap
(%) Speedup Feasibility rate

(%)
Optimality gap

(%) Speedup Feasibility rate
(%)

Optimality gap
(%) Speedup

DNN

with
`1-projection 100 <0.1 338 100 <0.2 56 100 <0.2 ×16.4

without
`1-projection 100 <0.1 338 15.7 <0.2 315 0 <0.2 –

KNN
-50K

with
`1-projection 100 <0.1 0.5 100 <0.6 0.7 100 <0.3 ×1.5

without
`1-projection 100 <0.1 0.5 0 <0.9 – 0 <0.3 –

* ‘–’ means the schemes fail to provide feasible solutions without post-processing thus do not associate with any speedup numbers.

×281 with the maximum around ×320. More details can be
found in Appendix F of the supplementary materials.

C. Performance with High-Variation Load and under Con-
gested Settings

To stress-test DeepOPF, we enlarge the sampling range
of the load on each bus and carry out simulations on IEEE
Case118 under the typical, lightly-congested, and heavily-
congested settings, by using and adjusting the typical and
congested configurations of IEEE Case118 provided by the
Power Grid Lib. For each setting, we sample 50,000 data in the
load region for training and prepare another 5,000 for testing.
For comparison, we evaluate the performance of the KNN
scheme with K = 50, also using the same 50,000 sample data
and 5,000 test data under each setting for fair comparison. We
denote the scheme as KNN-50K. Its output is calculated as the
average of the generation profiles (except the slack bus) of the
K nearest neighbors of the input load in the training data set.
Then the slack bus generation is computed to ensure the loads
are satisfied. The phase angles on each bus can be uniquely
determined by solving the power flow equations in (7). The
feasibility of the power flow on each line is evaluated by (11).

The results are reported in Table III. For the typical setting,
the load variation region is set as [50%, 150%] of the default
load and the line and generation limits are set according to
the typical setting provided by the Power Grid Lib. Under
such a setting, we observe none of the line constraints are
binding in the test data set. As seen from the Table III,
DeepOPF achieves a 100% feasibility rate, decent speedup,
and 0.1% optimality loss. This implies DeepOPF works well
on the high-variation load under the typical operating setting.
Meanwhile, it achieves similar optimality gap performance as
the KNN scheme, but a better speedup performance.

For the lightly-congested setting, the load variation region
is set as [50%, 150%] of the default load and the line and
generation limits are set according to the congested setting
in the Power Grid Lib. Under the setting, 85% of test cases
have at least one line constraint binding. Under this setting,

DeepOPF with the post-processing procedure generates fea-
sible solutions with a 0.2% optimality loss and a ×56 speedup
as compared to the Gurobi solver. For the 85% test cases with
at least one line constraint binding, DeepOPF with the post-
processing procedure obtains solutions with less than 0.2%
optimality loss and a ×8 speedup. As compared to the KNN
scheme, DeepOPF achieves better speedup and optimality
gap performance. We note that the absolute load range under
this lightly-congested setting is larger than the other two
settings. Consequently, the samples are sparser, resulting in the
worst optimality gap performance of KNN-50K, even worse
than that under the heavily-congested setting.

For the heavily-congested setting, we set the load variation
region to be within [150%, 160%] and adjust the line flow
limits under the largest load input. With the adjustment, all
the 50,000 training and 5,000 test instances have about 20%
line constraints binding. We note that the adjustment requires
tuning the line limits to have as many lines constraints binding
but without introducing post-contingency infeasibility. As we
see from the simulation results, DeepOPF without post-
processing fails to generate feasible solutions. In contrast,
DeepOPF with post-processing generates 100% feasible so-
lutions, with less than 0.2% optimality loss and a ×16 speedup
as compared to the Gurobi solver. Under the heavily-congested
setting, both KNN and DeepOPF scheme fail to generate
feasible solutions for the test instances. After applying the
l1-projection based post-processing procedure, both schemes
obtain feasible solutions and DeepOPF achieves better overall
speedup performance and optimality loss performance.

