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Abstract—AC optimal power flow (AC-OPF) problems need
to be solved more frequently in the future to maintain stable
and economic power system operation. To tackle this chal-
lenge, a deep neural network-based voltage-constrained approach
(DeepOPEF-V) is proposed to solve AC-OPF problems with high
computational efficiency. Its unique design predicts voltages of
all buses and then uses them to reconstruct the remaining
variables without solving non-linear AC power flow equations.
A fast post-processing process is also developed to enforce the
box constraints. The effectiveness of DeepOPF-V is validated by
simulations on IEEE 118/300-bus systems and a 2000-bus test
system. Compared with existing studies, DeepOPF-V achieves
decent computation speedup up to four orders of magnitude
and comparable performance in optimality gap, while preserving
feasibility of the solution.

Index Terms—AC optimal power flow, deep neural network,
voltage prediction.

I. INTRODUCTION

The AC optimal power flow (AC-OPF) problem is a fun-
damental yet challenging problem in power system operation.
With increasing uncertainties brought by intermittent renew-
ables and highly stochastic loads, the AC-OPF problem needs
to be solved more frequently to maintain stable and economic
power system operation. Therefore, it is of great significance
to solve AC-OPF problems with high computational efficiency,
especially for large-scale systems.

Leveraging the powerful learning ability of deep neural
networks (DNNs), various DNN-based approaches have been
proposed to solve AC-OPF problems more efficiently, which
can be classified into two main categories: hybrid approach
and stand-alone approach. The hybrid approach aims to speed
up conventional physics-based solvers (e.g., Matpower Inte-
rior Point Solver (MIPS)) by providing warm-start points to
accelerate convergence [1] or predicting active [2] or inactive
[3] constraints to reduce the problem size. Since it still needs
to solve the original or truncated OPF problem iteratively,
all operational constraints are considered, but the speedup is
limited, i.e., less than one order of magnitude in most studies.

The stand-alone approach predicts the solution of AC-OPF
problem directly without solving the optimization problem.
Hence, it has a much greater speedup than the hybrid ap-
proach. Following the predict-and-reconstruct framework and
the handy technique of ensuring box constraints for DC-OPF
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[4], [5], several DNN-based approaches are developed for AC-
OPF [6]-[8]. These approaches need to solve non-linear power
flow equations in their designs, which limits the speedup
performance considerably. Different from the above strategies,
reference [9] combines DNNs and Lagrangian duality to pre-
dict all variables, which reported greater computation speedup.
Nevertheless, the critical AC power flow equality constraints
may not be satisfied.

In this paper, we propose DeepOPF-V as a DNN-based
voltage-constrained approach to solve AC-OPF problems with
high efficiency. Our contribution is threefold. First, as pre-
sented in Sec. II-B, distinct from previous studies that learn
the mapping between loads and generations or all solution
variables, DeepOPF-V learns the mapping between loads and
voltages of all buses and directly reconstructs the remaining
solution variables via simple scalar computation, which guar-
antees the power flow equality constraints and is expected
to achieve decent speedup'. Second, a fast post-processing
process is developed to adjust the predicted voltages in Sec. II-
C, which helps to preserve the box constraints and improves
the feasibility of the solution. Finally, we carry out simulations
using IEEE 118/300-bus systems and a 2000-bus test system
in Sec. III. The empirical performance verifies the effective-
ness of our design and shows that compared with existing
works, DeepOPF-V achieves decent computation speedup up
to four orders of magnitude and comparable performance in
optimality gap, while preserving feasibility of the solution.

II. MODEL AND METHODOLOGY
A. The AC Optimal Power Flow Problem
The standard AC-OPF problem can be formulated as

min Zie/\fc Ci(Pyi) (1)
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where: NV, Ng and £ represent the sets of all buses, generation
buses and transmission lines, respectively; at bus ¢, Py is

Reference [10] also learns the mapping between loads and voltages using
Random Forest, but it does not consider the feasibility and needs a strong
assumption to enforce power balance constraints.
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Fig. 1. Schematic of the proposed DeepOPF-V.

the active generation with the cost C;(P,;), Qgi, Pa; and
Qq4; denote the reactive generation, active load and reactive
load, respectively, and V; and 6; are voltage magnitude and
phase angle, respectively; at branch (4,j), ¢;; and b;; are
the conductance and susceptance, respectively, FP;; and @Q;;
are active and reactive power flows, respectively, and 6;; is
given by 0;; = 6; — 0;; upper and lower bounds of a certain
variable x are represented by ™ and x™", respectively; the
branch flow limit of branch (4, j) is denoted by S73**. The AC-
OPF problem aims to minimize the total generation cost in (1)
with all constraints satisfied. The Kirchhoff’s circuit laws are
ensured by (2)-(3); active and reactive power generation limits
are enforced by (4)-(5); voltage magnitude limit is ensured by
(6); branch flows and voltage phase angles are restricted by
(7) and (8), respectively.