Overall, under both lightly-congested and heavily-congested
settings, our simulation results show that the post-processing
step is more efficient than solving the original problem di-
rectly. The results also echo the general understanding that
KNN incurs less training-time complexity but higher running-
time complexity than neural-network based approaches.
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(a) (b)

Fig. 4: Performance under different neural network and train-
ing data sizes for IEEE Case118 under typical operating
conditions.

D. Performance with different DNN Scales and Training data
Sizes

When applying DNN approaches, it is of interest to evaluate
the influence of the DNN’s size and the amount of training
data on the performance. In addition to the corresponding
performance analysis w.r.t. the DNN’s size in Sec. V, we
carry out experiments to compare the optimality loss and
speedup of DeepOPF with different neural network size and
training data size for IEEE case118 under the typical operation
condition. Three DNN models of different scales are used for
comparison:
• DeepOPF-V1: A simple neural network with one hidden

layer; the number of neurons is 16.
• DeepOPF-V2: A simple neural network with two hidden

layers; the numbers of neurons per layer are 32 and 16,
respectively.

• DeepOPF-V3: A simple neural network with three hid-
den layers; the numbers of neurons per layer are 64, 32,
and 16, respectively.

The training data size varies from 10,000 to 30,000. The
results are shown in Fig. 4(a) and Fig. 4(b). It is observed
that larger training data size contributes to smaller optimality
loss. Furthermore, we observe that when the depth and the
size of the neural network increase, DeepOPF achieves better
performance on optimality loss but less speedup. The above
results correspond to our theoretical analysis on computational
complexity and prediction accuracy in Sec. V-B and Sec. V-A,
i.e., larger DNN size tends to have better prediction accuracy
(smaller optimality loss) but also higher computational com-
plexity. Having said so, the over-fitting issue may appear in
practice if we keep increasing the depth and size. Thus, for
different power networks (as IEEE test cases), the DNN model
can be determined by educated guesses and iterative tuning,
which is also by far the common practice in generic DNN
approaches in various engineering domains.

E. Performance with different Weighting Factors in Loss
Function

As shown Sec. IV-E, there are two weighting factors w1 and
w2 in the loss function to balance between the training loss and
the penalty of violating the inequality constraints. We carry
out comparative experiments to evaluate the influence of the

TABLE IV: Performance comparisons of different combina-
tions of weights in the loss function.

Weight setting
Feasibility
rate (%)

Optimality
loss (%)

Speedup

w1 = 1,
w2 = 1

with
`1-projection

100 <0.2 ×56

without
`1-projection

15.7 <0.2 ×315

w1 = 1,
w2 = 10

with
`1-projection

100 <0.3 ×83

without
`1-projection

23.8 <0.3 ×324

w1 = 10,
w2 = 1

with
`1-projection

100 <0.1 ×53

without
`1-projection

14.5 <0.1 ×324

two hyper-parameters on the performance. More specifically,
we use IEEE Case118 with 50% sampling range for testing,
where the penalty is more likely to take effect as several
transmission lines are binding. Three variants of the weighting
factors in the loss function and the corresponding results are
shown in Table IV. As seen, larger value of w2 enhances the
feasibility rate (before `1-projection) and the speedup as the
post-processing step is involved in fewer test instances. In
practice, the weight factors can be determined by educated
guesses and iteratively adjusted to balance the influence of
the two term in the loss function.

VII. CONCLUSION

We develop DeepOPF for solving SC-DCOPF problems.
Given a power network, DeepOPF employs a DNN to learn
a high-dimensional mapping between the load inputs and
the dispatch decisions. With the learned mapping, it first
obtains the generations from the load inputs and then directly
computes the phase angels from the generations and loads. We
also develop an `1-projection based post-processing procedure
to ensure the feasibility of the obtained solution. We analyze
the approximation capability and computational complexity of
DeepOPF. Simulation results show that DeepOPF generates
feasible solutions with less than 0.2% optimality loss. As
compared to the Gurobi solver, DeepOPF speeds up the
computation time by up to two orders of magnitude under
the typical operating condition and by up to one order of
magnitude under the congested condition. The approach may
be computationally expensive in constructing and training the
DNN model, which can be minor if amortized over many
problem instances (e.g., one per every 5 minutes) that can
be solved using the same model. Future directions include
evaluating DeepOPF for national-scale power transmission
networks and extending it to the AC-OPF setting [36].
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SUPPLEMENTARY MATERIALS

APPENDIX A
PROOF OF LEMMA 1

Proof. We now show the considered piece-wise linear one-
dimensional output function f∗(·) is Lipschitz-continuous in
the input domain S , which can be partitioned into r different
convex polyhedral regions, Ri, i = 1, ..., r. The mapping f∗ (·)
is piece-wise linear and can be defined as follows:

f∗ (x) =


a1x+ b1, if x ∈ R1;

a2x+ b2, if x ∈ R2;

· · ·
arx+ br, if x ∈ Rr;

where x ∈ Rn×1, ai ∈ R1×n, i = 1, ..., r and bi ∈ R1, i =
1, ..., r. Then, we can have:

|f∗ (x1)− f∗ (x2)| ≤ ‖ai‖ · ‖x1 − x2‖, ∀x1, x2 ∈ S.

Thus, let Λ = max {‖ai‖, . . . , ‖ar‖}. We have

|f∗ (x1)− f∗ (x2)| ≤ Λ · ‖x1 − x2‖, ∀x1, x2 ∈ S.

Therefore, f∗ (·) is Lipschitz-continuous.

APPENDIX B
PROOF OF LEMMA 4

Before we proceed, we present a result on the approximation
error between two scalar function classes.

Lemma 4. Let H be the class of two-segment piece-wise
linear functions with a Lipschitz constant Λ > 0, over an
interval [−µ, µ] (µ > 0). Let K be the class of all linear
scalar functions over [−µ, µ]. Then, the following holds,

max
h∈H

min
g∈K

max
x∈[−µ,µ]

|h (x)− g (x)| ≥ Λ · µ
2
. (17)

Essentially, the lemma gives a lower bound to the worst-case
error of using a linear function to approximate a two-segment
piece-wise linear function.

Proof. We can derive the lower bound to the worst-case L∞-
based approximation error as follows. Suppose we want to
find a function g (·) belongs to the linear scalar function class
K to approximate the function h belongs to the two-segment
piece-wise linear function class H with a Lipschitz constant
Λ > 0, over an interval [−µ, µ] (µ > 0). An illustration is
shown in Fig. 5. Let g (x) = a · x + b, for x ∈ [−µ, µ]. Let
ĥ ∈ H be the following:

ĥ (x) =

{
Λ(x+ µ), if x ∈ [−µ, 0] ;
−Λ(x− µ), if x ∈ [0, µ] ;

(18)

Then, we can obtain the lower bound for the L∞-based
approximation error of ĥ (·) and g (·) by the classification
discussion on the intercept b.

Fig. 5: Illustration of approximating a two-segment piece-wise
Lipschitz-continuous function h(·) by a linear function g(·).

• If b ≤ Λµ
2 . Under this case, we can get:

max
x∈[−µ,µ]

∣∣∣ĥ (x)− g (x)∣∣∣ ≥ ∣∣∣ĥ (0)− g (0)∣∣∣
≥ Λ · µ

2n
= |Λµ− b|
≥ Λ · µ

2
.

• Otherwise Λµ
2 < b. If a > 0, under this case we can have:

max
x∈[−µ,µ]

∣∣∣ĥ (x)− g (x)∣∣∣ ≥ ∣∣∣ĥ (µ)− g (µ)∣∣∣
≥ (Λ+ a) · µ

2

≥ Λ · µ
2
.