B. The Proposed DNN-Based Voltage-Constrained Approach

The schematic of the proposed DeepOPF-V is shown in
Fig. 1. DNNs are employed to learn the mapping between
loads (Pg,Qq) and voltages of all buses instead of only
the generations or all the solution variables as in previous
works. After training, for each input (Py, Q4), the voltages
are predicted by the well-trained DNNs instantly. Then, using
the predicted voltage magnitudes V., voltage angles 6 and the
given load input (Py, Qq4), we can easily compute the right-
hand side (RHS) of the equations in (2)-(3). The remammg
solution variables Pg, Qg and some auxiliary variables (Pg,
Qd) are then directly calculated using the obtained RHS values
without the need to solve non-linear power flow equations.
Specifically, for each bus i: 1) if there are only generators or
loads, its required active/reactive generation (i.e., Pgi/Qgi) or
satisfied active/reactive load (i.e., Pdi/Qdi) is obtained directly;
2) if there are both generators and loads, I:’di and Qdi are set
to the given loads Py; and g, respectively, and then Pgi
and Qgi are directly calculated from (2)-(3). After obtaining
139, the objective function is calculated by (1). Due to the
voltage prediction errors, there could be unsatisfied loads, i.e.,
the mismatches between (P, Q4) and (13,1, Qd), which will
be discussed in Section. II-D.

To reduce the size of DNNs, V and 6 are predicted by the
voltage magnitude predictor (VMP) and voltage angle pre-
dictor (VAP), respectively, to improve the training efficiency.
Hence, the inputs of the VMP and of the VAP are both
(Py, Qd) while the outputs of the VMP and of the VAP are \%
and 6, respectively?. The loss functions of the VMP (denoted

A lower bound for the approximation errors of the load-to-solution mapping
for AC-OPF can be found in [6].

as Ly) and of the VAP (denoted as Ly) are formulated as

Ly =Y IVi-Vill3, Lo=)_lI6:—06ill3, (9
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where: V; and 6; are predicted voltage magnitude and angle
for bus ¢ during the training, respectively; V; and 6; are the
ground truths of V; and 6;, respectively, which can be obtained
by OPF solvers such as MIPS when preparing the training data.
For large power systems, we can split all buses into several
groups and predict voltages for each group of buses in parallel.
In this way, the DNN model size can be reduced greatly, and

the training time would not increase significantly.

C. The Post-Processing Process

The post-processing process is developed herein to improve
the feasibility of the predicted solution, which contains two
steps. First, the inequality constraints in (4)-(8) are checked.
Second, if there is violation of constraints, the related voltage
magnitudes and angles are adjusted as

Vpp=V +AV, Opp=0+A6, (10)

where AV and A@ are obtained as follows. Denote inequality
constraints in (4)-(8) in a compact form as f < f(0,V) <
f. For each inequality constraint f;(0,V), define Af; =
max(f;(8,V) — f;,0) + min(f;(6,V) — f;»0). Linearizing

A f around the predicted operating point (V 0) gives

A6

AV :F;—VAf7 FGV:[ﬂﬁ]a

00 0OV

(an

where Fjv is the pseudo-inverse of Flgy. To reduce the
computational burden, F'ygy, can be approximated by a constant
matrix Ff”S calculated at the average historical operating point
(Vhis, Gh") Using (11), we adjust the values of A@ and AV
adaptively according to Af. Note that this method helps to
improve but can not guarantee the satisfaction of inequality
constrains. To guarantee voltage constraints, Vpp are kept
within the limits after adjustment.

D. Load Satisfaction

Due to the prediction errors of voltages, there could be
unsatisfied loads. For example, there may be mismatches
between the obtained net injections and the given loads for
the bus with only loads. We note that the unsatisfied loads
are also inevitable in conventional approaches [11], and 1%
load-generation imbalance is considered acceptable [12]. To
fully satisfy loads, controllable distributed energy sources can
be applied, e.g., compensating the over/under-satisfied loads
by charging/discharging batteries installed at the substation.