Otherwise a ≤ 0, we can consider the point x = −µ and
obtain the same result.

Thus overall, we observe

min
g∈K

max
x∈[−µ,µ]

∣∣∣ĥ (x)− g (x)∣∣∣ = Λ · µ
2
.

For the worst-case L∞-based approximation error, we have

max
h∈H

min
g∈K

max
x∈[−µ,µ]

|h (x)− g (x)|

≥min
g∈K

max
x∈[−µ,µ]

∣∣∣ĥ (x)− g (x)∣∣∣
≥Λ · µ

2
.

APPENDIX C
PROOF OF THEOREM 2

Proof. Suppose K is the family of piece-wise linear functions
generated by a neural network with depth Nhid and maximum
number of neurons per layer M , on the load input domain S
with the diameter d. The maximum number of segments any
functions in K can have is defined as n. Let H be the class
of all possible f∗(·) with a Lipschitz constant Λ > 0. Let
[ai, ai+1], 0 ≤ i ≤ 2n − 1, be 2n intervals with equal length
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portioning the diameter of input domain. Define f̂ ∈ H as
follows:

f̂ (x) =

{
Λ(x− ai), if x ∈ [ai, ai+1] , i = 0, 2, . . . , 2n− 2;

−Λ(x− ai+2), if x ∈ [ai+1, ai+2] , i = 0, 2, . . . , 2n− 2.

Consider any f ∈ K, since f is piece-wise linear with at most
n segments over the input domain, it must be linear over one
of the following n segments [ai, ai+2] , i = 0, 2, ..., 2n − 2.
Over that particular segment, we apply Lemma 4 to bound
the approximation error as in (17). Overall, we have

min
f∈K

max
x∈S

∣∣∣f̂ (x)− f (x)∣∣∣ ≥ Λ · d
4n
. (19)

Since the above inequality holds for a particular choice of
f̂ ∈ H, we must have

max
f∗∈H

min
f∈K

max
x∈S
|f∗ (x)− f (x)| ≥ Λ · d

4n
. (20)

Meanwhile, we use the result in [53], of which the following
is an immediate corollary.

Corollary 5. The maximum number of linear segments gen-
erated from the family of ReLU neural networks with depth
(the number of hidden layers) l and maximal width (neurons
on the hidden layer) m is (2m)

l.

By the above corollary, we have n ≤ (2M)
Nhid . Plugging

the relationship into (20), we have

max
f∗∈H

min
f∈K

max
x∈S
|f∗ (x)− f (x)| ≥ Λ · d

4 · (2M)Nhid
. (21)

APPENDIX D
PROOF OF COROLLARY 3

Proof. We next will show how to derive the Corollary 3.
Suppose ε is defined as the upper bound for the worst-case
approximation error, that is:

max
f∗∈H

min
f∈G

max
x∈D
|f∗ (x)− f (x)| ≤ ε (22)

Then, we can derive the following inequality based on the
above definition and Theorem 2:

Λ · d

4 · (2M)Nhid
≤ ε, (23)

After some transformations, we can obtain the following nec-
essary condition related to the DNN’s scale on the Corollary
3, which can guarantee that the designed DNN’s ever possible
to approximate the most difficult load-to-generation mapping
with a Lipschitz constant Λ, up to an error of ε > 0:

(2M)Nhid ≥ Λ · d

4 · ε
. (24)

APPENDIX E
COMPUTATIONAL COMPLEXITY OF DEEPOPF FOR

PREDICTING THE GENERATIONS

Recall that the number of bus and the number of contin-
gencies are N and C, respectively. The input and the output
of the DNN model have Kin and Kout dimensions, and the
DNN model has Nhid hidden layers and each hidden layer has
at most M neurons. Specifically, in our setting, Kin equals to
the number of buses with load and Kout equals to the number
of generators. Therefore, the input and output dimensions are
of the same order of N . From empirical experience, we set
M to be on the same order of N and set Nhid to be a constant.
Once we finish training the DNN model, the complexity of
generating solutions by using DeepOPF is characterized in
the following proposition.

Proposition 6. The computational complexity (measured as
the number of arithmetic operations) to generate the genera-
tions to the SC-DCOPF problem by using DeepOPF is

T = KinK1 +

Nhid−1∑
i=1

KiKi+1 +KoutNhid, (25)

which is O
(
NhidM

2
)
.

Note that Nhid is set to 3 and M is set to be O (N). The
complexity of DeepOPF for predicting the generations is
O
(
N2
)
, smaller than that of the interior point method.

Proof. We next will show how to derive the computational
complexity of using the DNN model to obtain the genera-
tion output from the given input. Recall that the input and
the output of the DNN model in DeepOPF are Kin and
Kout dimensions, respectively, and the DNN model has Nhid

hidden layers and each hidden layer has Ki neurons, for
i = 1, ..., Nhid. The maximal neurons on the hidden layers
is M neurons. For each neuron in the DNN model, we can
regard the computation complexity on each neuron (measured
by basic arithmetic operation) as O (1). As we apply the fully-
connected architecture, the output of each neuron is calculated
by taking a weighted sum of the output from the neurons on
the previous hidden layer and passing through a activation
function.

Thus, the computational complexity (measured as the num-
ber of arithmetic operations) to generate the output from the
input by a DNN model consists of the following three parts:
• Complexity of computation from the input to the first

hidden layer. As each neuron on the first hidden layer will
take the input data, thus the corresponding complexity is
O (KinK1).

• Complexity of computation between the consecutive hid-
den layers. Since each neuron on the current hidden
layer will take the output from each neuron on the
previous hidden layer as the input data. Thus, thus the
corresponding complexity is O

(∑Nhid−1
i=1 KiKi+1

)
.

• Complexity of computation from the last hidden layer
to the output. As the output of each neuron on the
last hidden layer is used to calculated the output, the
corresponding complexity is O (NhidKout).
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The Sigmoid function is applied to each element of the
output in order to guarantee that the elements of the final
output is within (0, 1). The Sigmoid function takes the form
of

S(x) =
1

1 + e−x
=

ex

ex + 1
.

and computing a Sigmoid function involves one addition op-
eration, one division operation, and one exponentiation opera-
tion. The exponentiation operation is essentially a combination
of n-th power operation and m-th root operation, where n
and m are some integers depending on the output element x.
That is, x = n

m . Previous works show that the computational
complexity of n-th multiplication operations and m-th root
operations is O(logn · logm) [54], [55]. Therefore, a Sigmoid
function requires O(logn · logm) operations. In practice, both
n and m are bounded by some constant integer M in the
actual computation process, and therefore the computational
complexity for the Sigmoid function is (logM)2, which is
a constant too. In our DeepOPF solution, the output layer
of DNN has Kout neurons with Sigmoid function, the corre-
sponding computational complexity (the number of arithmetic
operations) for the output layer is O(Kout).

Hence, the overall complexity of the calculation by a DNN
model is:

T = O
(
NinK1 +NhidM

2 +NhidKout

)
= O

(
NhidM

2
)
.

(a) (b)

Fig. 6: Empirical cumulative distribution of speedup and
optimality loss for the IEEE Case118 under typical operating
conditions.

APPENDIX F
THE STATISTICAL RESULT OF THE SPEEDUP AND THE

OPTIMALITY LOSS FOR THE IEEE CASE118.

We plot the empirical cumulative distribution of the speedup
and the optimality loss for the IEEE Case118 in Fig. 6(a) and
Fig. 6(b), respectively. As compared to the optimal solution
obtained by the Gurobi solver, DeepOPF achieves an average
optimality loss less than 0.2% with the maximum around
1.2%. Meanwhile, as compared to the solving time used by
the Gurobi solver, DeepOPF achieves an average speedup of
×281 with the maximum around ×320.