III. NUMERICAL EXPERIMENTS
A. Experimental Setup

Simulations are conducted on modified IEEE 118/300-bus
systems and a 2000-bus test system [13]. The dataset that was
used contained 40,000 samples for the 118-bus system and
60,000 samples for the 300/2000-bus systems with an 80-20%



training-test split. Each sample was generated as follows. First,
a load scenario was sampled randomly for each load bus from
a uniform distribution of 10% variation around the default
load. Then, the loads were fed into the conventional solver
MIPS 3 to obtain the optimal solutions as the ground truth
values. By learning the mapping embedded in the training
dataset, it was found that DeepOPF-V could provide solutions
close to those given by the solver. To verify the effectiveness
of DeepOPF-V in handling systems with large correlated
load variations, real-time load data of IEEE 300-bus system
generated in [14] were used, with load variations up to 42.3%.

The DNN-based model was designed on the platform of
PyTorch, which consisted of fully-connected neural networks
with 512, 256, 128-unit / 1024, 768, 512, 256-unit / 768,
768, 768-unit hidden layers for the 118/300/2000-bus systems.
The ReLU activation function was used on the hidden layers.
We applied the Adam optimizer for DNN training and set
the maximum epoch and learning rate to 1000 and 0.001,
respectively. The mini-batch size was set to 50/100/512 for
the 118/300/2000-bus systems. For the 2000-bus system, to
reduce the DNN model size, we split all buses into 10 groups
evenly and predict the voltages for each group of buses in
parallel. The DNNs are trained on a single GPU, which
takes 286s/1676s/692s for the 118/300/2000-bus systems. Sim-
ulation tests are run on the quad-core (i7-3770@3.40G Hz)
CPU workstation with 16GB RAM. The codes and data are
available online [13].

The performance of DeepOPF-V is evaluated by the follow-
ing metrics:

1) Speedup: The speedup factor 7)., measures the average
ratio of the computation time i,,;,s consumed by MIPS to
solve the original AC-OPF problem to the computation time
tdnn consumed by DeepOPF-V.

2) Optimality Loss: It measures the average relative devia-
tion 7,,; between the optimal objective value found by MIPS
and that by DeepOPF-V.

3) Constraint Satisfaction: It evaluates the feasibility of the
generated solutions from two aspects: constraint satisfaction
ratio (i.e., the percentage of inequality constraints satisfied)
and the degree of violation (i.e., the distance between the
violated variable and the boundary). The constraint satisfaction
ratios (the degrees of violation) of voltage magnitude, active
generation, reactive generation, branch power flow and phase
angle difference are denoted by nv (Av), np, (Ap,). 1q,
(Ag,)» 1s, (Ag,), and 79, (Ag,), respectively.

4) Load Satisfaction Ratio: 1t is defined as the percentage
of demanded loads satisfied. The active and reactive load
satisfaction ratios are denoted as np, and nq,, respectively.

B. Performance Evaluation

1) Simulation results for the 300/2000-bus systems: The
results in Table. I indicate that DeepOPF-V can speed up
finding a solution to the AC-OPF problem significantly (i.e., up
to three/four orders of magnitude in the 300/2000-bus systems)
with negligible optimality loss (i.e., less than 0.15%). Besides,

° The conventional solver MIPS solves the AC-OPF problem using the interior-

point method. Other solvers can also be used to generate the dataset.

TABLE I
SIMULATION RESULTS FOR THE 300-BUS AND 2000-BUS SYSTEMS

IEEE 300-bus system 2000-bus system

Metric Before PP After PP Before PP After PP
Nopt (%) 0.11 0.11 0.15 0.14
nv (%) 100.0 100.0 100.0 100.0
NP, (%)/r]Qg (%) 99.9/99.3 100.0/99.8  100.0/100.0  100.0/100.0
Apg (p-u.) 0.0020 0.0020 0 0
AQQ (p-u.) 0.3350 0.3350 0 0
ns, (%) 100.0 100.0 99.71 99.71
Ag, (p.u.) 0 0 0.0247 0.0247
g, (%) 100.0 100.0 100.0 100.0
np4(%)ng (%) 99.6/99.5 99.6/99.4 99.83/99.53  99.84/99.53
tmips/tann (ms)  3213.3/1.7  3213.3/2.1  39107.8/2.7  39107.8/2.9
Nsp x 1890 x 1530 X 16543 x 15374
TABLE 11

SIMULATION RESULTS FOR THE MODIFIED IEEE 300-BUS SYSTEM WITH
REAL-TIME LOAD DATA

. After PP
Metric Before PP Fg‘l/s Fov
Nopt (%)M (%) -0.01/100.0  -0.01/100.0  -0.01/100.0
NP, (%)/Apg (p-u)  99.6/0.0007 100.0/0 100.0/0
Qg (%)/AQQ (pu.)  99.8/0.0019 100.0/0 100.0/0
ns, (%)me, (%) 100.0/100.0  100.0/100.0  100.0/100.0
NPy (%)ng (%) 99.90/99.90  99.95/99.94  99.95/99.94
Nsp x 1887 x 1562 X647

almost all loads satisfied. With regard to the feasibility of the
solution, voltage and phase angle constraints are all satisfied.
For the 300-bus system, the active generation and branch flow
constraints are all satisfied after post-processing (PP). Almost
all reactive generation constraints are satisfied with negligible
violation degrees that only account for 0.03% capacities of
the largest generators installed in the 300-bus system. For the
2000-bus system, the generation constraints are all satisfied.
Since most branch flow constraints are already binding in the
dataset, they are slightly violated due to the prediction errors,
within 1% MVA rating of the branch on average.

Table. II shows that DeepOPF-V still achieves high effi-
ciency when load variations are significant (up to 42.3%) and
correlated. In addition, the performances of using F'gy and the
approximated matrix Fg{f for the PP are compared. As seen
in Table. II, these two methods have the same performance
except for the computational speedup. One of the main reasons
is that DeepOPF-V has high prediction accuracy (i.e., the mean
square prediction errors of voltage magnitudes and angles are
9.03e-5 p.u. and 2.79e-4 p.u., respectively). Thus, DeepOPF-V
still achieves good performance without PP.

2) Comparison with state-of-the-art approaches: The pro-
posed DeepOPF-V is also compared with the state-of-the-art
approaches in [6] (denoted as DACOPF) and [8] (denoted
as EACOPF). Parameters of DACOPF and EACOPF are set
according to [6] and [8], respectively. For a fair comparison,
the training/testing samples are all set to 32,000/8,000. These
approaches are not compared in larger systems due to the need
for lengthy training time in obtaining the solutions of [6], [8].

As shown in Table. III, all approaches have small optimality
losses. However, DeepOPF-V has a much larger speedup
(around three orders of magnitude) than the other approaches
(around one order of magnitude). As for the feasibility of
the solution, there is no violation of inequality constraints in



TABLE III
COMPARISON RESULTS FOR MODIFIED IEEE 118-BUS SYSTEM

Metric DeepOPF-V DACOPF EACOPF
Nopt (%) 0.1 0.5 04

ny (%) Ay (p.u.) 100.0/0 98.6/0.0074  99.2/0.0043
NP, (%)/Apg (p-u.) 100.0/0 100.0/0 99.3/0.0155

Qg (%) 100.0 100.0 100.0
ns, (%)/ne, (%) 100.0/100.0 100.0/100.0 100.0/100.0
npy(%)ng (%) 99.8/99.6 100.0/100.0 100.0/100.0
Nsp around X 1000 around x10 around x10

DeepOPF-V, whereas there are voltage magnitude constraints
violated in DACOPF and voltage and active generation con-
straints violated in EACOPF. It is because DeepOPF-V obtains
voltages directly and thus can keep them within limits, while
DACOPF and EACOPF obtain voltages by solving power flow
equations using predicted generation set points, and therefore
can not ensure voltage constraints. Moreover, there may be
no feasible power flow solutions in DACOPF and EACOPF,
which is not a concern in DeepOPF-V because power flow
equations are satisfied automatically.

All loads can be fully satisfied in DACOPF and EACOPF
so long as there are power flow solutions. However, there
is no guarantee of the existence of power flow solutions.
In this test system, 0.15% of the testing samples have no
power flow solutions in EACOPF. In contrast, DeepOPF-V
always guarantees to obtain power flow solutions, with a load
satisfaction ratio of 99.6%, which is practically acceptable as
discussed in Section II.D.

IV. CONCLUSION

We propose a DNN-based voltage-constrained approach
(DeepOPF-V) to solve AC-OPF problems with high compu-
tational efficiency. It predicts voltages of all buses using a
DNN-based model and then obtains all remaining variables
via power flow equations, which ensures voltage and power
balance constraints. Simulation results on IEEE 118/300-bus
systems and a 2000-bus test system indicate that DeepOPF-
V outperforms the state-of-the-art approaches in computation
speedup (up to four orders of magnitude faster than conven-
tional solver), with similar performance in optimality loss (less
than 0.2%), while preserving feasibility of the solution.
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